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Individual mobility promotes 
punishment in evolutionary public 
goods games
Rui Cong   1, Qianchuan Zhao1, Kun Li2 & Long Wang2

In explaining the pressing issue in biology and social sciences how cooperation emerges in a population 
of self-interested individuals, researchers recently pay intensive attentions to the role altruistic 
punishment plays. However, as higher-order cooperators, survival of punishers is puzzling due to their 
extra cost in regulating norm violators. Previous works have highlighted the importance of individual 
mobility in promoting cooperation. Yet its effect on punishers remains to be explored. In this work 
we incorporate this feature into modeling the behavior of punishers, who are endowed with a choice 
between leaving current place or staying and punishing defectors. Results indicate that optimal 
mobility level of punishers is closely related to the cost of punishing. For considerably large cost, there 
exists medium tendency of migration which favors the survival of punishers. This holds for both the 
direct competition between punishers and defectors and the case where cooperators are involved, and 
can also be observed when various types of punishers with different mobility tendencies fight against 
defectors simultaneously. For cheap punishment, mobility does not provide with punishers more 
advantage even when they are initially rare. We hope our work provide more insight into understanding 
the role individual mobility plays in promoting public cooperation.

Cooperation with non-kin is a fundamental and ubiquitous feature of human society1–4. A complicated dilemma 
derives from the fact that defectors gain an obvious advantage over cooperators. According to Darwin’s theory 
of evolution, competition rather than cooperation ought to drive our actions. Thus addressing the subtleties how 
cooperation emerges and stabilizes in groups continues to intrigue researchers in multidisciplinary fields5–10. 
Past decades have seen the paradigm of punishment rises as one of the more successful strategies by means of 
which cooperation might be promoted11–18. Indeed, our societies are home to a plethora of sanctioning institu-
tions. However, punishment is costly, and as such it reduces the payoffs of both the defectors as well as of those 
that exercise the punishment. Punishers fall victim to the second-order free-riders, who cooperate but do not 
pay extra cost to punish defectors. As such survival of punishers in the evolution becomes puzzling. Up to now, 
a number of mechanisms that have been proved successful in explaining the evolution of cooperation are also 
available in explaining the evolution of punishment, such as the group selection19 and spatial structure20–25. Other 
mechanisms supporting punishment include the voluntary participation26,27, pool punishment28, coordinated 
punishment29, probabilistic punishment30. Yet the evolution of altruistic punishment remains an open problem.

Mobility is an essential feature of living organisms. Through migration, individuals free themselves from 
undesirable circumstances and negative consequences of that situation, in pursuit of more profitable environ-
ment31. Ample theoretical works have demonstrated the significant role migration plays in promoting or affecting 
the evolution of social cooperation32–42. In the framework of spatial games, by simply introducing a moderate 
probability of random migration to adjacent sites, cooperation level can be greatly enhanced32,43,44. Additional 
driving forces for migration as the payoff 34,45, aspiration46, as well as reputation38, can have diverse effects in 
elevating cooperation. However, as the second-order cooperator, punisher’s mobility is often ignored in previous 
studies. In fact, one of the key reasons that punishment can not establish in the population lies in its heavy cost 
when punishers are rare, who punish left and right in a sea of defectors and are quickly wiped out by natural selec-
tion. Previous works have shown that when punishment is probabilistic, the burden of punishing can be largely 
alleviated30,47. Nevertheless, when stuck in inferior environment, punishers do not necessarily need to execute 
this action aiming at modifying behavior (called partner control), but have an alternative choice of leaving48–50, 
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to avoid future exploitation from such partners (called partner choice). The effect of such choice remains to be 
probed into.

Motivated by this, we here construct a spatial game model, using the typical paradigm of the public goods 
game (PGG) which exists in all kinds of complex social systems widely, such as the distribution of social welfare, 
environmental protection, public transportation, civil medical insurance and so on. Individuals are located on 
the sites of a network and play games with their direct neighbors indicated by the edges they are linked to. After 
the PGG which is organized in the group centered on each site, each punisher can decide to stay still and punish 
defectors or to leave but do not punish, judging by the number of defectors encountered in the game interaction. 
A threshold value is used here to govern the sensitivity of running away. Two scenarios are considered here: one 
in which punishers are directly faced with defectors, and the other where defectors and cooperators compete for 
survival in conflict against the same enemy, the defectors. By Monte Carlo simulations, we will show that the level 
of optimal punisher’s mobility is closely related to the cost of punishing. Unless for the negligible cost of punish-
ing, there exists medium tendency of migration which favors the survival of punishers best. This conclusion holds 
for both the direct competition between punishers and defectors and the case where second-order free-riders 
are involved, and is also verified when various types of punishers with different mobility tendencies fight against 
defectors simultaneously.

This article argues for a closer look at the condition where punishers survive when the severeness of punish-
ment can be diluted by alternative choice of running away in harsh situations. More precisely, we aim to identify 
the optimal conditions of migration tendency such that punishment can be sustained most at an equilibrium. The 
following is a summary of the rest of the paper. In section Methods we introduce the model. In section Results we 
present the main results. We make concluding remarks in the section Discussion.

Results
We start by considering the direct competition between punishers and defectors. Figure 1(a) shows the fraction 
of punishers as a function of enhancement factor r for different values of threshold of migration θ. Extreme case 
of θ = 0 implies that punishers “always run” as long as a defector exists in current group, while for the large value 
of θ equal to group size, punishers always stay still and punish. It can be seen that neither “always running” nor 
“always punishing” choice is most advantageous but a medium value ensures that punishers thrive at a lower 
enhancement factor r. Further investigation reveals that whether larger θ favors punishers relies on the cost of 
punishment. Critical value of enhancement factor ⁎r  above which punishers dominate as a function of threshold 
of migration θ for different values of punishment cost γ is shown in Fig. 1(b). For low punishment cost, to stay still 
and always to punish is the best choice. While for larger punishment cost, there exists medium value of θ that is 
optimal. Note that always running (θ = 0) is never the best choice regardless of the cost, since the limit case of 
high mobility rates can be interpreted as a mixing favoring defection33, which can be well described by mean-field 
approximation51,52.

A detailed revelation of how specific punishment parameters as both the cost γ and intensity β affect the evo-
lution of punishers is demonstrated in Fig. 2 in a contour form. Sharp transitions between full defection and full 
punishment can be observed in the γ-β plane. For any θ, given a fixed value of cost, the intensity should be larger 
than a certain value for punishers to dominate; and conversely, for a given value of intensity (which should also be 
larger than a threshold), the cost should be smaller than a certain value for punishers to prevail. In general, the 
right bottom corner with high punishing intensity but low cost is most favorable for punishers. Note that this 

Figure 1.  (a) Fraction of punishers as a function of enhancement factor r for different values of threshold of 
migration θ with punishment cost γ = .0 7 and intensity β = 1. Notably, a medium value of θ favors punishers 
most under this circumstance. (b) Critical value of enhancement factor ⁎r  above which punishers dominate as a 
function of threshold of migration θ for different values of punishment cost γ when β = 1. Lower ⁎r  implies a 
more favorable environment for punishers. Note that for low punishment cost, to stay still and always to punish 
is a best choice. While for larger punishment cost, there exists medium value of θ that is optimal. Initially equal 
fractions 0.5 of punishers and defectors are randomly distributed among the population. Population density is 
ρ = .0 5.
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region is maximized neither by small θ nor but larger θ but medium one, indicating that a moderate migration 
tendency of punishers is most profitable. This also confirms the observation in Fig. 1, where punishment is effec-
tive with β larger than a threshold.

Previous works have unveiled the fact that different initial distributions of a certain type of individuals in the 
whole population have significant impact on the final outcome of evolution in spatial games53–56. Hence it is nec-
essary to probe into the different roles of punisher’s migration tendency under either adverse circumstances when 
relative rare or advantageous environment when sufficiently abundant. To this end, we have explored the evolu-
tion of punishers under different initial fractions from quite rare (0.001) to relatively abundant (0.5) in the popu-
lation under cheap punishment (with relatively low cost compared to its effect, which is more commonly observed 
in reality). Figure 3 shows the critical value of enhancement factor ⁎r 1 above which punishers emerge (in panel 
(a)) and ⁎r 2 above which punishers dominate (in panel (b)) for different values of θ as a function of initial percent-
age of punishers fIP. With the increment of fIP, the requirement of r for punishers to establish monotonously and 
mildly decreases for any value of θ. Notably, the ⁎r 1 for smaller θ is significantly larger than that for larger θ for any 
initial percentage of punishers. This implies that higher tendency of migration (without punishing) does not 
provide punishers with higher opportunities to survive in direct competition with defectors. Although this is 
usually true for pure cooperators34,37,38, punishers need to be somewhat severe to gain a foot standing in the defec-
tors, even when they are initially rare. However, when it comes to the case of punishers taking over defectors, 
whether larger θ is more advantageous is dependent on the initial fractions of punishers (see Fig. 3(b)). There 
exists a turning point around .0 04, before which larger tendency to migrate favors punishers, and after which 
larger tendency to stay and punish is most profitable. Generally speaking, high migration tendency, albeit allevi-
ating the high cost of punishing, dose not always offer punishers more chances of survival or domination. Except 
for the case that punishers are rare and struggling for domination, stay and punish is a better choice for punishers. 
In a word, punishers should be unflinching.

So far we have discussed the impact of the choice between running and punishing on the evolution of punish-
ers when they are confronted with defectors directly. However, as the second-order cooperators, besides the 
contribution made to the public pool as cooperators do, punishers also pay extra cost to regulate non-cooperators. 
Therefore it is unclear how defectors can survive when surrounded by cooperators. It is essential to investigate the 
mobility effect on punishers when cooperators are present, and to explore under what conditions mobility pro-
vides punishers with more privileges. Simulations on populations with initially equal percentage of cooperators 
and punishers show that stationary fractions of C, D, and P prevail at different intervals of enhancement factor r 

Figure 2.  Fraction of punishers in dependence of punishing cost γ and punishing intensity β in the contour 
form when population are composed of D and P. Different panels correspond to different threshold to migrate 
θ =    1, 2, 3, 4, respectively. The case for θ = 0 is not shown where defectors dominate for the whole given 
parameter plane. Initial fraction of P and D are both 0.5. Other parameters: =r 2, and ρ = .0 5.
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respectively. For low r, population is occupied by only defectors. As r increases, defectors are taken over by pun-
ishers. Further increasing r brings prevailing cooperators and meanwhile punishers are suppressed but not elim-
inated (see Fig. 4(a)). The influence of mobility on defectors is two-fold with different rs: For small r where only 
defectors and punishers coexist, there exists medium value of θ to ensure a easier domination of punishers (see 
Fig. 4(b)), which coincides with the observations in above case of merely competition between P and D in Fig. 1; 
For large r where cooperators and punishers compete, high migration tendency θ = 0 is optimal for punishers, 
because large r itself is sufficient to defeat defectors and less punishment avoids extra cost. Notably, for the former 
case that only P and D survive, punishing cost γ  also plays a role in determining the optimal value of θ which 
ensures highest P level (see Fig. 4(c)). However, always running (θ = 0) is never the best choice for any cost. If the 
cost is high, increment of θ significantly reduces punishers level. When cost is low, this effect is diminished. Large 
θ is detrimental for punishers’ triumph versus cooperators no matter the cost is large or small.

A detailed exploration of the punishment parameters’ influences on the punishers level (and cooperation 
level) when population is composed of initially equal percentage of cooperators and punishers for a variety of 
migration tendency is shown in Fig. 5. A common trait and straightforward observation for all these panels is that 
the right-bottom corner of the γ β−  plane, where punishment intensity is large but cost is low, is most favorable 
for defectors to be depressed and for the flourish of punishers. However, the area of this region’s reliance on θ 
shows different behaviors with varied r. For severe environment with relatively small r, champions in competition 
with defectors are mainly punishers. In this case, a medium θ value maximizes the area of inclusive cooperators 
(C and D). This is in accordance with the results observed above for direct competition between Cs and Ps in 
Fig. 2. While for a mild environment with larger r, cooperators gain more advantage by abstaining from paying 
the punishing cost, and take up quite a percentage in the final population. In this case, the area of punishment 
within the γ β−  plane shrinks with increasing θ. In other words, it is better for punishers to run away in order to 
be advantageous when cooperators can survive in the defectors.

Phase diagram for the stationary composition of population (C, D, and P) dependent on the initial fraction of 
punishers fIP and enhancement factor r are shown in Fig. 6. Particularly, Fig. 6(a) shows the case for θ = 0. Lines 
in the figure indicate the critical values of r where particular event occurs as a function of fIP. Influences of the θ 
on each of these lines are respectively presented in Fig. 6(b–e). Notably, for very small fIP, as r increases, station-
ary composition of the population goes from full defectors to coexistence of P and D, coexistence of C, D, and P, 
coexistence of C and P, and finally pure cooperators when r is sufficiently large. As fIP increases, requirement of r 
for cooperators to dominate becomes so large that C usually coexists with P. Further increment of fIP leads to the 
domination of P over D before C emerges with larger r , and thus the coexistence of C, D, and P vanishes. 
Throughout the range of fIP, larger θ reduces the critical r for P to emerge in D (see Fig. 6(b)), indicating that 
lower tendency to migrate favors punishers. This is in line with the observations when only P and D exist initially 
in the system, since in such harsh environment C cannot survive and only by severe punishment of D rather than 
evasion can P persist. Meanwhile, larger θ also reduces the requirement of r for C to emerge in stationary state (see 
Fig. 6(c)), indicating that larger tendency to punish reduces the relative advantage of P when accompanied by C. 
Lager θ more easily drives D to extinction (see Fig. 6(d)) especially when Ps have a larger proportion in the pop-
ulation, and also provides with punishers slightly larger region before the whole population is dominated by solely 
cooperators (see Fig. 6(e)). To sum up, larger tendency of running-away without punishing (smaller θ) does not 
provide with punishers larger opportunities to survive either in the case of competing with defectors when r is 
small, or significant privileges in the case of competing for domination with cooperators when r is large, but only 

Figure 3.  Critical value of r as a function of initial fraction of punishers fIP. (a) Critical value of enhancement 
factor ⁎r 1, above which punishers emerge dependent on fIP for different values of θ. (b) Critical value of 
enhancement factor ⁎r 2, above which punishers dominate the population dependent on fIP for different values 
of θ. The criterion for emergence and dominance of punishers are that the average stationary fractions reach 
0.01 and 0.99, respectively. Other parameters: γ = .0 3, β = 1, and ρ = .0 5.
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show its merits with medium r  by inhibiting the emergence of C when initially both C and P compete with 
defectors.

Up to now, we have investigated the impact of different θ on the evolution of punishers solely. A natural issue 
arises that which of the θ will be favored by natural selection when these varied strategies fight with defectors 
simultaneously. Previous works have implied that the cooperation and competition among these types of individ-
uals may lead to new findings30,57. To answer this question we have studied the evolution where initially equally 
percentage of Ps with varied θ together with pure cooperators (see Fig. 7). It can be found that for very large r, 
pure C is the ultimate winner, and none of these types of punishers outcompete cooperators in final fractions. 
However, the advantage of punishers arises when r is not so large. And which P is most favored relies on the pun-
ishing parameters. For relatively low cost (see Fig. 7(a)), the type of punishers with lower tendency of migration 

Figure 4.  (a) Fractions of C, D, and P as functions of enhancement factor r. (b) Fraction of P as a function of r 
for different values of θ when γ = .0 7. (c) Fraction of P as a function of θ for different values of punishing cost γ 
s when =r 3. Population density is ρ = .0 5.

Figure 5.  Fraction of punishers in dependence of punishing cost γ and punishing intensity β in the contour 
form when population are composed of C, D, and P. The first row corresponds to =r 2 while the second row 

=r 3. Different columns correspond to different thresholds to migrate θ =    1, 2, 3, 4. The case for θ = 0 is not 
shown where defectors dominate for the whole given parameter area of γ and β. Insects show the fraction of 
cooperators for the same parameter region as punishers.Initial fraction of C and P are both 0.25, and the rest D 
0.5. Population density is ρ = .0 5.
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(large θ) is favorable. While for high cost (see Fig. 7(b)), punishers with a medium value of θ are most abundant 
in the population. These findings are quite similar to those observed above when punishers solely compete with 
cooperators and punishers.

Discussion
Mobility is the essential feature of living organisms by which individuals leave unfavorable environment and 
increase the chances of survival. Mobility of individual plays significant role in answering the vital question of 
how cooperation is evolved when free-riding is apparently more beneficial. Recent advances have paid inten-
sive attention to the role of punishing strategy. Yet as a higher-order cooperator, the emergence and persistence 
of punishers is still puzzling because punishers are easily taken over by the higher-order free-riders, i.e., the 
pure cooperators. In explaining the evolution of punishers, the mobility of punishers have long been ignored. To 
explore the effect of mobility on the survival of punishers, we have constructed a spatial model of public goods 
game played on square lattices with empty sites. Punishers are endowed with the capability of making the choice 

Figure 6.  (a) Phase diagram for the stationary composition of population (C, D, and P) dependent on the initial 
fraction of punishers fIP and enhancement factor r in the case of θ = 0. Legends indicates the crucial lines above 
which particular events occur as r increases. Dashed line denote the r values where equal percentage of Cs and 
Ps are obtained. As the initial fraction of punishers varies, the total percentage of initial cooperators and 
punishers remains 50%, with the remainder 50% being defectors. The influences of θ on each of the four lines 
shown in (a) are illustrated respectively in (b–e). For panels (a–e), the punishment cost is γ = .0 3 and intensity 
is β = 1. Population density is ρ = .0 5.

Figure 7.  Fractions of different punisher classes and pure cooperators in the final state in dependence of 
enhancement factor r when they start fighting with defectors simultaneously. Initially defectors take up 50% of 
the whole population and the rest are occupied by equal percentage of all these 6 types of individuals. Subscripts 
θ =  ...0, 1 4 of P indicates the threshold of this type of P to migrate without punishing. Panel (a) corresponds to 
relatively low punishing cost γ = .0 3 while Panel (b) high cost γ = .0 9. Other parameters: β = 1, and ρ = .0 5. 
Data are obtained by averaging over 500 independent simulation runs.
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between staying still and punishing all defectors, and that of migrating to a neighboring empty site without pun-
ishing, with the decision dependent on the maximum number of defectors punishers can tolerate. Through Monte 
Carlo simulations, we have investigated the evolution of punishers affected by the migration tendency both in a 
scenario of punishers directly competing with defectors and in the case with cooperators, defectors, and punish-
ers to check the condition under which migration offers more chances for punishers to survive, especially with the 
second-order free-riders, the cooperators. Furthermore, we have constructed a case where all these different types 
of punishers initially coexist in the evolution to check which one is most favored by natural selection.

Results indicate that the best θ relies on the cost of punishment. When punishers are faced with defectors 
directly, for considerably large cost, there exists medium value of θ to maximize its advantage, and medium θ also 
maximized the region of punishing parameters which ensures punishers’ domination. For cheap punishment 
with low cost, always punishing (large θ) is best even if punishers are initially rare. When cooperators are also 
incorporated to check how mobility affect punishers’ chance of survival under the sabotage of second-order 
free-riders, it is found that θ plays different roles with varied environment harshness. In a harsh case with small r, 
cooperators cannot survive in the long run and thus results resemble the case above where punishers directly 
compete with defectors. While for the good environment where r is large, Cs are more beneficial and small θ offers 
punishers more superiority if cost is large. For the low cost, the advantage of small θ is only observed when r is 
medium and cooperators begin to coexist with defectors and punishers. Simultaneous competition and coopera-
tion among different types of these punishers with varied θ also shows a reliance on the punishing cost. Heavier 
cost makes punishers with larger θ tend to be more inferior when r is larger but shows its advantage with lower r.

The puzzling of punishment mainly lies in its cost relatively to cooperators, as well as being cooperators who 
become inferior when faced with defectors who contribute nothing. Hence previous works have proposed models 
incorporating more realistic traits by which the actual cost can be reduced when they are implemented58,59. One 
direction to explore is how the cost is born. Instances include those where cost are not only undertaken by the 
punishers, but also by those from higher hierarchies, the third party, or even cooperators47,60. Another way to 
consider is the punishment not always implemented, such as the coordination of punishment or the probabilistic 
execution30,61. Current model considers the migration to avoid the cost. Indeed it also resembles the probabilistic 
strategy, not designated uniformly but rather dependent on specific environment. Previous literature has reported 
that in the two-strategy social dilemmas the survival of cooperators is supported by the motion of influential 
players33. Similarly, we show that in the multi-player game of PGG with three strategies, overall cooperation can 
be enhanced if higher-order cooperators, the punishers, are allowed to move away from bad environment with 
certain probability. We hope this work contribute to further understanding of punisher’s survival in the evolu-
tionary competition. And it helps to understand the role mobility plays when population are faced with various 
environments with differing levels of harshness.

Methods
We consider a population of individuals playing public goods game staged on a ×L L square lattice with periodic 
boundary conditions, where each site is either empty or occupied by one individual. Empty sites represent possi-
ble niches that individuals can migrate to32,62. The fraction of populated sites is denoted by the population density 
ρ ∈ [0,1]. Each PGG is organized by the focal individual resided on one site, and participants include the individ-
uals located in the direct neighboring sites (of number =k 8, the Moore neighborhood). Initially each player is 
designated as one of the three types: cooperator (C), defector (D), and punisher (P).

In the evolution each elementary step consists of the following two stages. Firstly, a PGG is held. Each cooper-
ator or punisher contributes to the common pool at a cost c, while defectors do nothing. Without loss of general-
ity, we set =c 1 throughout this work. Then all the contributions are summed up and multiplied by an 
enhancement factor r, and are then equally distributed among all the group members, despite their contributions. 
Secondly, recognizing the number of defectors in the group, each punisher makes a decision to punish all the 
defectors or to leave current group. If the number of defectors is no more than the threshold θ, punisher will pun-
ish each defector in this group by reducing its payoff by β at a cost of γ as commonly assumed in previous litera-
tures27,28. Otherwise, the punisher leaves current site and migrates to a randomly chosen empty sites in the 
neighborhood. Thus magnitude of θ reflects one’s punishment tendency, or inverse migration tendency. Each 
evolutionary generation is composed of many elementary steps such that on average each individual has organ-
ized once the PGG. After that, each individual i updates its strategy synchronously by copying the strategy of a 
randomly chosen neighbor j with an imitation probability63 given by

κ
← =

+ −
P i j

P P
( ) 1

1 exp[( )/ ] (1)i j

where κ measures the magnitude of noise to permit irrational choices. Smaller value implies that superior strate-
gies are more favored to be adopted, albeit it is not impossible to employ the suboptimal strategies. In the present 
work we have designated κ = .0 1 which depicts a scenario of strong selection where beneficial strategies are more 
likely to survive under evolution pressure.

During one full Monte Carlo step (MCS), all individuals in the population receive a chance once on average to 
adopt another strategy. To avoid the frozen state in which some individual clusters are isolated and thus have no 
chance of interaction with the rest of the population, a small probability ε = .0 01 is applied for any individual to 
migrate randomly to an empty neighboring sites. And we have checked that the influence of this mobility on the 
final evolution state is negligible. The population density ρ may affect the evolution of strategies on networks with 
empty sites as previously reported38,62, yet in current work we mainly focus on the mobility of punishers and 
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assume a fixed population density ρ = .0 5 throughout the paper. Depending on the proximity to phase transition 
points and the typical size of emerging spatial patterns, the linear system size was varied from L = 100 to 400 and 
the relaxation time was varied from 104 to 106 MCS to ensure proper statistical accuracy. The reported fractions of 
competing strategies were determined in the stationary state when their average values became time-independent. 
Alternatively, we have averaged the outcomes over 50 to 2000 independent runs when the system terminated into 
a uniform absorbing state.

Data availability.  The authors declare that all data supporting the findings of this study are included in this 
published article.
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