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Measurement of linear response 
functions in Nuclear Magnetic 
Resonance
Tao Xin1,2, Julen S. Pedernales  3, Lucas Lamata  3, Enrique Solano3,4 & Gui-Lu Long  1,2,5

We measure multi-time correlation functions of a set of Pauli operators on a two-level system, which 
can be used to retrieve its associated linear response functions. The two-level system is an effective 
spin constructed from the nuclear spins of 1H atoms in a solution of 13C-labeled chloroform. Response 
functions characterize the linear response of the system to a family of perturbations, allowing us to 
compute physical quantities such as the magnetic susceptibility of the effective spin. We use techniques 
exported from quantum information to measure time correlations on the two-level system. This 
approach requires the use of an ancillary qubit encoded in the nuclear spins of the 13C atoms and a 
sequence of controlled operations. Moreover, we demonstrate the ability of such a quantum platform 
to compute time-correlation functions of arbitrary order, which relate to higher-order corrections of 
perturbative methods. Particularly, we show three-time correlation functions for arbitrary times, and 
we also measure time correlation functions at fixed times up to tenth order.

In nature, closed quantum systems exist only as a convenient approximation. When systems are subjected to 
perturbations or have strong interactions with their environment, open models yield a more reliable descrip-
tion. A complete statistical characterization of an open quantum system unavoidably involves knowledge on 
the expectation value of multi-time correlations of observables, which are related to measurable quantities1. 
Time-correlation functions are at the core of optical coherence theory2, and can also be used for the quantum 
simulation of Lindbladian dynamics3. A plethora of physical magnitudes, such as susceptibilities and transport 
coefficients, can be microscopically derived in terms of time correlation functions4,5. In a statistical approach4, lin-
ear response functions represent a powerful tool to compute the susceptibility of an observable to a perturbation 
on the system. Such functions are constructed in terms of time-correlation functions of unperturbed observables.

Despite the ubiquity of time correlations in physics, their measurement on a quantum mechanical system is 
not straightforward. This difficulty lies in the fact that in quantum mechanics the measurement process disturbs 
the system, leaving it unreliable for a later correlated observation. Statistical descriptions typically involve an 
averaging of the time-correlation functions over an ensemble of particles. In such a case, it is possible to measure 
operator A at time t1 over a reduced number of particles of the ensemble, and operator B at time t2 over particles 
that were not perturbed by the first measurement. However, it is not always possible to perform measurements 
discriminating a subset of particles out of an ensemble. Moreover, nowadays, single quantum systems offer a high 
degree of controllability, which legitimates the interest in measuring time-correlation functions on single quan-
tum systems. A solution to this puzzle can be found in algorithms for quantum computation. It is known that 
introducing an ancillary two-level system and performing a reduced set of controlled operations, time-correlation 
functions of a system can be reconstructed from single-time observables of the ancilla6–8. In this article, we meas-
ure n-time correlation functions for pure states, up to =n 10, in a highly-controllable quantum platform as is the 
case of nuclear magnetic resonance (NMR). Moreover, we frame these correlation functions in the context of 
linear response theory to compute physical magnitudes including the susceptibility of the system to perturba-
tions. Finally, the scalability of the approach is shown to be efficient for multi-time correlation functions.
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The measurement of n-time correlation functions plays a significant role in the linear response theory. For instance, 
we can microscopically derive useful quantities such as the conductivity and the susceptibility of a system, with the 
knowledge of 2-time correlation functions. As an illustrative example, we study the case of a spin-1/2 particle in a uni-
form magnetic field of strength B along the z-axis, which has a natural Hamiltonian  γ σ= − B z0 , where γ is the 
gyromagnetic ratio of the particle. We assume now that a magnetic field with a sinusoidal time dependence ′ ω−B e i t

0  and 
arbitrary direction α perturbs the system. The Hamiltonian representation of such a situation is given by 
  γ σ= − ′ α

ω−B e i t
0 0 , with α = x y z, , . The magnetic susceptibility of the system is the deviation of the magnetic 

moment from its thermal expectation value as a consequence of such a perturbation. For instance, the corrected 
expression for the magnetic moment in direction β µ γσ=β β( ) is given by µ µ χ= +β β α β

ω ω−t e( ) (0) i t
, , where χα β

ω
,  is 

the frequency-dependent susceptibility. From linear response theory, we learn that the susceptibility can be retrieved 
integrating the linear response function as ∫χ ϕ= −α β

ω
α β

ω
−∞

− −t s e ds( )t i t s
, ,

( ) . Moreover, the latter can be given in 
terms of time-correlation functions of the measured and perturbed observables, φ γ σ γσ= 〈 ′ 〉α β α βt B t i( ) [ , ( )] /( ), 0 , 
where  σ σ=β β

−t e e( ) i H t i H t/ /0 0 , and the averaging is made over a thermal equilibrium ensemble. Notice that for a two 
level system, the thermal average can easily be reconstructed from the expectation values of the ground and excited 
states. So far, the response function can be retrieved by measuring the 2-time correlation functions of the unperturbed 
system σ σ〈 〉α β t( )  and σ σ〈 〉β αt( ) . It is noteworthy to mention that when α β= , σ σ σ σ〈 〉 = 〈 〉α α α α

⁎t t( ) ( ) , and it is enough 
to measure one of them. All in all, measuring two-time correlation functions from an ensemble of two level systems is 
not merely a computational result, but an actual measurement of the susceptibility of the system to arbitrary perturba-
tions. Therefore, it gives us insights about the behavior of the system, and helps us characterize it. In a similar fashion, 
further corrections to the expectation values of the observables of the system will be given in terms of higher-order 
correlation functions. In this experiment, we will not only measure two-time correlation functions that will allow us to 
extract the susceptibility of the system, but we will also show that higher-order correlation functions can be obtained.

Results
Theoretical protocol. We will follow the algorithm introduced in ref.7 to extract n-time correlation func-
tions of the form φ σ σ σ φ... = 〈 | ... | 〉γ β α− −f t t t t( , , ) ( ) ( ) (0)n n1 1 1 1  from a two-level quantum system, with the assis-
tance of one ancillary qubit. Here, φ| 〉 is the quantum state of the two-level quantum system and σα t( ) is a 
time-dependent Pauli operator in the Heisenberg picture, defined as σ σ=α α

†t U t U t( ) ( ; 0) ( ; 0), where 
α = x y z, , , and U t t( ; )j i  is the evolution operator from time ti to tj. The considered algorithm of ref.7 is depicted 
in Fig. 1, for the case where nuclear spins of 13C and 1H respectively encode the ancillary qubit and the two-level 
quantum system, and consists of the following steps:

i( ) The input state of the probe-system qubits is prepared in ρ ρ= |+〉〈+| ⊗in
CH

in, with |+〉 = | 〉 + | 〉( 0 1 )/ 2  
and ρ φ φ= | 〉〈 |in .

ii( ) The controlled quantum gate = | 〉〈 | ⊗ + | 〉〈 | ⊗α αU S1 1 0 0k
2 is firstly applied on the two qubits, with 

σ=Sx x, σ= −S iy y and σ=S iz z. 2 is a ×2 2 identity matrix.
iii( ) It follows a unitary evolution of the system qubit from tk to time +tk 1, +U t t( ; )k k1 , which needs not be 

known to the experimenter. In our setup, we engineer this dynamics by decoupling qubit 13C and 1H, such that 
only the system qubit evolves under its free-energy Hamiltonian. If we were to measure the time-correlation 
functions for the system following a different dynamics, the corresponding Hamiltonian should be imposed on 
the system at this stage of the protocol, while the system and the ancilla qubits are decoupled. Then, steps ii( ) and 
iii( ) will be iterated n times, taking k from 0 to −n 1 and avoiding step iii( ) in the last iteration. With this, all n 

Pauli operators will be interspersed between evolution operators with the time intervals of interest +t t{ , }k k 1 .
iv( ) The final state of the probe-system qubits can be written as

Figure 1. Two-qubit quantum circuit for measuring general n-time correlation functions. The first line is the 
ancilla (held by the nuclear spin of 13C), and second line is the system qubit (held by the nuclear spin of 1H). The 
blue zone between the different controlled gates αUk on the line of qubit A represents the decoupling of the 13C 
nucleus from the nuclear spin of 1H, while the latter evolves according to +U t t( ; )k k1 . The measurement of the 
quantities σ〈 〉x  and σ〈 〉y  of the ancillary qubit at the end of the circuit will directly provide the real and imaginary 
values of the n-time correlation function for the initial state ρ ϕ ϕ= | 〉〈 |in .
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ϕ φ

φ

| 〉 = | 〉 ⊗ | 〉 + | 〉 ⊗
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γ
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− − −U t S U t t

U t t S U t S

1
2
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The time correlation function is then extracted as a non-diagonal operator of the ancilla, Tr( ϕ ϕ| 〉〈 | 〉〈 |0 1 out out ). 
We further recall here that σ σ| 〉〈 | = + i0 1 ( )/2x y , such that its measurement corresponds to

f t t i i i( , , ) ( ) ( ), (2)n
r l

x y1 1 σ σ... = − 〈 〉 + 〈 〉−

which is in general a complex magnitude, and where integers r and l are the occurrence numbers of Pauli opera-
tors σy and σz  in ... −f t t( , , )n1 1 . Notice that even if between the controlled operations the system can undergo 
dynamics that are unknown to the experimenter, the system still needs to be controllable in order for us to be able 
to perform the controlled-operations.

Experimental procedures and results. We will measure n-time correlation functions of a two-level quan-
tum system with the assistance of one ancillary qubit by implementing the quantum circuit shown in Fig. 1. 
Experiments are carried out using NMR9–11, where the sample used is 13C-labeled chloroform. Nuclear spins of 
13C and 1H encode the ancillary qubit and the two-level quantum system, respectively. With the weak coupling 
approximation, the internal Hamiltonian of 13C-labeled chloroform is

 π ν ν σ π ν ν σ π σ σ= − − − − + . J( ) ( ) 0 5 , (3)z z z zint 1 1
0 1

2 2
0 2

12
1 2

where νj ( =j 1, 2) is the chemical shift, and J12 is the J-coupling strength as illustrated in the methods, while ν1
0 

and ν2
0 are reference frequencies of 13C and 1H, respectively. We set ν ν=1 1

0 and ν ν ν− = ∆2 2
0  such that the nat-

ural Hamiltonian of the system qubit is π νσ= − ∆ z0 . The detuning frequency ν∆  is chosen as hundreds of Hz 
to assure the selective excitation of different nuclei via hard pulses. All experiments are carried out on a Bruker 
AVANCE 400 MHz spectrometer at room temperature.

The spatial averaging technique can be used to transform the system into the so-called pseudo-pure state 
(PPS) | 〉〈 |00 00  from the thermal equilibrium state of an NMR ensemble, which is a highly-mixed state12–14. In Step 
ii( ), all controlled quantum gates αUk are chosen from the set of gates π π π− − − −C R C iR C R{ ( ), ( ), ( )}z x y

2 2 2 15–17.  
The notation −C U means operator U will be applied on the system qubit only if the ancilla qubit is in state | 〉〈 |1 1 , 
while θˆR ( )n

j  represents a single-qubit rotation on qubit j along the n̂-axis, with the rotation angle θ. The corre-
sponding pulse sequence can be found in the methods.

We will now apply the described algorithm to a collection of situations of physical interest. These include 
two-time correlation functions of a system evolving under time-independent and time-dependent Hamiltonians, 
as well as three-time correlation functions. In Fig. 2 we give the detailed NMR sequences employed for the meas-
urement of the time-correlation functions in each of these cases. More especifically, Fig. 2(a) shows the experi-
mental sequence for measuring σ σ〈 〉t( )y x . Other time-correlation functions, like σ σ〈 〉t( )x y , σ σ〈 〉t( )y y  or σ σ〈 〉t( )x z , can 
be measured in a similar fashion by replacing the corresponding controlled quantum gates. Figure 2(b) describes 
the NMR sequence for measuring the three-time correlation function σ σ σ〈 〉t t( ) ( )y y z2 1  for different values of t1 and 
t2. Here we used a pair of π pulses, which change the sign of the Hamiltonian H0, if t1 is greater than t2. Finally, 
Fig. 3(c) illustrates the NMR sequence corresponding to the measurement of the time-correlation function 
σ σ〈 〉t( )x x  with a time-dependent Hamiltonian of the form  σ′ = π−t e( ) 500 t

y
300 . The dynamics corresponding to 

this Hamiltonian are generated by a time-dependent radio-frequency pulse applied on the resonance of the 
nuclear spin of 1H, that is to say on the system qubit.

In Fig. 3, we show the measured two-time correlation functions σ σ〈 〉α βt( ) (0)  for a collection of α and β, and 
different initial states. In this experiment the two-level system was evolving under the Hamiltonian 

σ= − π100 z0 . The observed oscillations correspond to the rotation of the two-level system along the z-axis of 
its Bloch sphere, as dictated by the evolution Hamiltonian. Consistently, the bottom plot of Fig. 3(d) shows no 
oscillations, as the time-dependent operator in this case is σ t( )z , which is aligned with the oscillation axis. The 
plotted times correspond to the time-scales of the implemented dynamics. The chosen millisecond time-range is 
especially convenient, as the decoherence effects become significant only at longer times. In the experiment, 0  
is realized by setting ν ν=1 1

0 and ν ν− = 1002 2
0  Hz in Eq. (3). A rotation pulse πR ( /2)y

1  is applied on the first 
qubit after the PPS preparation to create ρ = |+〉〈+| ⊗ | 〉〈 |0 0in

CH . Similarly, a π rotation on the second qubit is 
additionally needed to prepare ρ = |+〉〈+| ⊗ | 〉〈 |1 1in

CH  as the input state of the ancilla-system compound, or 
alternatively a πR ( /2)y

2  rotation to generate the initial state ρ = |+〉〈+| ⊗ |+〉〈+|in
CH .

These correlation functions are enough to retrieve the response function for a number of physical situations 
corresponding to different magnetic moments and applied fields. On the other hand, extracting correlation func-
tions for initial states | 〉0  and | 〉1  will allow us to reconstruct such correlation functions for a thermal state of arbi-
trary temperature.

In Fig. 4, we show the measured time-correlation function σ σ〈 〉t( )x x  for the initial state | 〉 − | 〉i( 0 1 )/ 2  evolv-
ing under the time dependent Hamiltonian  σ′ = π−t e( ) 500 t

y
300 . For this, we set ν ν=1 1

0 and ν ν=2 2
0 in 

Hamiltonian int in Eq. (3), making the system free Hamiltonian = 00 . The initial state φ| 〉 = π | 〉R ( /2) 0x  can 
be prepared by using a rotation pulse πR ( /2)x  on the initial PPS. Two controlled quantum gates = − πU C iR ( )x x

0 2  
and = − πU C iR ( )x x

1 2  are applied with a time interval t. A decoupling sequence Waltz-418–20 is used to cancel the 
interaction between the 13C and 1H nuclei during the evolution between the controlled operations. During the 
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decoupling period, a time-dependent radio-frequency pulse is applied on the resonance of the system qubit 1H to 
create the Hamiltonian, as explained above. From a physical point of view, this kind of correlations would be 
descriptive of a situation where the system is in a magnetic field with an intensity that is decaying exponentially 
in time, that is, the unperturbed system Hamiltonian turns now into a time-dependent  γ σ= −B e at

y0 . A degra-
dation in agreement between experiment and theory is observed at the upper end of times in Fig. 4. This is due to 
the cumulative effects of decoherence mechanisms and the power attenuation of the employed radio-frequency 
pulses at long times, which results in a weak NMR response of the nuclei and as a consequence in more imprecise 
spectroscopic results.

Third and higher-order time correlations. When the perturbation is not weak enough, for instance 
when the radiation field applied to a material is of high intensity, the response of the system might not be linear. 
In such situations, higher-order response functions, which depend in higher-order time-correlation functions, 
will be needed to account for the non-linear corrections4,21. For example, the second order correction to an 
observable B when the system suffers a perturbation of the type = +H t H AF t( ) ( )0  would be given by

∫ ∫∆ = 〈 〉 .
−∞ −∞

B B t A t A t F t F t dt dt[ ( ), [ ( ), ( )]] ( ) ( ) (4)
t t(2)

1 2 1 2 1 2
1

In Fig. 5, we show real and imaginary parts of 3-time correlation functions as compared to their theoretically 
expected values. We measure the 3-time correlation function σ σ σ〈 〉t t( ) ( )y y z2 1  versus t1 and t2. Like in the case of the 
two-time correlation functions, the oscillatory behavior of the measured three-time correlation functions reflects 
the rotation of the two-level system along the z-axis of its Bloch sphere. In this case, we simulate the system-qubit 
free Hamiltonian  σ= − π200 z0  for the initial state ρ = | 〉〈 |0 0in . For this, we set ν ν=1 1

0 and ν ν− = 2002 2
0  Hz 

Figure 2. NMR sequence to realize the quantum algorithm for measuring n-time correlation functions. The 
black line and blue line mean the ancillary qubit (marked by 13C) and the system qubit (marked by 1H). All the 
controlled quantum gates αUk are decomposed into the following sequence in the bottom of the plot. Gz means a 
z-gradient pulse which is used to cancel the polarization in −x y plane. (a) NMR sequence for measuring the 
2-time correlation function σ σ〈 〉t( )y x . Other 2-time correlation functions can be similarly measured. (b) NMR 
sequence for measuring the 3-time correlation function σ σ σ〈 〉t t( ) ( )y y z2 1 . (c) NMR sequence for measuring the 
2-time correlation function σ σ〈 〉t( )x x  with a time-dependent Hamiltonian  πσ′ = −t e( ) 500 t

y
300 . The method to 

decouple the interaction between 13C and 1H nuclei is Waltz-4 sequence.
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in Eq. (3). The J-coupling term of Eq. (3) will be canceled by using a refocusing pulse in the circuit. Three con-
trolled quantum gates αU 0, βU1 and γU2 should be chosen as C R ( )z

2− − π , − πC R ( )y
2  and − πC R ( )y

2 . The free 
evolution of the 1H nuclei between αU 0 and βU1 is given by the evolution operator −e i t0 1. Accordingly, the free 
evolution of the 1H nuclei between βU1 and γU2 is given by − −e i t t( )0 2 1 . However, when t2 < t1, we perform the evolu-

Figure 3. Experimental results (dots) for 2-time correlation functions. In this case, only two controlled 
quantum gates αU 0 and βU1 are applied with an interval of t. For example, αU 0 and βU1 should be chosen as 

π−C iR ( )x
2  and π−C R ( )y

2 , respectively, to measure the 2-time correlation function σ σ〈 〉t( )y x . t is swept from 
0.5 ms to 10 ms with a 0.5 ms increment. The input state of 1H nuclei ρ ϕ ϕ= | 〉〈 |in  is shown on each diagram. All 
experimental results are directly obtained from measurements of the expectation values of σ〈 〉x  and σ〈 〉y  of the 
ancillary qubit. The orange and blue results respectively mean the real and imagine part of the observed 2-time 
correlation functions.

Figure 4. Experimental results (dots) for a 2-time correlation function of the 1H nuclei evolving under a time-
dependent Hamiltonian. For this experiment, the 1H nuclei have a natural Hamiltonian  = 00  and an initial 
state φ π| 〉 = | 〉R ( /2) 0x . An evolution U t( ;0) between Ux

0 and Ux
1 is applied on the system, which is described by 

the evolution operator ′∫−e i s ds( )t
0  with  s e( ) 500 s

y
300 πσ′ = − . t is changed from .0 48 ms to .5 76 ms with a .0 48 ms 

increment per step.



www.nature.com/scientificreports/

6ScIenTIfIc RePoRTs | 7: 12797  | DOI:10.1038/s41598-017-13037-4

tion − − −e i t t( )( )0 1 2  by inverting the phase of the Hamiltonian 0 , which is realized by using a pair of π pulses at the 
beginning and at the end of the evolution15.

For testing scalability, we also measure higher-order time-correlation functions, up to =n 10. In this case, 
we consider the free Hamiltonian πσ= −100 z0  and the input state φ| 〉 = . π | 〉R (1 41 /2) 0x , and we measure the 
following high-order correlation functions as a function of the correlation order n, with time intervals 

= . −−t n0 3( 1)n 1  ms,

σ σ σ σ
σ σ σ σ

= 〈 ... 〉
= 〈... ... 〉.

− −

−

t t t
t t t

( ) ( ) ( ) ,
( ) ( ) ( ) (5)

xx
n

x n x n x x

xy
n

x m y m y x

1 2 1

2 2 1 1




Here, the superscripts and subscripts of  are the order of the correlation and the involved Pauli operators, 
respectively. Index m runs from 1 to −n( 1)/2 for odd n, and to n/2 for even n. The quantum circuit used to meas-
ure xx

n  and xy
n  is based in the gradient ascent pulse engineering (GRAPE) technique22,23, which is designed to 

be robust to the static field distributions ( ⁎T2  process) and RF inhomogeneities.
In Fig. 6, we show the measured results for high-order time-correlation functions, demonstrating the scalabil-

ity of the technique and its high accuracy even for a 10-time correlation function. With this we demonstrate that 
high-order correlation functions are efficiently accessible in NMR via our algorithm. In general, high-order 
time-correlation functions correspond to high-order corrections in perturbation theories. In our example, the 
jagged pattern of the measured data with the order of the time-correlation function can be explained in terms of 
each order corresponding to measurements in different axes of the Bloch sphere.

Discussion
For systems of bigger size and complex dynamics our technique should be equally valid, and would be useful for 
computational purposes, when the dynamics of the system is not reproducible by classical means. In this case, the 
algorithm would also work with a single ancillary qubit, however, the controlled gates would pass from two-qubit 
gates to multi-qubit gates, which have been little studied in NMR. Nevertheless, multi-qubit gates like the Mø 
lmer-Sø rensen gate can always be efficiently decomposed into a circuit of c-NOT gates7, allowing for the meas-
urement of multi-qubit time correlations in NMR.

For all cases here discussed, experimental data shows a high degree of agreement with the theoretical predic-
tions. Error bars are not shown, as they are always smaller than the used dots themselves. The dephasing times T2 

Figure 5. Experimental results for the 3-time correlation functions. We plot  σ σ σ= 〈 〉t t( ) ( )zyy y y z
3

2 1  for t1 and t2 
going from 0.5 ms to 5 ms with 0.5 ms time step, showing the agreement of experimental results with theoretical 
predictions. The quantum circuit for measuring zyy

3  includes three controlled quantum gates Uz
0, Uy

1 and Uy
2, 

which are experimentally implemented by hard pulses.
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of our spin-qubits are of the order of seconds, while the experimental time of a whole sequence is at most of 10 ms, 
allowing us to ignore the effect of dephasing effects during the experiment. In our setup, the sources of errors are 
related to the initialization of the PPS, and imperfections in the width of the employed hard pulses. Moreover, the 
latter effect is cumulative and can result in a snowball effect. Additionally, factors such as RF inhomogeneities, 
and measurement errors, bring in a signal loss.

In summary, we have shown that the measurement of time-correlation functions of arbitrary order in NMR is 
an efficient task, and that it can be used to obtain the linear response function of the system. Although the linear 
response function could be calculated indirectly with a precise determination of the Hamiltonian parameters of 
the system, this experiment can be considered its first direct measurement in NMR. For systems of bigger size 
and complex dynamics, the indirect estimation of this magnitude would become intractable, as an analytical 
or numerical solution of the dynamics is always required. However, a direct detection would still be possible 
following the ideas demonstrated in this experiment. Not only that, in this work, we have demonstrated that 
such magnitudes can be experimentally retrieved with high accuracy. This will be of interest for physicist and 
engineers, either to characterize systems that follow computationally intractable dynamics, or to use them for 
computation purposes, opening the door to the quantum simulation of physical models where time correlations 
play a central role. It is generally accepted, that NMR platforms scale poorly, and there is no indication that this 
will change in the foreseeable future. However, the central ideas demonstrated in this experiment do not rely on 
any property which is exclusive of NMR platforms. Therefore, it is our believe that other more scalable quantum 
platforms may extend the protocol demonstrated here to systems of arbitrary size, where a single ancillary qubit 
will always suffice.

Details of Experimental implementation. Experiments are carried out using nuclear magnetic reso-
nance (NMR), where the sample 13C-labeled Chloroform is used as our two-qubit quantum computing processor. 
13C and 1H in the Chloroform act as the ancillary qubit and system qubit, respectively. Figure 7 shows the molec-
ular structure and properties of the sample. The top plot in Fig. 8 presents some experimental spectra, such as the 
spectra of the thermal equilibrium and pseudo pure states. The bottom plot in Fig. 8 shows NMR spectra which 
is created after we measure the 2-time correlation function xy

n  ( =n 2).

Figure 6. Experimental results (dots) for high-order time-correlation functions xx
n  and xy

n  
( = ...n 2, 3, , 10). n controlled quantum gates αU 0, βU1, …, γ

−U n 1 are sequentially applied with a time interval 
∆ = .t 0 3 ms. Refocusing pulses are used to decouple the interaction between the nuclei of 13C and 1H, during 
the time intervals ∆t between gates. For this experiment, we use the GRAPE pulsed technique to implement the 
quantum circuit. Using hard pulses like in the previous experiments would result in poor quality of the 
measured data due to the high number of pulses required and the cumulative effect of their imperfections.

Figure 7. Molecular structure and relevant parameters of 13C-labeled Chloroform. Diagonal elements and off-
diagonal elements in the table provide the values of the chemical shifts (Hz) and J-coupling constant (Hz) 
between 13C and 1H nuclei of the molecule. The right table also provides the longitudinal time T1 and transversal 
relaxation T2, which can be measured using the standard inversion recovery and Hahn echo sequences.
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Initial State Preparation. It is widely known that the thermal equilibrium state of an NMR ensemble is a 
highly-mixed state with the following structure

 ρ ε ε σ σ≈
−

+


 + +



.

1
4

1
4

4
(6)eq z z4 4

1 2

Here, 4 is a ×4 4 identity matrix and ε ≈ −10 5 is the polarization at room temperature. Given that 4 remains 
unchanged and that it does not contribute to the NMR spectra, we consider the deviation density matrix 

ρ σ σ∆ = . + +0 25 4z z4
1 2 as the effective density matrix describing the system. The deviation density matrix can 

be initialized in the pure state | 〉〈 |00 00  by the spatial averaging technique, transforming the system into the 
so-called pseudo-pure state (PPS). The top plot in Fig. 8 shows the spectra of the thermal equilibrium and pseudo 
pure states. Arbitrary input states ρin

CH can be easily created by applying local single-qubit rotation pulses after the 
preparation of the PPS.

Gate Decomposition. We dcompose the family of controlled quantum gates αUk =  − −π −C R C{ ( ),z
2

 
 π − πiR C R( ), ( )}x y

2 2  in the following way

π π
− − =













−



C R U

J
R( ) 1

2 2
,z z

2 2

π π π π π
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−





























C iR iR R R U

J
R( )

2 2 2
1
2 2

,x z z x y
2 1 2 2 2

π π π π
− =





















−











.C R R U

J
R R( )

2
1
2 2 2 (7)y x x y

2 2 2 2

Here, ( )U
J

1
2

 is the J-coupling evolution πσ σ−e i /4z z
1 2

. Moreover, any z-rotation θR ( )z  can be decomposed in terms 
of rotations around the x and y axes, θ π θ π= − −R R R R( ) ( /2) ( ) ( /2)z y x y . On the other hand, the decoupling of the 
interaction between 13C and 1H nuclei can be realized by using refocusing pulses or the Waltz-4 sequence.
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