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The implications of dust ice nuclei 
effect on cloud top temperature in 
a complex mesoscale convective 
system
Rui Li1, Xue Dong1, Jingchao Guo1,2, Yunfei Fu1, Chun Zhao1,3, Yu Wang1 & Qilong Min4

Mineral dust is the most important natural source of atmospheric ice nuclei (IN) which may significantly 
mediate the properties of ice cloud through heterogeneous nucleation and lead to crucial impacts on 
hydrological and energy cycle. The potential dust IN effect on cloud top temperature (CTT) in a well-
developed mesoscale convective system (MCS) was studied using both satellite observations and cloud 
resolving model (CRM) simulations. We combined satellite observations from passive spectrometer, 
active cloud radar, lidar, and wind field simulations from CRM to identify the place where ice cloud 
mixed with dust particles. For given ice water path, the CTT of dust-mixed cloud is warmer than that in 
relatively pristine cloud. The probability distribution function (PDF) of CTT for dust-mixed clouds shifted 
to the warmer end and showed two peaks at about −45 °C and −25 °C. The PDF for relatively pristine 
cloud only show one peak at −55 °C. Cloud simulations with different microphysical schemes agreed 
well with each other and showed better agreement with satellite observations in pristine clouds, but 
they showed large discrepancies in dust-mixed clouds. Some microphysical schemes failed to predict 
the warm peak of CTT related to heterogeneous ice formation.

Since 1940s1 or earlier, laboratory experiments have been showing mineral dust particles, with varied miner-
alogy and size, can initialize ice nucleation at warmer temperatures and lower super saturations comparing to 
those required by pure water freezing2. The insoluble surface of mineral dust particle provides the solid-liquid 
interface needed for stabilizing newly formed ice embryos and thus enhances the heterogeneous freezing process 
in super-cooled water. In real atmosphere, at temperatures significantly warmer than ~−37 °C the threshold of 
homogeneous freezing, multiple types of ice phase clouds (e.g. altocumulus, cirrus, deep convective clouds and 
the associated stratiform clouds) were observed with co-existence of mineral dust particles3–8. Such ice nuclei 
(IN) effect in deep convective clouds may further lead to significant enhancement of latent heat releasing, which 
in turn causes atmospheric dynamic response to it. The enhanced deep convective clouds by dust may have 
higher rain top height and cloud top height9–11. However, such microphysical-thermodynamic-combined effects 
highly depend on cloud evolution stages12 and cloud types13–15. For clouds with relatively weaker dynamics (e.g. 
those formed in the outflow of convection core) and small to medium cloud water path (less than 300 g/m2), 
the cloud droplets without enough uplifting force to reach homogeneous freezing temperatures may glaciate 
under dust-laden condition rather than in liquid phase at the same height in pristine condition. In addition, the 
depletion of water vapor and super cool water at warmer temperatures reduces the occurrence of homogeneous 
nucleation16 at colder temperatures. The net effects of the above processes were a warming of cloud top temper-
ature (CTT) of such clouds, and the associated positive longwave radiation forcing can be as high as 16 w/m2 15.

However, large uncertainties existed in satellite observational studies of such IN effect. First, the contacting of 
aerosol and cloud is questionable if only passive satellite observations without vertical resolution were used (i.e. 
it is unknown if the aerosol plume beneath the cloud top really contacted with the cloud body or just overlapped 
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horizontally with it). Second, even if clouds and the aerosols did contact with each other, without the information 
of vertical updraft and horizontal wind, it is unknown whether or not aerosol particles really mixed with the cloud 
particles and were vertically transported to layers cold enough for ice formation. Since liquid water was necessary 
for ice formation even with enough IN17, the vertical transportation of dust and liquid cloud droplets from lower 
layer to upper layer is critical for the proposed IN effect. Thirdly, the CTT of ice clouds is controlled by both cloud 
dynamic effects and potential aerosol IN effects. It is almost impossible to untangle these two effects merely by 
using satellite observations18,19.

Current parameterizations of heterogeneous ice formation in cloud resolving model (CRM) such as Weather 
Research and Forecast (WRF) model are generally simple and do not link IN to aerosol properties. For example, 
the widely-used methods of Fletcher20, Cooper21, and Meyers22 relate IN number concentration to temperature 
and ice super-saturation, respectively. For any given temperature, those parameterized IN from different methods 
can encompass variations up to order of three in magnitude because of ignoring spatial and temporal variations 
in IN source particle type23. More observational evidences and model sensitivity studies are needed to quantify 
heterogeneous ice formation process with acceptable uncertainties.

In this study, we developed a satellite-CRM combined methodology to study the mineral dust IN effects on 
ice cloud top temperature and to assess the model sensitivity to different parameterizations. For possible case of 
cloud-dust interaction, we combined observations from satellite passive (e.g. the Moderate Resolution Imaging 
Spectroradiometer, MODIS on Aqua Satellite) and active sensors (e.g. Cloud-Aerosol Lidar with Orthogonal 
Polarization, CALIOP on CALIPSO satellite; Cloud Profiling Radar, CPR on CloudSat satellite) to obtain hori-
zontal and vertical distribution of cloud and dust aerosol to ensure the contacting between them at first. Then we 
conducted a simulation of the case using cloud resolving model (WRF) and compared the simulations to satellite 
observations. After confirming the simulations can capture the main properties of the system, we utilized the 
simulated three-dimensional (3D) wind field combined with the satellite observed 3D distribution of cloud and 
aerosol to ensure the mixing of cloud and aerosol. Via doing this, we minimized the error in classifying cloud 
samples truly mixed with dust. In addition, we studied the sensitivity of WRF simulations of CTT to different 
microphysical parameterizations, initial conditions and cumulus parameterizations.

Results
At 5:05 AM UTC on April 25, 2008, a typical case of dust-cloud interaction in Northeastern Asia was captured 
by Aqua, CALIPSO and CloudSat satellites in the A-train constellation24–26. High and thick deep convective 
clouds with widely spread ice clouds formed in this mid-latitude mesoscale convective system (MCS) with a clear 
comma structure indicating strong updraft and vorticity. The MODIS observed CTT (Fig. 1a) ranged from ~10 to 
−65 °C with cloud ice water path (CIWP) up to 2000 g/m2 in this system. Meanwhile, a massive dust storm orig-
inated from Gobi desert (refer to back trajectory analysis using NOAA HYSPLIT model in Fig. S1) invaded into 
this MCS following the large scale atmospheric circulation of typical cut-off low pressure pattern (Fig. S2). Strong 
spatial gradient of dust loading with greater coarse mode aerosol optical depth (AOD) to its western area than 
that to its eastern area provided a good opportunity to investigate the potential impacts of dust aerosol on cloud 
properties. Based on the horizontal distribution of cloud and AOD from MODIS (Fig. 2c), we divided the MCS 
into four sectors along anti-clockwise (marked from 1 to 4) direction including two relatively heavy dust loading 
(HD) sectors of No. 1 (AOD = 0.58) and 4(AOD = 0.78) and two relatively light dust loading (LD) sectors of No. 
2 (AOD = 0.41) and 3(AOD = 0.34). Based on the horizontal wind derived from the dust-free WRF simulation 
using Morrison microphysical scheme27 (WRF-MOR; Fig. 1d), the dust stream directly inserted into the two HD 
sectors but had relatively weaker mixing with the two LD sectors at the moment of satellite overpass. Accompany 
with the dust particles was the dry air mass indicated by lower relative humidity (Fig. 1d), which fed the cloud 
body in HD sectors at low and mid layers.

The 3D distribution of clouds and aerosols along the red curve in Fig. 1c (mainly in selected Sector 1 and 4) 
were detected simultaneously by spaceborn radar CloudSat/CPR (Fig. 2a) and lidar CALIPSO/CALIOP (Fig. 2b). 
From observations of CPR who has good penetrating capability of cloud, we found the clouds in sector 4 formed 
in the outflow from a deep convective system with cloud bottom close to surface. The cloud in Sector 1 had much 
higher cloud bottom at about 4 km. Meanwhile, the identification of cloud and dust and their detailed locations 
were made by CALIOP. It showed the dust layer in Sector 1 and 4 extending from surface to 6 km altitudes.

The WRF-MOR simulation (Figs 1d–f and 2c) successfully captured the major features of this MCS, includ-
ing the horizontal and vertical locations, the size of extent, the cloud water path, the CTT etc., comparing to 
the observations from CALIOP and CPR. We assumed the model simulated 3D wind field can be a reference to 
understand how the dust plume and the cloud were mixed. Those red arrows in Fig. 2 were added visually to indi-
cate the main airflows at the interfaces between clouds and dust plumes and inside the convection core.

For clouds in Sector 4, the dust located at 0–3 km altitude to its northwest horizontally (Fig. 2) converged into 
the cloud bottom with wind speed at 10–15 m/s. In addition, the dust located at 4–6 km altitudes to its south-
east also invaded into the cloud body at wind speed at 1–3 m/s. Both of these two “dust streams” met the strong 
updrafts (up to 8 m/s) in the convection core (centered at 121.39°E; 40.31°N) and were lifted up to high layer. It 
is very possible that cloud particles in sector 4 had strong mixing with dust particles based on the above observa-
tions and wind field analysis.

For clouds in Sector 1 without strong convection cores inside, the dust to its southwest extended from sur-
face to high altitudes (up to 5 km) and horizontally conveyed to the cloud bottom layer (4.0–5.0 km) with wind 
speed around 7 m/s (Fig. 2c). Since the updraft inside the cloud layer was very weak in this sector, the mixing 
between cloud particles and dust particles in this sector should be weak despite the surrounding heavy dust load-
ing (Fig. 1c). Therefore dust IN effect was expected to be much weaker in Sector 1 than that in Sector 4.

For given sector, it is not the ambient AOD that can solely determine the mixing between cloud particles and 
dust particles. We have to use the synthetic analysis of the 3D distribution of cloud, aerosol and wind field to find 
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the real case of cloud-aerosol interaction. In Fig. 1a, CTTs in the sectors No. 2 and 3 were generally colder than 
those in the sectors No. 1 and 4. This was firstly related to the stronger updrafts there reflected by the greater 
CIWP (Fig. 1b), because CTTs were negatively correlated to CIWP15. On the other hand, the water vapor at low 
and mid layers is also important to determine the cloud top height28. The invasion of dry air mass (yellow arrow in 

Figure 1. At 5:05 AM UTC on April 25, 2008: Horizontal distribution of (a) satellite observed cloud top 
temperature (K); (b) satellite observed cloud ice water path (kg/m2); (c) satellite observed coarse mode aerosol 
optical depth (black dots stand for locations of ice cloud, red curve stands for the nadir of the overpass of 
the A-train constellation) and (d) WRF-MOR model simulated horizontal wind field and relative humidity 
(%) at 500 hPa (with dry flow highlighted by the yellow arrow); (e) WRF-MOR model simulated cloud top 
temperature (K); (f) WRF-MOR model simulated cloud ice water path (kg/m2). Maps were created using NCAR 
Command Language (NCL, https://www.ncl.ucar.edu/) software version 6.2.0.

https://www.ncl.ucar.edu/
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Fig. 1d) may directly warm up the CTT in Sector 1 and 4 through thermodynamic mechanisms. In the following 
discussion, we only focus on ice clouds with CTT colder than −20 °C (to avoid the error of phase classification 
from MODIS) and CIWP less than 300 g/m2. These clouds covered most of our studying area.

Although there were common negative correlations between CIWP and CTT based on satellite observations 
(Fig. 3), the linear regression slope of CTT against log10CIWP was steeper in sectors No. 1 and 4 (Fig. 3a,d) than 
that in sectors No. 2 and 3 (Fig. 3b,c). In Sector 4 with AOD 0.78, the slope was as high as 20.90 °C per unit 
log10CIWP which was about 5 times steeper than the value (3.85) in Sector 2 with AOD 0.34. This remarkable 
difference was mainly contributed by the ice clouds with CTT warmer than −38 °C in Sector 4. It indicated that 
heterogeneous ice nucleation process made strong contribution to ice formation in Sector 4 and caused warmer 
CTT for given CIWP.

In the WRF-MOR simulation (Fig. 3e–h), the slopes in Sectors of 1, 2 and 3 were generally close to those from 
the satellite observation. However, in sectors 4, the WRF-MOR simulated slope (8.71 °C per unit log10CIWP) was 

Figure 2. The vertical cross-section along the red curve in Fig. 1c for (a) cloud water content (mg/m3) derived 
from CloudSat/CPR; (b) cloud and aerosol detected by CALIPSO/CALIOP and (c) WRF-MOR model 
simulated cloud water content (mg/m3) and 3D wind field (updraft velocity was multiplied by a factor of 5). Red 
arrows represent the prevailing air motion at different locations and heights.
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much smaller than that observed from the satellite (20.90 °C per unit log10 CIWP). This implies that WRF-MOR 
simulation can reasonably capture the CTT-CIWP relationship in light dust-laden conditions, but fail in heavy 
dust-laden conditions.

From the point of view of CTT statistics in each sector, the satellite observed Probability Distribution 
Functions (PDF) of CTT in this case were divided into two groups. The PDFs in Sectors 2 and 3 (red and blue in 
Fig. 4a) showed peaks around −55.5 °C, which is definitely contributed by homogeneous ice formation. The PDFs 
in Sectors 1 and 4 (black and magenta in Fig. 4a) showed peaks located at much warmer temperatures of −45 
to −40 °C. Remarkably, ice clouds in Sector 4 showed another “warm peak” of PDF around −25 °C, definitely 
contributed by heterogeneous ice formation. The mode of CTT in Sector 4 shifted about 12.2/17 °C (with/without 
counting the “warm peak” of PDF in sector 4) to the warmer end comparing to that in Sectors 2 and 3 (refer to 
Table S1).

Meanwhile, the WRF-MOR simulated PDFs of CTT (Fig. 4b) were also divided into two groups. The PDFs in 
Sector 2 and 3 were close to those in satellite observations with the mode of CTT around −58.5 °C (~3 °C colder 
than satellite observation). However, the simulated PDFs of CTT in Sector 1 and 4 were much colder than in 
satellite observations. Particularly, the observed CTT peaked around −25 °C in Sector 4 was completely missed 
by WRF-MOR simulation. Again, this is a strong evidence to show that the ice heterogenous parameterization 
in WRF-MOR can predict the PDF of CTT in relatively pristine ice clouds but cannot predict the behavior of ice 
clouds mixed with dust particles (i.e. those in Sector 4 in this case).

To investigate the sensitivity of CTT simulation to different microphysical parameterizations, we conducted 
four additional WRF simulations (WRF-Lin, WRF-WSM5, WRF-WSM6 and WRF-Goddard. Refer to Methods 
section.) of the same case shown in Fig. 4c–f. The results demonstrated that multiple WRF simulations matched 
the satellite observation the best in Sector 3 where the dust loading was the lowest. In sectors 1 and 2, the sim-
ulations of CTT at temperatures warmer than −37 °C (heterogeneous ice formation range) also matched the 
satellite observations well. Although the peaks of homogeneous ice formation in WRF simulations are about 5 °C 
colder than observations in sector 1 and 2, given the possible error of satellite retrieval (see later discussion), this 
difference is not significant. This confirmed that under light dust-laden condition, most ice formation parameter-
izations in WRF model can correctly represent the CTT of ice clouds with tolerable errors.

The largest discrepancies among multiple WRF simulations appeared in Sector 4. Compared to the satellite 
observations, at temperatures −20 to −40 °C, the WRF-MOR and WRF-Lin significantly underestimated the 
ice formation (very low PDF of CTT), while the WRF-WSM5, WRF-WSM6 and WRF-Goddard successfully 
simulated the peak of heterogeneous ice formation, but with some overestimations. This result implies that the 
ice formation parametrizations in WRF can lead to significant variations in the prediction of ice cloud properties 
at warm temperatures.

This MCS also was observed by another MODIS sensor on the Terra satellite about two hours in advance to 
the overpass of Aqua. However, we do not have associated observations from CloudSat and CALIPSO to iden-
tify the vertical distribution of cloud and aerosol at the overpass time of Terra. Following the same definition of 
Sectors 1 to 4, results (Fig. S4) from Terra observations were generally consistent with those mentioned above. 
The mode of CTT in the Sector 4 was about 12.5 °C warmer than that in the Sectors 2 and 3 based on Terra 
MODIS observations, while the WRF-MOR dust-free simulation showed the mode of CTT in Sector 4 was just 8 
°C warmer than that in Sectors 2 and 3.

Figure 3. Scatter plots between CTT and cloud ice water path (CIWP, 5–300 g/m2, in logarithm scale) in 
selected Sector of 1, 2, 3, 4 (from left to right) based on satellite observations (upper row) and WRF-MOR 
simulations (lower row).
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Both the satellite observations as well as the model results used in this study were obtained with high uncer-
tainty. The cloud top temperature from MODIS was generated using the CO2 slicing algorithm. At satellite pixel 
level, the cloud top height (CTH) derived form MODIS for cirrus clouds can be 1–2 km lower (i.e 6–12 °C of 
CTT) than that from CALIPSO/CALIOP. For thick water clouds, the retrieved CTH from MODIS is within 
0.25 km (~1.5 °C of CTT) of the Cloudsat/CPR backscatter determinations29. For our case, the ice clouds were 
related to a deep convective system, and therefore the instantaneous error of CTT form MODIS retrieval should 
be less than that for cirrus cloud but larger than that for water clouds.

The uncertainties in WRF modeling can come from different sources. The uncertainties related to micro-
physical parameterizations have been discussed already. To make assessment of WRF uncertainties from other 
sources, we further conducted 4 simulations under different initial conditions (two additional types) and cumulus 

Figure 4. The Probability Distribution Functions (PDFs) of cloud top temperature (CTT) in the heavy 
dust-loading and light dust-loading sectors derived from (a) Aqua observations; (b) WRF simulations using 
Morrison scheme and (c–f) the comparison between satellite observation (dashed) against multiple WRF 
simulations with different microphysical assumptions in each selected sector of 1–4. Only ice clouds with ice 
water path 5–300 g/m2 were included.
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parameterizations (two additional types, refer to method). At the resolution of 2 km, the standard deviation (σ) 
of WRF modeled CTT due to different initial conditions (e.g. NCEP FNL against ERA) is overall 3.58–9.26 °C 
(Fig. S6). The σ due to different schemes of cumulus parameterizations is 0.77–4.51 °C (Fig. S7). At this resolution, 
large deviations come from mismatch of individual cloud pixels predicted by different simulations.

If look at the statistics of CTT at each sector, the sensitivity of modeled CTT to different initial conditions 
led to some small variations in the CTT PDFs (Fig. 5a–d). None of the two additional simulations captured the 
warm peak at ~25 °C in sector 4 observed by Aqua MODIS. In addition, the sensitivity of modeled CTT to dif-
ferent cumulus parameterization is very small (Fig. 5e–h). This is due to the fact that cumulus parameterization 
is only applied to the outer one nested domain (with resolution of 18 km) so it actually only slightly affected the 
boundary condition of the inner domain (with resolution of 2 km). The associated results related to Terra MODIS 
observations are shown in Fig. S5.

Discussions
The effects of dust aerosol acting as ice nuclei on cloud properties is still an open question. Although both 
ground-based and satellite-based observations showed some hints, large uncertainties existed in the data pro-
cessing and methodology applied. In this study, we first designed a strict satellite data collocation methodology 
which combined active cloud radar, LIDAR and passive spectrometer observations to obtain the 3D distribution 
of cloud and dust. More important, we adopted 3D wind filed derived from cloud resolving modeling to clar-
ify the transportation of aerosol, and to identify the place where the mixing between aerosol and cloud really 
occurred. We found in a mid-latitude mesoscale convective system, when ice cloud particles were mixed with 
dust, the linear regression slope of CTT against log10CIWP was about 5 times steeper than the value in relatively 
pristine ice clouds. In another word, for given ice water path, the CTT is warmer in dust-mixed ice clouds. And 
there were two peaks in the PDF of CTT in dust-mixed ice cloud, one is at about −45 °C, and the other is at about 
−25 °C, which definitely was contributed by heterogeneous nucleation. For pristine ice cloud, only one peak at 
−55 °C was observed.

The mechanism of heterogeneous ice formation remains one of the biggest challenges in cloud modeling. 
Through this study, the WRF simulation of ice cloud CTT is most sensitive to microphysical parametrizations, 
followed by the initial conditions. And cumulus parameterizations applied in the outer domain makes no effects 
on the simulation.

Overall, WRF simulations with different microphysical schemes agreed well with each other and showed 
better agreement with satellite observation in pristine ice clouds. However, for the ice cloud mixed with dust, the 
Morrison schemes failed to capture the slope of CTT-log10CIWP, and it completely missed the warm peak of CTT 
PDF at −25 °C. Meanwhile, the MSM5/6 and Goddard microphysical schemes successfully predicted this warm 
peak even with some overestimations. It demonstrated those microphysical parameterizations without taking 
into account the concentration of IN source aerosol (e.g. dust) may yield to large uncertainty in simulations and 
cannot explain the satellite observations.

Methods
MODIS standard products of MYD/MOD0430 for aerosol optical depth and MYD/MOD0631 for cloud properties 
at resolution of 5 km were used in this study. The standard products 2B-CWC-RO of CPR cloud water content 
retrieval we used is based on Austin and Stephens32. The vertical mask features of dust and cloud retrieved from 
CALIOP/CALIPSO are based on the standard product of 33.

Figure 5. The Probability Distribution Functions (PDFs) of cloud top temperature (CTT) observed from Aqua 
and those simulated by WRF model with (a–d) different initial conditions and (e–h) with different cumulus 
parameterizations in selected sector of 1–4. Only ice clouds with ice water path 5–300 g/m2 were included.
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In this study, the Advance Research WRF model Version 3.4 was used to conduct cloud simulations without 
considering any dust aerosol effect. There were 55 vertical levels (250 m vertical resolution below 5 km altitude) 
and three nested horizontal domains with horizontal resolutions of 18, 6, and 2 km respectively in each simu-
lation. The model was forced by the NCEP FNL (Final) Operational Global Analyses data with 1° by 1° spatial 
resolution and 6-hour temporal resolution. The outputs were saved at 30 minute intervals and the results from the 
first 24 hours were excluded to avoid spin-up errors. The Kain-Fritsch cumulus scheme34, the RRTM longwave 
radiation transfer scheme35, the Dudhia shortwave radiation transfer scheme36, and the YSU planetary boundary 
layer scheme37 were used in the simulation.

To investigate the sensitivity of WRF simulations to different microphysical parameterizations, we first used 
Morrison (WRF-MOR) and then used LIN38, WSM639, WSM540, and Goddard41 schemes to represent the mode-
ling uncertainty with the standard deviation among them.

To investigate the sensitivity of WRF simulations to different initial conditions, we changed the data source 
of initial condition in the WRF-MOR simulation from NCEP FNL to ERA-Interim42 and MERRA43 reanaly-
sis datasets. The associated simulations are marked as FNL-Morrison, ERA-Morrison and MERRA-Morrison, 
respectively.

To investigate the sensitivity of WRF simulations to different cumulus parameterizations, we changed the 
cumulus scheme in the WRF-MOR simulation from Kain-Fritsch scheme34 to Betts-Miller-Janjic scheme44 
and Grell-Devenyi scheme45. The associated simulations are marked as Morrison-KF, Morrison-BMJ and 
Morrison-GD, respectively.
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