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Spatial variations of tritium 
concentrations in groundwater 
collected in the southern coastal 
region of Fukushima, Japan, after 
the nuclear accident
Koki Kashiwaya  1, Yuta Muto1, Taiki Kubo1, Reo Ikawa2, Shinji Nakaya3, Katsuaki Koike  1 & 
Atsunao Marui2

Spatial variations in tritium concentrations in groundwater were identified in the southern part of 
the coastal region in Fukushima Prefecture, Japan. Higher tritium concentrations were measured 
at wells near the Fukushima Daiichi Nuclear Power Station (F1NPS). Mean tritium concentrations in 
precipitation in the 5 weeks after the F1NPS accident were estimated to be 433 and 139 TU at a distance 
of 25 and 50 km, respectively, from the F1NPS. The elevations of tritium concentrations in groundwater 
were calculated using a simple mixing model of the precipitation and groundwater. By assuming 
that these precipitation was mixed into groundwater with a background tritium concentration in 
a hypothetical well, concentrations of 13 and 7 TU at distances of 25 and 50 km from the F1NPS, 
respectively, were obtained. The calculated concentrations are consistent with those measured at the 
studied wells. Therefore, the spatial variation in tritium concentrations in groundwater was probably 
caused by precipitation with high tritium concentrations as a result of the F1NPS accident. However, 
the highest estimated tritium concentrations in precipitation for the study site were much lower than 
the WHO limits for drinking water, and the concentrations decreased to almost background level at the 
wells by mixing with groundwater.

The huge earthquakes on and after 11 March 2011, the ensuing Tsunami, and the accident at the Fukushima 
Daiichi Nuclear Power Station (F1NPS) wreaked enormous damage in Japan. The National Institute of Advanced 
Industrial Science and Technology in Japan initiated a research project “Study on risk evaluation of groundwater 
pollution” following the disaster. The project aims were to: elucidate the influence of the earthquake disaster on 
groundwater quality; understand hydrological properties and vulnerability of regional groundwater systems; and 
obtain information for optimizing groundwater use in coastal regions of the Tohoku district1,2. To realize these 
aims, sampling and chemical analyses of groundwater, including possible contaminants and environmental trac-
ers to determine the groundwater flow regime, were conducted. A review by Steinhauser3 revealed that various 
radioactive nuclides, including tritium, have been emitted to the environment as a result of the F1NPS accident. 
Tritium is a radioactive isotope of hydrogen with a half-life of 12.32 years4, and it has both natural and anthropo-
genic origins. It is a suitable tracer for estimating water circulation because it becomes part of the water molecules 
and is geochemically conservative, thus allowing more straightforward interpretation than with other tracers5. 
Therefore, tritium concentrations in groundwater were analysed in this project.

There are few research articles that report on the behaviour of tritium emitted to the terrestrial environment as 
a result of the F1NPS accident. Kakiuchi et al.6 measured tritium concentrations in the free water of plant shoots 
and tree leaves collected soon after (March, April, July, and August 2011) the F1NPS accident. Higher tritium 
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concentrations were obtained nearer to the F1NPS, and tritium concentrations in atmospheric moisture on 17 
March 2011 were estimated at 5.6 kBq/L from concentrations in free water6. Matsumoto et al.7 reported tritium 
concentrations of precipitation collected until the end of May 2011 at six locations, at distances of 170 km to 
700 km from the F1NPS. The highest value was 160 TU, from a sample collected at Tsukuba. The concentrations 
returned to background levels within 5 weeks. A regression model between atmospheric tritium activity and the 
distance from the F1NPS was constructed and 1.5 × 104 Bq/m3 (1.3 × 105 TU) was estimated as the atmospheric 
tritium activity at the F1NPS soon after the emission. Ueda et al.8 described tritium concentrations in river water 
collected in the Fukushima prefecture from 2011 to 2014. Concentrations in river water, collected at short time 
intervals at two rivers under base flow conditions and flood events, were higher in 2011 compared to background 
levels. The concentrations decreased with time and returned to levels similar to background levels in 2013. During 
a flood event in July 2011, tritium concentrations tracked discharge rate variations. However, the peak tritium 
concentration appeared later than the peak discharge rate in a flood event in September 2011. The differences in 
mean annual tritium concentrations for flood events and base flow conditions were indistinguishable after 2012. 
Ueda et al.8 interpreted this to be a result of water with high tritium concentrations infiltrating to deeper levels 
and being diluted by soil water or groundwater. In addition, river water collected once a year (from 2012 to 2014) 
from 16 rivers and one dam under base flow conditions also showed elevated tritium concentrations compared to 
background levels. Their mean annual concentration decreased consistently from 2012 to 2014. Yabusaki et al.9 
reported on tritium concentrations for seven groundwater and spring water samples collected from the northern 
coastal region in Fukushima prefecture, and pointed out the possibility that the tritium concentration was ele-
vated by recharge from precipitation with high tritium concentrations after the F1NPS accident.

As reviewed above, tritium concentrations in some types of water samples collected around the F1NPS were 
reported, but the impact of tritium emitted by the accident on groundwater was not systematically evaluated. This 
paper addresses this knowledge gap and describes tritium concentrations in groundwater samples collected from 
the coastal plains in southern Fukushima approximately one and a half years after the earthquake. The main aim 
is to identify the cause of the spatial variations in tritium concentrations in groundwater. Another environmental 
tracer, sulphur hexafluoride (SF6), was also analysed. It was correlated with tritium concentrations and compared 
with lumped parameter models (LPMs) to detect anomalies of tritium concentrations as discrepancies of the 
measured values from LPMs.

Field campaigns and geological setting
The study area comprises Iwaki City and Hirono Town in the southern part of the coastal region in the Fukushima 
Prefecture. Iwaki and Hirono are located to the south of the 20 km radius from the F1NPS (Fig. 1). Three field 
campaigns were conducted in 2012; groundwater samples were collected during 9 to 17 September, 21 to 27 
October, and 11 to 17 November. Sampled wells were almost exclusively private wells used to draw water for 
domestic use, and were all pumped wells with a few exceptions. Fifty wells in total were sampled, and were 

Figure 1. Location of the study area in northeastern Japan, water sampling sites, and grouping of wells into 
five areas. Circles represent the distance from the F1NPS (a). The coordinates in all the figures are JGD2000 
and Japan Plane Rectangular CS IX. ASTER GDEM32 was used to draw the elevation map in this figure. ASTER 
GDEM is a product of NASA and METI. National Land numerical information (rivers data)33 offered by MLIT 
was used to draw the rivers in this figure.
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grouped into five sub-areas by location: Tono (15 wells), Ogawa (8), Oriki (7), Asami (13), and Kitaba (7). A map 
of air dose rates at 1 m above the ground surface, drawn from results of airborne monitoring conducted from 31 
October to 28 December 201210, is shown in Fig. 2. A moderately high air dose rate zone extends from the F1NPS 
south-southwestward beyond Tsukuba. Matsumoto et al.7 reported the highest value of 160 TU for tritium con-
centration in precipitation collected at Tsukuba and estimated atmospheric tritium activity soon after the F1NPS 
accident. The wells investigated in the present study are distributed between the F1NPS and Tsukuba. It is helpful 
to consider the influence of tritium released through the accident on the groundwater environment around the 
F1NPS. The depth of the well bottom and groundwater level were measured using a flat tape water level meter. 
However, the water level meter could not be inserted at more than half of the wells because of the well structure, 
although the depth was obtained in most of these cases by interviewing the well owner.

The Tono wells were mostly located near the Iritono-gawa River, in alluvial sediments composed of sand 
gravel and sandy soil11. Except for three wells, their depths were equal to, or shallower than, 30 m. The Ogawa 
wells around the Natsui-gawa River are mainly located in three geological units: the Paleogene Shiramizu Group 
composed of conglomerate, sandstone, and shale, intercalated with coal seams12; Quaternary terrace deposits 
composed of gravel, sand, and mud; and alluvial sediments composed of gravel, sand, silt, clay, and surface soil11. 
Six of the eight wells were shallower than 30 m. The Oriki wells around the Oriki-gawa River were located in ter-
race deposits and alluvial sediments consisting of gravel, sand, and mud13. The depths of more than half of these 
wells were unknown. Known depths are shallower than 10 m. The Asami wells around the Asami-gawa River 
were mainly located in terrace deposits and alluvium sediments. Except for wells with an unknown depth, depths 
were equal to, or shallower than, 30 m. The Kitaba wells around Kitaba-gawa River were mostly located in terrace 
deposits composed of gravel, sand, and mud13. Their depths, where known, were less than 10 m.

In summary, most of the studied wells are shallow with an average depth of 14 m, and are distributed around 
the rivers. Permeable terrace deposits and alluvial sediments appear to be the main lithologies of the aquifers.

Results
Tritium concentrations were measured by the liquid scintillation method, with an analytical error of ± 0.1 to 0.2 
TU. A noteworthy feature of the results is that the concentration ranges differ according to the areas: 1.1 to 4.6 
TU in the Tono area; 3.4 to 5.0 TU (Ogawa); 5.7 to 10.1 TU (Oriki); 1.8 to 9.5 TU (Asami); and 7.3 to 12.9 TU 
(Kitaba). Areal variations can also be discerned from the high concentrations located in the northeastern wells 
(Kitaba, Asami, and Oriki areas) and the low concentrations in the southwestern wells (Tono and Ogawa areas) 
(Fig. 3). The spatial trends are shown in more detail in scattergrams indicating the concentration variations with: 
the distance from F1NPS, and the depth of each well (Fig. 4). Wells of unknown depth were excluded in Fig. 4b. 
The highest concentrations were measured at the wells nearby F1NPS, and at depths shallower than 10 m. The 
Tono area is characterized by consistently low concentrations over a wide range of depths (1–80 m). The Ogawa 
area has slightly higher concentrations than the Tono area, but also over a wide range of depths. Compared with 
these two areas, the concentrations in Oriki, Asami, and Kitaba are higher and variable, but their wells are mostly 
shallow.

Figure 2. Air dose rates at 1 m above ground level. The air dose rates were estimated from the results of 
airborne monitoring conducted during 31 October to 28 December, 201210. This map was drawn from the KMZ 
file available on the webpage of the Nuclear Regulation Authority, Japan34 using ArcGIS 10.3.1 (Esri, Inc.).
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Figure 5 shows the regional variation in atmospheric mixing ratios of SF6, converted from SF6 concentra-
tions in the groundwater samples. These maps indicate slightly lower mixing ratios in the Tono area (0.5 to 3.2 
pptv and not detected at one well) and higher ratios in the Ogawa area (2.0 to 5.3 pptv). These ratios are similar 
to those in the Oriki, Asami, and Kitaba areas (Oriki: 1.5 to 4.7 pptv; Asami: 0.4 to 4.6 pptv; Kitaba: 0.2 to 4.0 
pptv). The atmospheric mixing ratio converted from the groundwater concentration was higher than the present 
atmospheric mixing ratio at one well in Oriki (10.4 pptv) and one in Kitaba (55.9 pptv). Contamination of SF6 
from sources other than atmospheric equilibrium was expected at these wells. Except for these two contaminated 
wells, the mixing ratios correspond to apparent residence times (Tono: 19 to 36 years and > 59 years; Ogawa: 9 to 
24 years; Oriki: 12 to 28 years; Asami: 12 to 39 years; Kitaba: 15 to 44 years). Unlike the tritium concentrations, 
these mixing ratios do not correlate with the distance from the F1NPS, while a weak trend is observed only in 
the relationship with depth (Fig. 6). This correlation may originate from groundwater at depth generally having a 
longer residence time than shallow groundwater.

Figure 7 shows the analytical results of tritium concentrations and SF6 mixing ratios together with the LPMs. 
The well data in the Tono, Ogawa, and part of the Asami areas can be closely fitted to the Exponential Mixing 
Model (EMM) curve. EMM correlates concentrations of environmental tracers by assuming the sample is a mix-
ture of an infinite number of sub-parcels with an exponential age distribution14. This might apply to simple cases 
such as a spring from a homogeneous aquifer, receiving consistent recharge14. The consistency of the analytical 

Figure 3. Groundwater tritium concentrations at the wells showing large spatial variations in the study area. 
ASTER GDEM32 was used to draw the elevation map in this figure. ASTER GDEM is a product of NASA and 
METI. National Land numerical information (rivers data)33 offered by MLIT was used to draw the rivers in this 
figure.

Figure 4. Correlation of groundwater tritium concentrations (Fig. 3) with distance from the F1NPS (a), and 
well depth (b). Data are classified according to the five areas in Fig. 1.
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results with the EMM model is reasonable considering the lithologies of the aquifers. In contrast, the well data 
from the northeastern areas, including Kitaba, Oriki, and Asami, show large deviations from the EMM model. 
Except for the two contaminated wells, mean residence times of the well groups were calculated using the EMM 
(Tono: 28 to 217 years and > 59 years; Ogawa: 16 to 48 years; Oriki: 18 to 70 years; Asami: 18 to 347 years; Kitaba: 
21 to 725 years).

Discussion
The spatial distribution of tritium concentrations was clearly discernible, and higher tritium concentrations were 
measured at wells nearer to the F1NPS and at wells with shallower depths (Fig. 4). Two mechanisms are possible 
causes of the high concentrations: 1) the influence of tritium emitted in the atmospheric nuclear bomb tests in 
the 20th century, and 2) mixing of tritium rich precipitation resulting from tritium released to the atmosphere in 
the F1NPS accident.

The first mechanism is founded on the huge amount of tritium emitted by the atmospheric nuclear bomb tests 
conducted after 1950s, which elevated tritium concentrations in the hydrological cycle5. As a result of the radi-
oactive decay of tritium, concentrations in recent precipitation have lowered to the background level before the 
bomb tests. In this study, higher tritium concentrations were measured in shallower wells (Fig. 4). This suggests 
the second mechanism, because these higher tritium concentrations at shallower depths are caused by the most 

Figure 5. Atmospheric SF6 mixing ratios converted from the SF6 concentrations in groundwater at each well. 
ASTER GDEM32 was used to draw the elevation map in this figure. ASTER GDEM is a product of NASA and 
METI. National Land numerical information (rivers data)33 offered by MLIT was used to draw the rivers in this 
figure.

Figure 6. Correlation of atmospheric SF6 concentrations (Fig. 5) with distance from the F1NPS (a), and well 
depth (b). Data are classified according to the five areas in Fig. 1.
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recent precipitation, rather than the mixing of relatively old groundwater influenced by fallout from the bomb 
tests and distributed in the deeper parts of the aquifer.

The second mechanism assumes that the spatial distribution of tritium concentrations in groundwater was 
caused by tritium released from the F1NPS accident to the atmosphere. In the F1NPS reactors, tritium was mainly 
produced by the ternary fission of 235U and 239Pu; this was in addition to the neutron capture by deuterium and 7Li 
(n, an)3H reaction of lithium in the cooling water15,16. In the accident, tritium was released from the reactors dam-
aged by the fuel meltdown and venting operation17. A tritium inventory on 11 March 2011 for the F1NPS reactor 
units 1, 2, and 3 were estimated to be in a total of 3.4 × 1015 Bq18. A portion of the tritium was considered to have 
been released to the atmosphere as tritiated water vapour and scavenged from the atmosphere as precipitation8. 
To strengthen the argument for the second mechanism, the influence of precipitation after the F1NPS accident on 
the groundwater tritium concentration is considered in conjunction with temporal and spatial variations in the 
tritium concentrations in precipitation after the accident.

Firstly, atmospheric tritium activity at the 25 km and 50 km points from the F1NPS soon after the accident 
were estimated based on an empirical relationship between the activity and the distance from the F1NPS7. These 
distances (25 km and 50 km) are equivalent to the distances of the northeastern wells and the southwestern wells 
from the F1NPS (Fig. 1). The activity values were determined to be approximately 16 Bq/m3 at the 25 km point, 
and 6 Bq/m3 at the 50 km point.

These atmospheric activities were converted to tritium concentrations in precipitation using a ratio of tritium 
concentration in precipitation to the atmosphere (washout ratio) of 1 × 104, as estimated by Matsumoto et al.7 
from tritium concentrations for the atmosphere and precipitation in Fukuoka, Japan19. The converted values 
(1342 TU at the 25 km point and 492 TU at the 50 km point) were used as precipitation concentrations for the 
time immediately after the accident, and time attenuation curves for precipitation tritium concentrations were 
estimated. Temporal changes in precipitation tritium concentrations at Tsukuba since 12 March 20117 could be 
closely approximated by a power law (R2 = 0.99) as shown in Fig. 8a. Tritium concentrations in precipitation at 
the 25 and 50 km points were assumed to follow this law. The curves of precipitation tritium concentration at the 
25 and 50 km points, attenuating with time from the initial precipitation concentrations were reconstructed using 
the curve for Tsukuba (Fig. 8a). Background tritium concentration in precipitation, 6 TU7 was subtracted from 
the curve for Tsukuba (Fig. 8a) and the increment from the background level was linearly scaled as the obtained 
curves attenuated from the initial concentrations (1342 TU at the 25 km point and 492 TU at the 50 km point). 
The background tritium concentration was added back to the scaled increments and the temporal change curves 
of precipitation tritium concentration at the 25 and 50 km points were estimated.

As mentioned above, tritium concentrations in precipitation retuned to background levels in the 5-week 
period following the F1NPS accident7. Total precipitation amounts measured in this period at the adjacent obser-
vation stations of the Automated Meteorological Data Acquisition System (AMeDAS), maintained by the Japan 
Meteorological Agency, were 51.5 (Hirono) and 61.0 mm (Taira)20. The Hirono station and the Taira station are 
located 21 km and 42 km from the F1NPS (Fig. 2), respectively, and are thus comparable to the northeastern 
wells and southwestern wells. The tritium concentrations in precipitation in the 5-week period was calculated as 
a weighted mean from the tritium concentrations estimated using the attenuation curves and daily precipitation 
data at Hirono and Taira AMeDAS stations. The results obtained for the weighted mean precipitation tritium 
concentrations were 433 and 139 TU at the 25 and 50 km points, respectively.

The influences of the precipitation tritium concentrations on the tritium concentrations in groundwater at 
the wells were estimated with a simple mixing model. Tritium concentrations in the precipitation in the 5-week 
period after the accident and background levels for groundwater were used in the model. Tritium concentrations 
in precipitation before the F1NPS accident were estimated as 6 TU at Tsukuba7, and 0.1 to 1.5 Bq/L (0.8 to 13 
TU) at Chiba from 2011 to 2014 (a mean of 0.4 ± 0.2 Bq/L (3 ± 2 TU)8) according to the Nuclear Regulation 

Figure 7. Relationship between groundwater tritium concentrations and atmospheric SF6 concentrations at 
wells grouped into five areas (Fig. 1), overlaid with the two lumped parameter models: PFM and EMM. The 
groundwater samples were collected during three field campaigns (9 to 17 September, 21 to 27 October, and 11 
to 17 November).



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS | 7: 12578  | DOI:10.1038/s41598-017-12840-3

Authority21. These values are comparable to natural source tritium concentration in precipitation around the 
study area, obtained from simulations using Atmospheric General Circulation Models22. The median tritium con-
centration measured in the southwestern wells was 2.7 TU. This was similar to the mean tritium concentrations 
in precipitation at Chiba. The values for the southeastern wells were likely to be consistent with the EMM, and 
the highest tritium concentration is approximately 3 TU in the EMM (Fig. 7). Therefore, the background tritium 
concentration of groundwater in the study wells was considered to be 3 TU. The mixing model uses the tritium 
values for all the precipitation recharging wells during the 5-week period after the accident, and the ambient 
groundwater tritium values. The mixing ratio between precipitation and groundwater depends on groundwater 
levels in the wells. The mean value of water depth in the wells (2.2 m) was used in the calculation. The tritium 
concentrations in groundwater after mixing were then calculated as:

=
+ −

C
C a C a(2200 )

2200 (1)g
p p b p

where Cg is the tritium concentration in groundwater after mixing; Cp is the tritium concentration of precipita-
tion in the 5-week period after the F1NPS accident; (433 TU and 139 TU at the 25 km and 50 km points from the 
F1NPS); ap is the precipitation amount in the 5-week period (51.5 mm at Hirono AMeDAS station and 61.0 mm 
at Taira AMeDAS station); and Cb is the background tritium concentration of groundwater (3 TU). The estimated 
tritium concentrations of groundwater were 13 TU and 7 TU at the 25 and 50 km points, respectively. These cal-
culated concentrations are comparable to the measured concentrations in the study area. The spatial variation in 
groundwater tritium concentrations can be attributed to mixing by precipitation with high tritium concentrations 
originating from the F1NPS accident.

The discrepancy between the measured values and the LPM values could also be explained by the mixing 
of groundwater with precipitation with high tritium concentrations. After the Chernobyl accident, SF6 mixing 
ratios for groundwater, with apparent residence times that implied recharge around the time of the accident, 

Figure 8. (a) Temporal changes in tritium concentrations in precipitation at a distance of 25 and 50 km from 
the F1NPS. The changes were estimated from the tritium concentrations measured at Tsukuba7 and its power 
law regression curve; (b) daily precipitation observed at the AMeDAS Hirono station20 (data missing between 
14 and 20 March 2011); and (c) daily precipitation data at the AMeDAS Taira station20. (Precipitation of 2.5 mm 
on 16 March was not considered here because tritium concentrations at Tsukuba were measured after 21 March7 
and the precipitation data at the Hirono station was not available for that date).
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largely exceeded the present atmospheric mixing ratio23,24. SF6 was considered to have been released by the explo-
sion from electric components used in the power plant23,24. Contamination of such accidentally released SF6 also 
causes a discrepancy between the modelled and the measured values. In contrast, the SF6 mixing ratios of almost 
all the wells in the present study were clearly lower than the present atmospheric mixing ratio. In addition, the 
relationship between the SF6 mixing ratio and the distance from the F1NPS was not clear. Therefore, the influence 
of SF6 released through the F1NPS accident was presumably much less than that of the Chernobyl accident.

The estimated highest tritium concentrations in the precipitation was 1342 TU at the 25 km point on 21 
March. This accidentally emitted tritium may be retained and detected as a peak of tritium concentration in 
the aquifers. However, the highest concentration in the precipitation (1342 TU) is much lower than the limit for 
drinking water (8.5 × 105 TU) set by the World Health Organization25. Precipitation with high tritium concen-
trations that occurred soon after the accident was mixed and diluted with groundwater and, as a result, tritium 
concentrations have dropped to near background levels at the studied wells.

Method
In the field campaigns, groundwater was pumped from wells and its pH, oxidation-reduction potential, electri-
cal conductivity, and dissolved oxygen concentration were monitored. When these parameters became stable, 
samples for tritium and SF6 analyses were collected. The main dissolved components, trace elements, hydrogen 
and oxygen isotopes, radioactive caesium, and radon were also analysed but their results are not discussed here.

Tritium concentrations were measured using the liquid scintillation counter method. First, the sample was 
distilled and tritium in the sample was enriched by electrolysis. Then, with the addition of an emulsion scintilla-
tor, tritium in the electrolysis solution was detected using a low background scintillation counter. SF6 concentra-
tions were measured with a purge and trap gas chromatograph-electron capture detector (GC-ECD) system. SF6 
in the sample was extracted by bubbling with high purity nitrogen gas and recovered in a trap cooled with dry ice 
and ethanol. Trapped SF6 was liberated by heating the trap, and after trapping it was once again introduced to the 
GC-ECD for detection. SF6 quantities were calculated from the area of the SF6 peak in a chromatogram and from 
a calibration curve, which was converted to SF6 concentrations in the groundwater sample and then to the mixing 
ratio of SF6 in the atmosphere that was at equilibrium with the water at recharge.

Analytical results of tritium concentrations and atmospheric mixing ratios of SF6 were compared with 
LPMs26–30 that can estimate correlations of concentrations between multiple tracers in groundwater. These mod-
els are based on highly simplified hydrogeological models. The study area lacked details on hydrogeological 
structures. Therefore, the Piston Flow Model (PFM) and Exponential Mixing Model (EMM) were employed to 
characterize regional differences in the concentrations of the environmental tracers. These models are dependent 
only on mean transit time29 and are not controlled by other model parameters. The PFM assumes a single age 
for the sample water14,29 and corresponds to flow in confined aquifers27,30, while the EMM assumes the mix-
ing of water with an exponential residence time distribution14,27 and can describe mixing of groundwater in 
pumped shallow groundwater and water discharge from springs in fissured aquifers30. Both models were run 
using Tracermodel114, and input functions of temporal changes in precipitation tritium concentrations and SF6 
mixing ratios in the atmosphere31. Several datasets were combined for the temporal change in tritium for the 
input function: the Global Network of Isotopes in Precipitation by the International Atomic Energy Agency (pre-
cipitation in Washington D.C. before 1961, Tokyo during 1961 to 1978, and Ryori during 1979 to the first half of 
1986 and during 1998 to 2006); and the NIRS Environmental Tritium Survey Data Base of the National Institute 
of Radiological Sciences (for Chiba from the latter half of 1986 to 1997). Tritium concentrations after 2006 were 
assumed to be the same as in 2006. The SF6 input function used the atmospheric mixing ratio for North America 
compiled by the Reston Groundwater Dating Laboratory of the U.S. Geological Survey.

References
 1. Marui, A., Ikawa, R., Kohara, N., & Mitsuhata, Y. Outline of the study on risk evaluation of groundwater pollution in Reports of 

Research and Investigation on Multiple Geological Hazards Caused by Huge Earthquakes (ed. Research Planning Office for Geological 
Survey and Applied Geoscience), 433–434 (AIST, 2014).

 2. Ikawa, R. et al. Overview research work of groundwater pollution risk on east coast of Tohoku, Japan in Reports of Research and 
Investigation on Multiple Geological Hazards Caused by Huge Earthquakes (ed. Research Planning Office for Geological Survey and 
Applied Geoscience), 435–456 (AIST, 2014).

 3. Steinhauser, G. Fukushima’s forgotten radionuclides: A review of the understudied radioactive emissions. Environ. Sci. Technol. 48, 
4649–4663 (2014).

 4. Lucas, L. L. & Unterweger, M. P. Comprehensive review and critical evaluation of the half-life of tritium. J. Res. Natl. Inst. Standards. 
105, 541–549 (2000).

 5. Solomon, D. K. & Cook, P. G. 3He and 3He in Environmental Tracers in Subsurface Hydrology (eds. Cook, P. & Herczeg, A. L.), 
397–424 (Kluwer Academic Publishers, 2000).

 6. Kakiuchi, H. et al. Concentration of 3H in plants around Fukushima Dai-ichi Nuclear Power Station. Sci. Rep. 2, 947 (2012).
 7. Matsumoto, T. et al. Tritium in Japanese precipitation following the March 2011 Fukushima Daiichi Nuclear Plant accident. Sci. Total 

Environ. 445–446, 365–370 (2013).
 8. Ueda, S. et al. Nuclear accident-derived 3H in river water of Fukushima Prefecture during 2011–2014. J. Environ. Radioact. 146, 

102–109 (2015).
 9. Yabusaki, S., Shibasaki, N. & Takagai, Y. Water quality and tritium cocncentrtion of groundwater and spring water at vicinity of coast 

area in Minamisoma City, Fukushima Prefecture –Report of the observations in 2013–. Journal of Center for Regional Affairs, 
Fukushima University. 27, 37–46 (2015).

 10. Nuclear Regulation Authority. Results of the Sixth Airborne Monitoring and Airborne Monitoring out of the 80km Zone of Fukushima 
Dai-ichi NPP http://radioactivity.nsr.go.jp/en/contents/7000/6099/24/203_e_0301_18.pdf (2016).

 11. Kano, H. et al. Geology of the Takanuki District (Geological Survey of Japan, 1973).
 12. Iwao, S. & Matsui, H. Explanatory Text of the Geological Map of Japan, Taira & Kawamae (including Ide) (Geological Survey of 

Japan, 1961).
 13. Kubo, K. et al. Geology of the Kawamae and Ide District (Geological Survey of Japan, AIST, 2002).

http://radioactivity.nsr.go.jp/en/contents/7000/6099/24/203_e_0301_18.pdf


www.nature.com/scientificreports/

9SCIENTIFIC REPORTS | 7: 12578  | DOI:10.1038/s41598-017-12840-3

 14. Böhlke, J. K. TRACERMODEL1. Excel workbook for calculation and presentation of environmental tracer data for simple 
groundwater mixtures in Use of Chlorofluorocarbons in Hydrology (ed. IAEA) 239–243 (IAEA, 2006).

 15. Povinec, P. P., Hirose, K. & Aoyama, M. in Fukushima accident: radioactivity impact on the environment (Newnes, 2013).
 16. Povinec, P. P. et al. Impact of the Fukushima accident on tritium, radiocarbon and radiocesium levels in seawater of the western 

North Pacific Ocean: A comparison with pre-Fukushima situation. J. Environ. Radioact. 166, 56–66 (2017).
 17. Rosenberg, B. L. et al. Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 1: Depth profiles of radiocesium 

and strontium-90 in soil. Appl. Geochem. in press (2017).
 18. Nishihara, K. et al. Radionuclide release to stagnant water in the Fukushima-1 nuclear power plant1. J. Nucl. Sci. Technol. 52, 

301–307 (2015).
 19. Okai, T., Momoshima, N. & Takashima, Y. Variation of atmospheric concentrations in three different chemical forms in Fukuoka, 

Japan. J. Radioanal. Nucl. Chem. 239, 527–531 (1999).
 20. Japan Meteorological Agency. Japan Meteorological Agency webpage http://www.data.jma.go.jp/obd/stats/etrn/index.php (2016).
 21. Nuclear Regulation Authority. Database of Environmental Radioactivity and Radiation in Japan http://search.kankyo-hoshano.go.jp/

servlet/search.top(2014).
 22. Cauquoin, A. et al. The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation 

Model and comparison with observations. Earth Plan. Sci. Lett. 427, 160–170 (2015).
 23. Aquilina, L., Matray, J. M. & Lancelot, J. 25 years after the Chernobyl power plant explosion: Management of nuclear wastes and 

radionuclide transfer in the environment. Appl. Geochem. 27, 1291–1296 (2012).
 24. La Salle, L. G. C. et al. Groundwater residence time downgradient of Trench No. 22 at the Chernobyl Pilot Site: Constraints on 

hydrogeological aquifer functioning. Appl. Geochem. 27, 1304–1319 (2012).
 25. World Health Organization. Guidelines for Drinking-water Quality, Fourth Edition. (WHO, 2011).
 26. Maloszewski, P. & Zuber, A. Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models 

and their applicability. J. Hydrol. 57, 207–231 (1982).
 27. Maloszewski, P. & Zuber, A. Principles and practice of calibration and validation of mathematical models for the interpretation of 

environmental tracer data in aquifers. Adv. Water Resour. 16, 173–190 (1993).
 28. Amin, I. E. & Campana, M. E. A general lumped parameter model for the interpretation of tracer data and transit time calculation 

in hydrologic systems. J. Hydrol. 179, 1–21 (1996).
 29. Zuber, A. & Maloszewski, P. Lumped parameter models in Environmental Isotopes in the Hydrological Cycle: Principles and 

Applications Vol. 6 (ed. Yurtsever, Y.) 497–515 (IAEA and UNESCO, 2000).
 30. D́amore, F. et al. Geohydraulic aspects in Environmental Isotopes in the Hydrological Cycle: Principles and Applications Vol. 4 (ed. 

Geyh, M.) 333–341 (IAEA and UNESCO, 2000).
 31. Kashiwaya, K., Hasegawa, T., Nakata, K., Tomioka, Y. & Mizuno, T. Multiple tracer study in Horonobe, northern Hokkaido, Japan: 

1: Residence time estimation based on multiple environmental tracers and lumped parameter models. J. Hydrol. 519, 532–548 
(2014).

 32. NASA and METI. ASTER GDEM version 2, https://reverb.echo.nasa.gov/ (2011).
 33. MLIT. National Land numerical information rivers data, http://nlftp.mlit.go.jp/ksj-e/index.html (2007).
 34. Nuclear Regulation Authority. Airborne Monitoring Survey Results http://radioactivity.nsr.go.jp/ja/list/362/list-1.html (2016).

Acknowledgements
The field campaigns were conducted with the cooperation and help of: the owners and administrators of the wells, 
and local governments. The authors express their appreciation to all involved.

Author Contributions
K.K. (Kashiwaya) conducted all of the research and prepared the manuscript and the figures. Y.M. and T.K. 
provided support for the field campaigns. R.I. coordinated the research project and analysed groundwater 
samples. S.N. analysed groundwater samples. K.K. (Koike) provided support for the research and contributed to 
the improvement of the manuscript. A.M. organized the research project and contributed to the improvement of 
the manuscript. All of the authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://www.data.jma.go.jp/obd/stats/etrn/index.php
http://search.kankyo-hoshano.go.jp/servlet/
http://search.kankyo-hoshano.go.jp/servlet/
https://reverb.echo.nasa.gov/
http://nlftp.mlit.go.jp/ksj-e/index.html
http://radioactivity.nsr.go.jp/ja/list/362/list-1.html
http://creativecommons.org/licenses/by/4.0/

	Spatial variations of tritium concentrations in groundwater collected in the southern coastal region of Fukushima, Japan, a ...
	Field campaigns and geological setting
	Results
	Discussion
	Method
	Acknowledgements
	Figure 1 Location of the study area in northeastern Japan, water sampling sites, and grouping of wells into five areas.
	Figure 2 Air dose rates at 1 m above ground level.
	Figure 3 Groundwater tritium concentrations at the wells showing large spatial variations in the study area.
	Figure 4 Correlation of groundwater tritium concentrations (Fig.
	Figure 5 Atmospheric SF6 mixing ratios converted from the SF6 concentrations in groundwater at each well.
	Figure 6 Correlation of atmospheric SF6 concentrations (Fig.
	Figure 7 Relationship between groundwater tritium concentrations and atmospheric SF6 concentrations at wells grouped into five areas (Fig.
	Figure 8 (a) Temporal changes in tritium concentrations in precipitation at a distance of 25 and 50 km from the F1NPS.




