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Multiobjective differential 
evolution-based multifactor 
dimensionality reduction for 
detecting gene–gene interactions
Cheng-Hong Yang1,2, Li-Yeh Chuang3 & Yu-Da Lin1

Epistasis within disease-related genes (gene–gene interactions) was determined through contingency 
table measures based on multifactor dimensionality reduction (MDR) using single-nucleotide 
polymorphisms (SNPs). Most MDR-based methods use the single contingency table measure to 
detect gene–gene interactions; however, some gene–gene interactions may require identification 
through multiple contingency table measures. In this study, a multiobjective differential evolution 
method (called MODEMDR) was proposed to merge the various contingency table measures based 
on MDR to detect significant gene–gene interactions. Two contingency table measures, namely the 
correct classification rate and normalized mutual information, were selected to design the fitness 
functions in MODEMDR. The characteristics of multiobjective optimization enable MODEMDR to use 
multiple measures to efficiently and synchronously detect significant gene–gene interactions within a 
reasonable time frame. Epistatic models with and without marginal effects under various parameter 
settings (heritability and minor allele frequencies) were used to assess existing methods by comparing 
the detection success rates of gene–gene interactions. The results of the simulation datasets show that 
MODEMDR is superior to existing methods. Moreover, a large dataset obtained from the Wellcome 
Trust Case Control Consortium was used to assess MODEMDR. MODEMDR exhibited efficiency in 
identifying significant gene–gene interactions in genome-wide association studies.

Single-nucleotide polymorphism (SNP) is a genetic variation of DNA sequences within a population. 
Genome-wide association studies (GWAS) covering a large quantity of SNPs provide an unbiased means of iden-
tifying disease-associated variants in genetic epidemiology1–3. Epistasis is the interaction effect between genes 
and could reveal the causes of complex diseases traits4. Investigating the gene–gene interactions of diseases and 
cancers could facilitate the understanding of epistasis in populations in the field of systems biology5,6. Statistical 
method, data mining, and machine learning have been used to detect epistasis in family-based and case-control 
studies, such as co-information based n-order eistasis detection and visualizer (CINOEDV)7, support vector 
machine-based method (EpiMiner)8, and so on9.

Multifactor-dimensionality reduction (MDR)10 and the predictive rule learning approach (SNPRuler)11 are 
proposed to facilitate epistatic investigation. MDR is a nonparametric data mining approach combining a contin-
gency table measure [k-fold cross-validation (CV)] and a dimensionality reduction technique to detect gene–gene 
interactions in case–control studies10,12. SNPRuler is a nonparametric learning approach based on a predictive rule 
learning algorithm for identifying gene–gene interactions11. These methods have been applied to detect signifi-
cant gene–gene interactions and investigate the effects of drugs13 on breast cancer14, oral cancer15, hypertension16,  
and other human diseases5,17.

Differential evolution (DE) is a powerful evolutionary algorithm18 that is popular for pattern recognition and 
optimization in engineering19. Multiobjective DE (MODE) is an improved DE modified to fit multiobjective 
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problems20, in which n (n > 1) objectives are considered to synchronously search for optimal solutions21; for 
example, maximization objectives can be formulated as maximize(f1(X), …, fi(X)), where X ∈ X , i is the number 
of objectives, X  is the feasible solution set, and f(X) is an objective function. In maximization problems, solution 
X1 dominates solution X2 if fj(X1) > fj(X2) for all indices j ∈ (1, …, n). Pareto optimal solution sets (Pareto sets) 
represent a powerful technique for collecting good solutions not dominated by one another. These good solutions 
are the results of MODE.

Several contingency table measures, such as chi-square, likelihood ratio, normalized mutual information 
(NMI), and et al., have been applied to score model quality in MDR22,23, and these measures can be regarded as 
various objectives in MODE. Currently, MDR-based methods focus only on a single measure to determine gene–
gene interactions. Various simulation dataset types have been adopted to evaluate which contingency table meas-
ures can significantly improve MDR performance22, revealing that MDR performance could be measured based 
on the correct classification rate (CCR)10 or NMI22. However, no optimal measure for determining gene–gene 
interactions involving various dataset types has yet been found. Each measure may fit specific dataset types; how-
ever, deriving data distributions from real datasets is difficult, especially for complex diseases. Therefore, devel-
oping a method that can synchronously consider multiple measures to detect gene–gene interactions is essential.

In this study, a multiobjective DE (hereafter MODEMDR) was proposed to merge various contingency table 
measures based on MDR and detect significant gene–gene interactions. Two objectives involving the aforemen-
tioned two measures of CCR and NMI were selected for MODEMDR. Several epistatic models with and without 
marginal effects and with various parameter settings (heritability (h2) and minor allele frequencies (MAF)) were 
selected to generate high-dimensional simulation datasets. In addition, a large real dataset was obtained from the 
Wellcome Trust Case Control Consortium (WTCCC)24. The results of the simulation and real datasets indicated 
that MODEMDR can effectively detect gene–gene interactions.

Results
Simulation data experiments. The goal of the simulation datasets was to successfully detect the specific 
two-locus SNP combination (target) in each artifact epistasis model. Epistatic models with and without marginal 
effects were simulated to compare the epistatic interaction identification ability of SNPRuler11, MDR25, single 
measure DE MDR (DEMDR), and MODEMDR.

Comparison between MODEMDR and existing methods on disease loci with marginal 
effects. The eight epistatic models with marginal effects were used to evaluate the performance of SNPRuler, 
MDR, DEMDR (CCR), and MODEMDR. Models 1–6 were obtained from Namkung et al.23 and models 7 and 8 
were obtained from Bush et al.22. These models reflect the strength of genetic effects and were proposed according 
to the interaction structure, MAF, and prevalence. The details of the multilocus penetrances of the eight models 
are shown in Table 1 in the supplementary file. The penetrances of the eight models were computed under the 
Hardy–Weinberg equilibrium (HWE) assumption for each SNP. In each model, 100 datasets were simulated 
under identical settings with uniform MAF of [0.05, 0.5). The detection success rate was computed as the pro-
portion of the generated datasets, in which a target of epistatic interaction was detected. GAMETES software was 
used to simulate the simulation datasets26.

In the eight models, MDR, DEMDR, and MODEMDR outperformed SNPRuler in the large samples (Fig. 1; 1,000 
cases and 1,000 controls), in which MODEMDR outperformed MDR and DEMDR in models 7 and 8. Regarding the 
small samples (200 cases and 200 controls), SNPRuler, MDR, and DEMDR had difficulties identifying the specific 
two-locus SNP combinations in the epistatic models with marginal effects. Clearly in the small samples, MODEMDR 
outperformed MDR, DEMDR, and SNPRuler in the eight epistatic models with marginal effects. The generated data-
sets of eight epistatic models with marginal effects were used to compare DEMDR (CCR) (P), DEMDR (NMI) (N), 
and MODEMDR (two objectives merging CCR and NMI) (B). DEMDR (CCR) achieved higher detection success 
rates than DEMDR (NMI) in all epistatic models with marginal effects (Fig. 2). Moreover, MODEMDR outperformed 
DEMDR (CCR) and DEMDR (NMI), indicating that multiple contingency table measures are superior to single con-
tingency table measures in detecting epistatic interactions with marginal effects. MODE effectively improves MDR with 
respect to performing evaluations to facilitate the identification of significant gene–gene interactions.

Comparison between MODEMDR and existing methods on disease loci without marginal 
effects. A total of 60 two-locus epistatic models were obtained from Wan et al.11 and used to assess the per-
formance of SNPRuler, MDR, DEMDR (CCR), and MODEMDR. These models are pure epistatic models (i.e., 
they have no marginal effects). The multilocus penetrances are shown in Supplementary Table 2. The parameter 
settings (h2 and MAF) were selected to generate simulation data by using GAMETES software26. The h2 controlled 
the phenotypic variation of the 60 models and ranged from 0.025 to 0.4. The MAF ranged from 0.2 to 0.4. For 
each epistatic model, the 100 datasets consisting of 1,000 SNPs, 200 cases, and 200 controls were generated. The 
detection success rate was calculated as the proportion of the 100 datasets in which the specific disease-associated 
two-locus SNP combination was detected.

In the 60 models, MODEMDR outperformed SNPRuler, MDR, and DEMDR in detecting epistatic interactions 
without marginal effects (Fig. 3). The results of Wilcoxon signed-rank testing (Table 1) showed that MODEMDR 
achieved the highest R+ (number of victories), lowest R− (number of losses), and a p value of < 0.05, indicating that 
MODEMDR is significantly superior to the other methods. In the epistatic models with MAF = 0.2 or 0.4 and h2 ≥ 0.2, 
all detection success rates of SNPRuler, MDR, DEMDR, and MODEMDR were ≥ 80%, which degraded as h2 was 
decreased. When MAF = 0.2 and h2 ≤ 0.05, DEMDR and MODEMDR achieved detection success rates of approxi-
mately 30% and 40%, respectively. By contrast, SNPRuler and MDR almost completely lost their detection abilities. 
MODEMDR achieved the highest detection success rates for all settings, especially h2 ≤ 0.01 (Fig. 4). All the test results 
show that MODEMDR outperformed SNPRuler, MDR, and DEMDR in the epistatic models with no marginal effects.

http://1
http://2


www.nature.com/scientificreports/

3Scientific RepoRts | 7: 12869  | DOI:10.1038/s41598-017-12773-x

The generated datasets of models 31–60 were used to compare the DEMDR (CCR) (D), DEMDR (NMI) (N), 
and MODEMDR (two objectives merging CCR and NMI) (O) in detecting epistatic interactions without mar-
ginal effects. Detection success rates were calculated as the proportion of the 100 datasets in which the specific 

Figure 1. Comparison between SNPRuler (R), MDR(CVC ≥ 3) (M), MDR(CVC ≥ 4) (M), DEMDR (D), and 
MODEMDR (O) across eight pure epistatic models with marginal effects. For each model, the detection success 
rate was calculated as the proportion of 100 datasets in which the specific disease-associated epistatic 
interaction was detected. Each dataset contained 1,000 SNPs. The gray bars represent the detection success rate 
for 1,000 cases and 1,000 controls. The black bars represent the detection success rate for 200 cases and 200 
controls. No bars indicates a detection success rate of zero.

Figure 2. Comparison between the CCR (P), NMI (N), and both measures (B) across eight pure epistatic 
models with marginal effects. Under each setting, the detection success rate was calculated as the proportion 
of 100 datasets in which a specific disease-associated epistatic interaction was detected. Each dataset contained 
1,000 SNPs. The gray bars represent the detection success rate for 1,000 cases and 1,000 controls. The black bars 
represent the detection success rate for 200 cases and 200 controls. The absence of bars indicates a detection 
success rate of zero.
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disease-associated two-locus SNP combination was identified. DEMDR (CCR) achieved a higher detection suc-
cess rate than DEMDR (NMI) in all epistatic models without marginal effects (Fig. 5). However, MODEMDR 
outperformed DEMDR (CCR) and DEMDR (NMI), indicating that multiple contingency table measures are 
superior to single contingency table measures for identifying gene–gene interactions.

Results of WTCCC data. To evaluate the ability of MODEMDR to handle large datasets, a large dataset was 
obtained from the WTCCC24, consisting of 500,569 SNPs, including 1,988 cases of coronary artery disease (CAD) 
and 1,500 controls obtained from people living in Great Britain who self-identified as white Europeans.

Figure 3. Comparison between SNPRuler (R), MDR(CVC ≥ 3) (M), MDR(CVC ≥ 4) (M), DEMDR (D), and 
MODEMDR(O) across 60 pure epistasis models without marginal effects. Under each setting, the detection 
success rate was calculated as the proportion of 100 datasets in which the specific disease-associated epistatic 
interaction was detected. Each dataset contained 1,000 SNPs. The gray bars represent the detection success rate 
for 200 cases and 200 controls. No bars indicates a detection success rate of zero.
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The epistatic interactions detected by MODEMDR are shown in Table 2. The gene names in Table 2 were 
obtained from dbSNP at the National Center for Biotechnology Information. The designation “UNKNOWN” in 
the table refers to SNP not being located on a gene. The minimum and maximum numbers of detected significant 
epistatic interactions in each chromosome were 1 and 6, respectively. The p value was estimated through an χ2 
test using the raw datasets to determine the significance level for epistatic interaction between two SNPs11. All 
epistatic interactions detected by MODEMDR in 24 chromosomes yielded a p value of <0.0001, indicating a strong 
significant interaction between two SNPs. When the CCR was larger than 0.5, the frequency of chance can be sig-
nificantly reduced27, indicating that our results identified significant epistatic interactions. The high NMI values 
indicate that uncertainty was reduced in the model in a true state. The CCR and NMI values show the multiobjec-
tive optimization property. The epistatic interaction with the highest NMI value (rs41399650, rs41397248) was not 
the epistatic interaction with the highest CCR value (rs41399650, rs17163057) in chromosome 1. Further detection 
of significant epistatic interactions may provide an etiological understanding of epistasis in systems biology28. The 
MODEMDR for CCR measures was located between 0.588 and 0.959 and the mean CCR was 0.750 (standard 
deviation (SD) = 0.096). The NMI measures were located between 0.033 and 0.759 and the mean NMI was 0.267 
(SD = 0.182). Notably, the epistatic interaction of SNPs rs16926425 and rs7299571 (chromosome 12) obtained the 
highest CCR (0.959) and NMI values (0.759). The ten detected epistatic interactions indicate the beneficial meas-
ures of NMI > 0.4 and CCR > 0.8 (marked by stars in Table 2). The details of all epistatic interactions are shown in 
Supplementary Fig. 1. In all figures, the (black) left bar in a class represents the frequency of cases and the (white) 
right bar represents the frequency of controls. Gray classes indicate being in the high-risk group.

N Mean Rank
Sum of 
Ranks Z-test P value

MODEMDR vs. 
SNPRuler

R− 3 9.67 29 −5.952 2.65E-09

R+ 48 27.02 1297

R= 9

Total 60

MODEMDR vs. 
MDR(CVC ≥ 3)

R− 1 4 4 −4.784 1.72E-06

R+ 30 16.4 492

R= 29

Total 60

MODEMDR vs. 
MDR(CVC ≥ 4)

R− 0 0 0 −5.161 2.46E-07

R+ 35 18 630

R= 25

Total 60

MODEMDR vs. 
DEMDR

R− 0 0 0 −4.71 2.47E-06

R+ 29 15 435

R= 31

Total 60

Table 1. Comparison of SNPRuler, MDR, DEMDR, and MODEMDR across 60 epistasis models using Wilcoxon 
signed-rank testing. R−: number of epistasis models when MODEMDR lost another algorithm; R+: number of 
epistasis models when MODEMDR won another algorithm; R=: number of epistasis models when two algorithms 
tied; N: number of R−, R+, and R=. P < 0.05 indicates a significant difference between two algorithms.

Figure 4. Comparison of the impact of MAF and h2 on the detection success rates of SNPRuler, MDR(CVC 
≥ 3), MDR(CVC ≥ 4), DEMDR, and MODEMDR across 60 pure epistasis models. Under each setting, the 
detection success rate was calculated from 100 datasets containing 1,000 SNPs genotyped from 200 cases and 
200 controls.
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The running times of chromosomes in the WTCCC dataset are shown in Table 2. MDR required approxi-
mately 18.3 h to analyze the chromosome with the largest data (chromosome 2), whereas MODEMDR required 
only approximately 63 s. Regarding the average running times for all large datasets, MDR required approximately 
6.15 h, whereas MODEMDR required only approximately 62.05 s, indicating that MODEMDR has the shortest 
running time for analyzing large datasets.

Discussion
MODE enables MDR to use multiple measures to detect gene–gene interactions. Although the CCR in 
MDR-based methods is a powerful measure for determining such interactions, it could fail to determine interac-
tions in some epistatic models (e.g., models 31–60 without marginal effects (Fig. 5)). Furthermore, the NMI could 
not always determine specific targets within models 31–60 without marginal effects. Therefore, both measures 
were considered for synchronous use to effectively determine the targets (Table 2). MODEMDR can effectively 
detect gene–gene interactions because the MODE fits the joint effect property29, which consists of the main effect, 
overall effect, and high-order interaction effect. The main effect refers to any effect that could serve as a guide to 
identifying the correct multilocus interaction. The overall effect refers to an effect that commonly appears among 
n risk factors. The high-order interaction effect refers to the least proper subset of the loci that interacts epistat-
ically. SNPs strongly associated with diseases or cancers are often likely to be significant factors in high-locus 
interactions. High CCR and NMI values in MODEMDR indicate a more significant risk of n-factor effects. In 
the MODEMDR selection operation, promising SNPs can be retained for the next generation. These SNPs are 
subsequently combined through mutation and recombination operations to produce better SNP combinations, 
enabling MODEMDR to detect the significant epistatic interactions.

In MDR, combinations of high-dimensional factors can be reduced by assigning multilocus genotypes to 
high- or low-risk groups, enabling gene–gene interaction quality to be measured through two-way contingency 
table analysis10. CCR is the measure most commonly applied in MDR-based methods30. Bush et al. (2008) com-
pared the ten general measures in the text classification field to evaluate the degree of improvement in the ability 
of MDR to detect gene–gene interactions. CCR and NMI were suggested as being able to improve MDR identi-
fication in the simulation22. The results of the present study exhibited the most successful gene–gene interaction 
identification when the NMI and CCR were used to synchronously determine significant gene–gene interactions.

The WTCCC dataset is well-known in GWAS analyses, in which large SNPs in chromosomes are collected. 
MODEMDR efficiently identifies gene–gene interactions from combinatorially explosive search spaces (running 
time in Table 2), and uses the rational performing time (population size × generation size) to calculate MDR 
measures, enables it to handle GWAS analysis. MODEMDR has the advantages of MDR because the fitness func-
tions of multiple objectives are designed based on MDR. The advantages of MODEMDR include the following: 
(i) suitability for application in small sample datasets, (ii) suitability for application in unbalanced datasets, (iii) 
ability to describe the loci genotype combinations associated with high and low risk of disease, (iv) the model-free 
method, (v) ability to detect a higher-order gene–gene interactions, and (vi) the nonparametric method.

MODEMDR was applied in this study for synchronous consideration of the multiple measures used to detect 
significant gene–gene interactions. To our knowledge, MODEMDR is the first MDR-based method that accounts 

Figure 5. Comparison between the CCR measure (P), NMI measure (N), and both measures (B) across 
epistasis models 31–60 without marginal effects. Under each setting, the detection success rate was calculated as 
the proportion of 100 datasets in which the specific disease-associated epistatic interaction was detected. Each 
dataset contained 1,000 SNPs. The gray bars represent the detection success rate for 200 cases and 200 controls. 
No bars indicates a detection success rate of zero.
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for multiple measures. The experimental results demonstrate that multiple measures engender an identification 
performance superior to that of the MDR-based single measure method. In the WTCCC analysis, MODEMDR suc-
cessfully handled the large-scale dataset in terms of speed and identification of significant gene–gene interactions. 
Furthermore, MODEMDR provides a multiobjective method for identifying gene–gene interactions. Improvements 
could be made by using more combinations among various measures in a two-way contingency table.

Locationa SNP Groups Related Genes CCR NMI Timesb (s)

Chr1

rs41399650, rs17163057 UNKNOWN, UNKNOWN 0.798 0.319

63.6rs41399650, rs853747 UNKNOWN, PROX1-AS1 0.768 0.351

rs41399650, rs41397248 UNKNOWN, UNKNOWN 0.767 0.353

Chr2 rs41509345, rs41453947 NCKAP5, UNKNOWN 0.798 0.282 63.1

Chr3

rs41367044, rs10866051* GTF2E1, UNKNOWN 0.846 0.438

61.5rs4552351, rs10866051* UNKNOWN, UNKNOWN 0.826 0.451

rs16828468, rs10866051* UNKNOWN, UNKNOWN 0.824 0.451

Chr4 rs41426946, rs41529544 PPA2, UNKNOWN 0.810 0.313 62.2

Chr5 rs41505353, rs41421845 SPOCK1, UNKNOWN 0.705 0.137 62.2

Chr6

rs41509944, rs41489047 UNKNOWN, BAI3 0.784 0.248

62.0rs41421547, rs41489047 UNKNOWN, BAI3 0.773 0.254

rs16885600, rs41489047 CASC15, BAI3 0.777 0.252

Chr7
rs41437948, rs41468749 POU6F2, WBSCR17 0.683 0.102

62.7
rs7777155, rs41437948 ZNF92, POU6F2 0.683 0.106

Chr8
rs35120859, rs17480050 UNKNOWN, CSGALNACT1 0.754 0.197

61.1
rs17480050, rs16883114 CSGALNACT1, LINC01288 0.683 0.202

Chr9 rs41354745, rs41424148 KANK1, UNKNOWN 0.727 0.199 61.7

Chr10 rs41370151, rs2944490 FAM107B, TCERG1L 0.791 0.338 62.0

Chr11 rs41518446, rs41381045 MAML2, SHANK2 0.672 0.088 61.9

Chr12 rs16926425, rs7299571** SOX5, UNKNOWN 0.959 0.759 62.2

Chr13 rs7328649, rs9540734 FAM155A, PCDH9 0.825 0.338 61.9

Chr14
rs41324950, rs1884094 UNKNOWN, UNKNOWN 0.807 0.292

60.9
rs41491051, rs41324950 SLC35F4, UNKNOWN 0.804 0.300

Chr15
rs41418548, rs41418744 SHC4, UNKNOWN 0.701 0.123

61.3
rs41418548, rs41467146 SHC4, UBE2Q2P1 0.701 0.123

Chr16 rs235633, rs41483646 UNKNOWN, UNKNOWN 0.768 0.226 61.2

Chr17

rs3785579, rs12939469* CACNG1, UNKNOWN 0.878 0.552

61.7

rs3785579, rs4795043* CACNG1, UNKNOWN 0.878 0.555

rs3785579, rs180171* CACNG1, UNKNOWN 0.877 0.560

rs3785579, rs1870998* CACNG1, UNKNOWN 0.877 0.559

rs3785579, rs3902104* CACNG1, BCAS3 0.877 0.56

Chr18
rs41470446, rs3794931 UNKNOWN, ZNF516 0.756 0.200

61.4
rs3794931, rs4799934 ZNF516, CELF4 0.746 0.303

Chr19
rs375299, rs41370444 UNKNOWN, UNKNOWN 0.641 0.062

61.4
rs375299, rs11671119 UNKNOWN, MEF2BNB-MEF2B 0.579 0.074

Chr20
rs2748666, rs41405046* UNKNOWN, UNKNOWN 0.884 0.488

61.7
rs16988533, rs2748666* UNKNOWN, UNKNOWN 0.845 0.493

Chr21
rs2837906, rs41451052 UNKNOWN, UNKNOWN 0.600 0.033

61.3
rs429380, rs41451052 DSCAM, UNKNOWN 0.588 0.041

Chr22

rs10212068, rs41416344 HMGXB4, CHCHD10 0.648 0.068

60.2

rs10212068, rs41431147 HMGXB4, TXNRD2 0.616 0.080

rs10212068, rs5748617 HMGXB4, UNKNOWN 0.625 0.078

rs10212068, rs1054055 HMGXB4, CHCHD10 0.646 0.071

rs10212068, rs41459445 HMGXB4, HMGXB4 0.645 0.075

rs10212068, rs16992075 HMGXB4, UNKNOWN 0.596 0.080

ChrX rs1419930, rs41500547 UNKNOWN, DMD 0.665 0.095 67.9

Table 2. Summary of MODEMDR results for CAD based on WTCCC data. aChr chromosome; bMODEMDR 
running time; time unit: hour (h); **optimal epistatic interaction; *top ten epistatic interactions.
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Methods
Definitions of multiobjective optimization in gene–gene interaction identification. Consider a 
multiobjective maximization problem with m parameters (decision variables) and n objectives without the loss of 
generality: Maximize = ... ... ...

��
f X f x x f x x( ) [ ( , , ), , ( , , )]m n m1 1 1  where = ...X x x( , , )m1  and = ...

��
f f f( , , )n1  

where X is the decision vector and 
��
f  is the objective vector. For Xi, all objectives 

��
f  that are not dominated by any 

other vector Xj (j = 1, …, k | i≠j) where k is the population size are called nondominated points. For gene–gene 
interaction identification, we defined “gene–gene interaction” (i.e., solution) as a decision vector and “measures” 
as the corresponding objective vector. Here, CCR10 and NMI22 were defined as f1 and f2, respectively. Therefore, in 
this study, the objective was defined as follows:







=

=

f X CCR X
f X NMI X

Maximize
( ) ( )
( ) ( ) (1)

i i

i i

1

2

where X is the solution space and Xi ∈ X.

MODEMDR. In MODEMDR, the MDR operation process is modified to apply MDR as a fitness function in 
MODE. In addition, a balance strategy is introduced in data preprocessing within cross-validation in MDR to 
improve the accuracy of fitness evaluation. The balance strategy can effectively increase the CCR in the training 
and testing. In MODE operations, target vector X, mutant vector V, and trial vector U are used to seek the optimal 
multiobjective set. A target vector is a feasible solution for identifying gene–gene interactions. Pareto operations 
generate extra storage and use Pareto set filter operators to save all nondominated individuals in each generation. 
During initialization, the target vectors are randomly generated in the feasible problem space. A Pareto set is ini-
tialized in an empty space because the individuals have not been evaluated. The first operation is mutation oper-
ation, which generates the mutant vectors of individuals based on the sum of the weighted difference between 
two vectors and a third vector, which are randomly selected from the population or Pareto set. Subsequently, 
recombination operation generates the trial vectors of individuals by mixing the mutant vectors with the param-
eters of other predetermined target vectors. Boundary constraint operation is used to verify that the trial vectors 
are feasible solutions. If a trial vector is not a feasible solution, its parameters are adjusted to render it feasible. In 
selection operation, the target vector is updated if the trial vector yields to dominate the target vector. Finally, the 
Pareto set is updated if the target vectors dominate the individuals in the set. Thus, the Pareto optimal solution 

1
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set, called the “Pareto front,” can be improved throughout the generation. The MODEMDR process is shown in 
Algorithm 1, the steps of which include data preprocessing, Pareto operation, and the following four basic DE 
operations: mutation, recombination, boundary constraint, and selection.

Data preprocessing. Data preprocessing uses the balance strategy in MDR to handle the balanced k-fold 
CV subsets that are divided by the original dataset for objective evaluation. For k-fold CV operation, the balanced 
k-fold CV subsets are generated through the following five steps of the balance strategy:

 1. Step 1. Divide the samples into case sets (cases) and control sets (controls).
 2. Step 2. Randomly shuffle the case and control samples.
 3. Step 3. Count the total numbers of cases and controls.
 4. Step 4. Compute the ratio between cases and controls.
 5. Step 5. Assign the case and control samples to subset j (j = 1, …, k) according to the ratio, where j is the CV 

index and k is the total number of CV subsets.

Pareto operation. The Pareto operation uses a Pareto set filter operator to collect good individuals (target 
vectors) according to the multiobjective values, where the individuals do not dominate one another. These indi-
viduals are saved in extra storage S = (s1, …, si), where s is the target vector and i is the registration size, which is 
the maximum number of individuals in storage. The Pareto set filter operator consists of the following two steps:

 1. Step 1. Comparison between an X ∈ population and sj for all indices j ∈ (1, …, i) in S. If X is not dominated 
by any sj, X is added into S.

 2. Step 2. Comparison between an sj for index j ∈ (1, …, i) and sk for indices k and k ∈ (1, …, i | k ≠ j) in S. If sj 
is dominated by any sk, sj is discarded.

Target vector definition. Let Xi,g = (x1,i,g, .., xd,i,g) be the ith target vector in the population for the gth gen-
eration in the d-dimensional search space. A target vector is a gene–gene interaction in which the parameters 
are the SNP indices and are all different in a target vector. Given that y-SNPs and d-order gene–gene interaction 
identification are considered in case–control studies, the target vector Xi is represented as follows:

= … | ∈ …X x x x y( , , (1, , )),i g i g d i g, 1, , , ,

where g is the gth generation.
For initialization (i.e., g = 0), the parameter xj (j = 1, …, d) in the target vector Xi is randomly generated by (2):

= × − +x rand upper lower lower( ) (2)j i j i, ,0 ,

where upper and lower represent the upper and lower boundaries of the indices of independent variables, respec-
tively. The randj,i is the random number generator, which returns a uniformly distributed random value from 
within the range [0, 1).

Mutation. Each target vector generates a mutant vector Vi,g+1, which is a vector sum of the weighted differ-
ence between two vectors and a third vector, expressed as follows:

= + ⋅ − = …+ ( )V X F X X i n, 1, , (3)i g r g r g r g, 1 1, 2, 3,

and

=






≤

> =
=X

S randb PV
X randb j PV S

i
if ,

if( ( ) ) or empty,
1, 2, 3

(4)
ri g

ri g

ri g
,

,

,

In (3), n is the population size; r1, r2, and r3 ∈ (1, …, n) are the random indices of the storage (Pareto oper-
ation) or population; g is the gth generation; Xr1,g, Xr2,g, and Xr3,g are the selected three target vectors from the 
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storage or population, where all selected target vectors are different; and F is a real and constant factor ∈ [0, 2) 
that controls the amplification of the differential variation (Xr2,g − Xr3,g). In (4), Sri,g is the rith target vector [ri ∈ 
(1, …, n)] in the storage and PV is a mutation constant ∈ [0, 1) that controls the probability of the vector selected 
from either the storage or population.

Recombination. Recombination operation can increase the vector diversity in the population. The trial vec-
tor Ui,g+1 is expressed as (5) and the parameters of the trial vector are computed by (6), which incorporates the 
mutant vector Vi,g+1 and current target vector Xi,g at the ith target vector, expressed as follows:

= …+ + +U u u( , , ) (5)i g i g d i g, 1 1, , 1 , , 1

and

=






≤ =

> ≠ = …+
+u

v randb j CR j rnbr i
x randb j CR j rnbr i j d

if ( ( ) ) or ( ),
if ( ( ) ) or ( ), 1, 2, , (6)

j i g
j i g

j i g
, , 1

, , 1

, ,

In (5), i is the trial vector index in the population, d is the dimension size, and g is the gth generation. In (6), j is 
the index of the dimension in the mutant vector Vi,g and target vector Xi,g, where the two is represent the indices of 
the mutant vector and target vector in the population; randb(j) is the jth evaluation of a uniform random number 
generator with the outcome ∈ [0, 1); CR is the crossover constant ∈ [0, 1); and rnbr(i) is a randomly chosen index 
∈ (1,…, d) that ensures that Ui,g+1 obtains at least one parameter from Vi,g+1.

Boundary constraints. Boundary constraints can ensure that trial vectors are feasible combinations. 
Equation (7) guarantees that trial vector parameters do not violate boundary constraints with random values 
generated by (2), expressed as follows:

=











× − + <

> ∃ ∈+u

rand upper lower lower u lower u

upper !u U
u

( ) , if ( or

) or ( )
, otherwise (7)

j i g

j j i g j i g

j i g i g

j i g

, , 1

, , , ,

, , ,

, ,

where j is an index of the dimension in the trial vector Ui,g, i is the index of the trial vector in the population, g 
is the gth generation, upper and lower are the upper and lower bounds of the indices of independent variables, 
respectively, and ∃!uj,i,g represents a variable at the jth parameter only existing in the ith trial vector for the gth 
generation.

Selection. Selection operation determines whether the target vector Xi,g is dominated by the trial vector Ui,g; 
in other words, fj(Ui,g) > fj(Xi,g) for all indices j ∈ (1, 2), where j is the index of the objective function. If the trial 
vector Ui,g+1 dominates the target vector Xi,g, Xi,g+1 is set to Ui,g+1, otherwise Xi,g is retained as Xi,g+1. In (1), f1(•) is 
the CCR function and f2(•) is the NMI function, both of which are explained in the following section.

Multiobjective evaluation. Two objective functions (fitness functions) are used to evaluate the values of 
target and trial vectors. The objective function can be divided into six steps based on MDR. Let X = (x1, .., xd) rep-
resent a gene–gene interaction, where d is the order number of gene–gene interactions. The genotype combina-
tions between SNP factors (i.e., (x1, .., xd)) contain d3 multifactor cells, each of which contains the total quantities 
of cases and controls for the corresponding genotype combination.

Step 1. Determine high or low risk within multifactor cells by using the training data.
Each multifactor cell is deemed high or low risk by evaluating the ratio between total quantities of cases and 

controls in that cell. A cell is deemed high-risk if ratio ≤ 1 and low risk otherwise. In the training data, θa repre-
sents a ratio value and is computed by (8) to provide a more accurate ratio to determine whether a cell is high or 
low risk. Thus, accurate objective evaluations can be improved when the total quantities of cases and controls are 
unbalanced. Equation (8) is expressed as follows:

θ =
×

×
+

+



n n
n n (8)

a
a

a

0 1

1 0

where nab is the total number of samples within the ath multifactor cell in the b outcome risk status in the training 
data, and n+b represents the total number of samples in the b outcome risk status, where b = 1 for cases and 0 for 
controls.

Step 2. Determine high or low risk within multifactor cells by using the testing data.
To use the testing data to determine whether multifactor cells are high or low risk, the ratio θa is computed by 

(9), expressed as follows:

θ =
×

×
+

+

n t
n t (9)

a
a

a

0 1

1 0

where tab is the number of samples within the ath multifactor cell in the b outcome risk status in the testing data, 
where b = 1 for cases and 0 for controls. Both n+0 and n+1 are the same as in (8).
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Step 3. Evaluate the true positive (TP), false positive (FP), false negative (FN), and true negative (TN) values by 
comparing the level of risk in multifactor cells as determined by the training and testing data.

A comparison of the risk level of a single cell as determined by training and testing data can be used to com-
pute the TP, FP, FN, and TN. Thus, all multifactor cells can be reduced to four dimensions (TP, FP, FN, and TN). 
Equation (10) expresses the evaluation functions of the four dimensions as follows:

∩ ∩

∩ ∩

∑ ∑

∑ ∑

= =

= =
θ θ θ θ

θ θ θ θ

∈ ≥ ∈ ≥

∈ < ∈ <

 

 

TP t n FP t n

FN t n TN t n

, ,

,
(10)

a
a a

a
a a

a
a a

a
a a

{ , 1}
1 1

{ , 1}
0 0

{ , 1}
1 1

{ , 1}
0 0

a a a a

a a a a

where tab is the number of samples within the ath multifactor cell in the b outcome risk status; n+b is the total 
number of samples in the b outcome risk status, where b = 1 for cases and 0 for controls; TP is the number of 
correctly classified samples in the testing data within the high-risk range as determined by training data; FP is 
the number of incorrectly classified samples in the testing data within the low-risk range as determined by the 
training data; FN is the number of incorrectly classified samples in the testing data within the high-risk range as 
determined by the training data; TN is the number of correctly classified samples in the testing data within the 
low-risk range as determined by the training data.

Step 4. Evaluate the fitness functions of objectives.
Objective 1:
Objective 1 is the CCR (11), which is used to determine the proportion of correctly classified individuals. The 

CCR is computed using the TP ratio for cases and TN ratio for controls, where the maximum value indicates the 
optimal solution. Equation (11) is expressed as follows:

= . ×


 +

+
+



CCR TP

TP FN
TN

FP TN
0 5

(11)

where TP, FP, FN, and TN are computed using (10).
Objective 2:
Bush et al. used the NMI to evaluate MDR. NMI is a measure of information transmission based on Shannon 

entropy, interpreted as the proportion of information contained in the row variable transferred or transmitted 
to the column variable; more concisely, it is the amount by which the model reduces our uncertainty about the 
true state22. In the 2 × 2 contingency table, the row entropy H(x), column entropy H(y), and conditional entropy 
H(y|x) are defined as (12), (13), and (14), respectively, and expressed as follows:

∑= −H x p p( ) log
(12)i

i i2

∑= −H y p p( ) log
(13)j

j j2

∑ ∑| =







−









H y x p
p

p

p

p
( ) log

(14)i
i

j

ij

i

ij

i
2

where pi and pj are the frequencies of the predicted and true class states, respectively, and pij is the joint probability. 
Thus, NMI is calculated as follows:

=
− |

=

+ + + + + + + +

+ + − + + − + +

− + + − + +

+ + + + + +

− + + − + +

NMI H y H y x
H y

TP FN TN FP TP FN TN FP TP TP FN FN
TN TN FP FP TP FP TP FP TP FN TP FN
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( )

2{( )log ( ) log log
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( )log ( ) ( )log ( )}
2{( )log ( )

( )log ( ) ( )log ( )} (15)

2 2 2

2 2 2 2

2 2

2

2 2

where TP, FP, FN, and TN are computed using (10), with the maximum value indicating the optimal solution.
Step 5. Repeat steps 1–4 until all CV folds have been completed.
Step 6. Compute the averages of the CCR and NMI values in all CV folds.

Illustrative example of MODEMDR. The supplemental material in this paper provides an example of how 
MODEMDR works.

Parameter settings. The SNPRuler parameter is set to the default settings. The parameter “updateR-
atio” is set to 0.2, which is the step size used for updating a rule. MDR, DEMDR, and MODEMDR use 
the five-fold CV test. DEMDR and MODEMDR have the following four common parameters: popu-
lation size (pop-size), generation size (gen-size), scaling factor (F), and crossover constant (CR). For the 
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simulation datasets, the following values were set in all experiments: pop-size = 100, gen-size = 300, F = 0.5, 
and CR = 0.5. For the real datasets, the values were set as follows: pop-size = 500, gen-size = 1,000, F = 0.5, 
and CR = 0.5. The parameter settings were based on Price et al.31. For MODEMDR, the maximum size of the 
Pareto set is 20% of pop-size.

Ethnics Statements. The protocol for the study was approved by the Committee on Human Research at 
WTCCC using the Affymetrix GeneChip 500 K Mapping Array Set24 for data review. All experiments were per-
formed in accordance with WTCCC guidelines and regulations.
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