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1, 25(OH)2 D3 Induces Reactivation 
and Death of Kaposi’s Sarcoma-
Associated Herpesvirus of Primary 
Effusion Lymphoma cells
Amit Kumar1, Suchitra Mohanty1, Piyanki Das3, Sushil Kumar Sahu1, Shanmugam 
Rajasubramaniam2 & Tathagata Choudhuri3

Kaposi’s sarcoma associated herpesvirus (KSHV) a gammaherpesvirus establishes perennial latency 
in the host with periodic reactivation. Occasionally change in the physiological condition like hypoxia, 
host cell differentiation can trigger the lytic switch and reactivation of the virus. The biologically 
active form of 1, 25(OH)2 D3 plays a critical role in the regulation of various physiological processes 
(e.g. regulation of mineral homeostasis and control of bone metabolism). Apart from its role in host 
physiology, 1, 25(OH)2 D3 has been implicated as a potential agent for the prevention and/or treatment 
of many a tumors. Here we show that 1, 25(OH)2 D3 induces both death of Kaposi sarcoma associated 
herpesvirus infected PEL cells and KSHV replication. 1, 25(OH)2 D3 mediated inhibition of proliferation 
was associated with apoptosis of the PEL cells, and virus reactivation. In addition, p38 signalling is 
required for KSHV reactivation. Furthermore, treatment of PEL cells with p38 inhibitor abrogated the 
expression of ORF57, thus blocking lytic switch. Furthermore, silencing of VDR resulted in reduced 
ORF57 expression compared to the control cells, signifying the potential role of 1, 25(OH)2 D3 in KSHV 
reactivation. Thus, our studies have revealed a novel role of 1, 25(OH)2 D3 in the regulation of KSHV 
reactivation and PEL cell death.

Kaposi’s sarcoma associated herpesvirus (KSHV) is a DNA tumor viruses belonging to a member of gammaher-
pesvirus family and is associated with Kaposi sarcoma (KS), Primary effusion lymphoma (PEL) and a subtype of 
multicentric castleman disease (MCD)1–4. KSHV like other herpesvirus exhibits two different life cycles, latent 
and lytic. During latent infection, only a subset of genes are expressed, which enable KSHV to evade immune 
system and promote viral persistence5–7. While lytic cycle, lytic proteins are expressed in an ordered cascade to 
produce virons for their efficient propagation and transmission8,9. Studying induction of lytic switch provides an 
opportunity to understand the infection and pathogenesis of KSHV associated diseases. The switch from latent to 
lytic replication is an active area of research and has contributed to a large extent information about the cellular 
factors with possible roles in reactivation mechanisms. However the regulation of KSHV pathogenesis by meta-
bolic pathways is still only sparsely understood.

Primary effusion lymphoma (PEL) is a rare HIV-associated non-Hodgkin’s lymphoma (NHL), resembles a 
transformed post-germinal center (GC) B cell10–12. PEL typically presents with lymphomatous body cavity effu-
sions in the absence of solid tumor masses harbouring KSHV episomes and arise preferentially within the pleural 
or peritoneal cavities of approximately 4% of all HIV associated NHLs13–15. KSHV infection of PEL cell is pre-
dominantly latent, which makes PEL cells an ideal cell lines to study two phases of its life cycle16. Therapeutic 
induction of virus replication is necessary to target and eliminate KSHV associated tumor cells. Earlier studies 
have attempted induction of KSHV reactivation with a different compounds or drugs17–19.

Vitamin D3 was originally identified as a key regulator of bone metabolism and calcium homeostasis20. Most 
of the biological action of 1, 25(OH)2 D3 are exerted through nuclear receptor vitamin D receptor (VDR)21. Apart 
from bone metabolism and calcium homeostasis, 1, 25(OH)2 D3 has been shown to be involved in the control 
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of angiogenesis, apoptosis, Immunomodulation, growth and differentiation of many cell types, including lym-
phoma cells22–26. VDR expression is reported in many cancers types including breast, prostrate, pancreas, colon, 
leukaemia’s and lymphomas27–32. Exposure of these cells to 1, 25(OH)2 D3 induces apoptosis in cells. However, 
studies are lacking on the role of 1, 25(OH)2 D3 in viral pathogenesis, only very few studies have indicated that 
vitamin D3 deficiency may confer increased risk of influenza and respiratory tract infection33,34. In vitro studies 
have demonstrated the effect of 1, 25(OH)2 D3 in susceptibility and control of HIV infection35. Furthermore, 
pre-treatment of human monoblastoid U937 cell line and monocyte derived macrophages in cell culture model of 
HIV infection have demonstrated anti-viral effects36. However, the underlying mechanism or pathways involving 
these functions is unclear, due to varied activities and functions. In addition, it remains to be identified whether 
1, 25(OH)2 D3 is protective or pathogenic in cases of viral infection.

Effect of 1, 25(OH)2 D3 on downregulation of NF-κB pathway in endothelial cells transformed by Kaposi sar-
coma associated herpes virus G protein coupled receptor is known37. Further, it has been shown that 1, 25(OH)2 
D3 also has anti-proliferative effect on KSHV GPCR transformed endothelial cells38. Gene expression profiling of 
PEL cells have demonstrated that VDR is highly expressed in PEL cells as compared to normal B and T cell lym-
phoma and their sensitivity to vitamin D analogue EB1089, implicates a role for VDR in KSHV pathogenesis11. In 
view of these facts, the current investigations were taken up to dissect the mechanism (s) of action of 1, 25(OH)2 
D3 on PEL cells, in particular its effect on apoptosis and reactivation.

Material and Methods
Cells and Reagents. PEL cells (JSC-1 and HBL-6) were kindly provided by Erle Robertson (University of 
Pennsylvania). These cells were cultured in RPMI 1640 supplemented with 10% foetal bovine serum glutamine 
(300 mg/mL) and streptomycin (100 mg/mL) and penicillin (100 U/mL) under 5% CO2 at 37 °C. 1, 25(OH)2 D3 
was purchased from Sigma-Aldrich and was reconstituted in 90% ethanol and stored at −80 °C in an inert atmos-
phere in the dark. In all experiments, equal amount of 90% ethanol were added to control cultures. Pan caspase 
inhibitor Z-VAD-FMK was purchased from R&D system. FITC annexin V apoptosis detection kit was purchased 
from BD Biosciences, SB203580 (p38 inhibitor) and PD98059 (ERK inhibitor) were purchased from InvivoGen, 
phorbol 12-myristate 13-acetate, sodium Butyrate and MTT reagent were purchased from Sigma-Aldrich.

Cell viability assay. All cells were plated in 96 well culture plate in complete medium at a density of 5 × 104 
cells per well and treated with or without increasing concentration of 1, 25(OH)2 D3(10, 50, 100, 200 nM). The 
plates were incubated at 37 °C, 5% CO2, for 24, 48 and 72 hours, respectively. Then, MTT solution (10 μL) for a 
total volume of 100 μL was added in every well and incubated for 4 hours at 37 °C with 5% CO2. Subsequently, 
MTT-containing medium was removed gently and replaced with DMSO (100 μL per well) and absorbance was 
obtained at 570 nm on a microtiter plate reader.

shRNA mediated VDR knockdown. To knock down VDR expression, two validated lentiviral constructs 
expressing small hairpin RNA (shRNA) sequences to targeting 2 different regions of the human VDR transcript 
were used. The constructs were obtained from (Sigma-Aldrich). Details of the clones and target sequences are 
given in Table 1. Lentiviral particles were prepared using standard protocols, resuspended in serum-free media 
and used to transduce JSC-1 cells. After 48 h, stably transduced cells were selected for puromycin resistance 
(2.5 μg/mL) for 20 days.

Quantitative Real Time RT-PCR (qRT-PCR). Total RNA was extracted from cells using TRIzol reagent 
(Invitrogen, Life Technologies, USA) as per manufacturer’s instruction, followed by treatment with DNase 1. One 
microgram total RNA was reverse transcribed using cDNA synthesis kit (Thermo Fischer, USA). Syber green 

TRC clone ID Target sequence
Location on VDR 
transcript (GI: 340202)

TRCN0000019505 GTCATCATGTTGCGCTCCAAT 923–943

TRCN0000019506 CCTCCAGTTCGTGTGAATGAT 578–598

Table 1. Short-hairpin RNA clones used to silence VDR function.

ORF57
F-5′-TGGACATTATGAAGGGCATCC-3′

R-5′-CGGGTTCGGACAATTGCT-3′

RTA
F-5′-CAGACGGTGTCAGTCAAGGC-3′

R-5′-ACATGACGTCAGGAAAGAGC-3′

LANA
F-5′-CATACGAACTCCAGGTCTGTG-3′

R-5′-GGTGGAAGAGCCCATAATCT-3′

K8.1
F-5′-AAAGCGTCCAGGCCACCACAGA-3′

R-5′-GGCAGAAAATGGCACACGGTTAC-3′

GAPDH
F-5′-CCACATCGCTGAGACACCAT-3′

R-5′-TTCCCGTTCTCAGCCTTGAC-3′

Table 2. List of qRT-PCR primers.
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PCR was performed using primer specific for KSHV ORF57, RTA and the human GAPDH gene. Sequence of 
primers are mentioned in Table 2.

Cell death assay using flowcytometry. JSC-1 and HBL-6 cell were treated with 10 nM of 1, 25(OH)2 
D3 for 48hr. The cells were harvested and the percentage of cells undergoing apoptosis was measured by flow 
cytometry after staining with fluorescein-conjugated Annexin V and propidium iodide (BD Pharmingen, USA), 
according to the manufacturer’s recommendation The effect of 1, 25(OH)2 D3 (24 h post treatment) in presence 
or absence of Z-VAD-fmk was examined. The stained cells were acquired using BD LSRFortessa and analysed 
with BD FACS Diva software.

Western blot analysis. Cells were lysed in modified RIPA buffer containing 150 mM NaCl, 1% NP-40, 
50 mM Tris-HCl (pH 8), 0.5% deoxycholic acid, 0.1% SDS, 1% Triton X-100, protease and phosphatase inhibitors. 
Lysates were placed on ice for 45 minutes and then clarified by centrifugation. Supernatants were removed and 
total protein measured by Bradford assay. Forty microgram of protein lysate per lane was electrophoresed on 12% 
SDS-PAGE and transferred to nitrocellulose membranes. The membranes were blocked for 1 h in TBST blocking 
solution, containing 5% bovine serum albumin and then incubated with a primary antibody overnight at 4 °C. The 
membranes were washed at least 3 times with each wash for 10 min with washing solution (TBS and 0.1% Tween 
20) and incubated for 45 min with appropriate horseradish peroxidase-conjugated secondary antibodies. The 
washed membranes were developed using ECL Blotting Substrate (Thermo Scientific). The β-actin,VDR, ORF57, 
K8α and ERK antibodies were purchased from Santa Cruz Biotechnology. The phospho-p38 mitogen-activated 
protein kinase (MAPK), LANA and caspase-3 antibodies were purchased from Imgenex.

Viral Load Assay. For intracellular Viral load assay, DNA was isolated using Gene elute mammalian genomic 
DNA isolation kit according to manufacturer’s instructions (Sigma-Aldrich) and KSHV replication was deter-
mined by qPCR using SYBR green PCR master mix (Agilent technology, USA). KSHV ORF57 gene expression 

Figure 1. 1, 25(OH)2 D3 induced loss of viability in PEL cell lines. (A) JSC-1, HBL-6 and DG-75 were treated 
for 48 h with different 1, 25(OH) 2 D3 concentrations (10, 50,100,150 and 200 nM) or (B) for different times (24, 
48 and 72 h) with 10 nM of 1, 25(OH)2 D3, and cell viability was measured by MTT assays. The data shown here 
are representative of 3 independent experiments. Error bars indicate standard deviations. (C) JSC-1, HBL-6 and 
DG-75 cells were assessed for expression of vitamin D receptor by immunofluorescent flow cytometric assay.
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compared to vehicle controls. KSHV ORF57 gene expression was compared to vehicle controls. The qPCR reac-
tions were carried out using LC480 machine (Roche life science, USA). Relative fold expressions were determined 
by the ∆∆CT method39.

KSHV infection assay. JSC-1 cells were treated with 1, 25(OH)2 D3, vehicle, or TPA for 48 h. Supernatants 
were harvested and added to confluent monolayers of uninfected 293 cells in a 24 well dish. Polybrene (8 µg/
mL) was added to each well and the plate was spinoculated at 2500 rpm for 2 h at 26 °C as previously described40. 
Ninety-six hours post-infection, intracellular viral loaded was determined by real time PCR. Furthermore, infec-
tion was validated by checking the expression of LANA by western blot.

Results
Antiproliferative effect of 1, 25(OH)2 D3 in PEL cell lines. The demonstration of VDR expression in 
diverse tumors and cancers has emphasized that the effect of 1, 25(OH)2 D3 is not limited to VDR expression 
only but also display a range of antiproliferative activities. JSC-1, HBL-6 and DG-75 cells were exposed to differ-
ent 1, 25(OH)2 D3 concentrations, (0 to 200 nM), for 48 h and cell viability was tested. 1, 25(OH)2 D3 induced 
a dose-dependent loss of viability in JSC-1 and HBL-6 PEL cells as compared to control cells DG-75 (Fig. 1A). 
A time-kinetic investigation showed that 1, 25(OH)2 D3 treatments (10 nM) increased cell death between 24 
and 48 h in PEL cell lines but not in DG-75cells (Fig. 1B). In general, JSC-1 cells showed higher sensitivity to 1, 
25(OH)2 D3 as compared to HBL-6 cells. This varied sensitivity to the 1, 25(OH)2 D3 treatment correlated to the 
level of VDR expression (Fig. 1C). The expression of VDR was slightly upregulated by treatment with 1, 25(OH)2 
D3. Flowcytometry showed higher VDR expression in JSC-1 and DG-75 cells with 1, 25(OH)2 D3 (Fig. 1C). In 
contrast, VDR levels were lower in HBL-6 cells (Fig. 1C). Collectively, the above data shows that the PEL derived 
cell lines are remarkably sensitive to 1, 25(OH)2 D3 induced growth inhibition.

1, 25(OH)2 D3 induces caspase-3 dependent cell apoptosis. To determine whether the inhibitory 
effects of 1, 25(OH)2 D3 on viability was associated with the induction of apoptosis, we evaluated the percent-
age of apoptotic cells by annexinV/PI staining. 1, 25(OH)2 D3 treated JSC-1 cells showed significantly higher 
percentage of apoptotic cell after 48 h (Fig. 2A). On the other hand, HBL-6 did not show any significant change 
in apoptosis (Fig. 2A). Simultaneously we also evaluated the effect of 1, 25(OH)2 D3 on the expression of pro 
and anti-apoptotic proteins. Significant increase in the cleaved PARP and caspase-3 was observed in JSC-1 cells 
(Fig. 2B). However, only a modest change in the level of these proteins was found in HBL-6 cells (Fig. 2C) indi-
cating higher sensitivity of JSC-1 cells to 1, 25(OH)2 D3. Thus suggesting that VDR contributes to the cellular 
apoptosis induced by 1, 25(OH)2 D3 in PEL cells. Further to prove the involvement of caspases in 1, 25(OH)2 D3 
induced cell death pan-caspase inhibitor Z-VAD-FMK was used. Pan Caspase inhibitor Z-VAD-FMK completely 
repressed cellular death as evidenced by reversal of capspase-3 and cleaved PARP to the basal levels (Fig. 3A and 
B). Treatment of cells with z-VAD-FMK efficiently blocked cleavage of PARP-1 and Caspase-3 in 1, 25(OH)2 D3 

Figure 2. 1, 25(OH)2 D3 induces apoptosis of PEL cells. PEL cells were cultured in the presence or absence of 
1, 25(OH)2 D3 (10 nM). (A) After 48 h in culture, cells were washed and stained with Annexin V and PI and 
analyzed by flow cytometry. The numbers in the lower right quadrant represent the percent of apoptotic cells in 
culture. (B and C). Cleaved caspase-3, and cleaved PARP expressions were detected by Western blot in JSC-1 
and HBL-6 cells after treatment with 1, 25(OH)2 D3. β-actin was used to normalize protein loading.
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treated JSC-1 and HBL-6 cells. Importantly however, it did not prevent expression of lytic protein ORF57 and 
K8.1 in 1, 25(OH)2 D3 treated cells (Fig. 3C and D).

1, 25(OH)2 D3 induces lytic gene expression and virus production in KSHV infected PEL cell 
lines. To determine whether VDR activation induces expression of KSHV lytic genes and virus production 
in 1, 25(OH)2 D3 treated PEL cells, JSC-1 and HBL-6 cells were treated with cognate 1, 25(OH)2 D3 for 48 h 
and monitored for the expression of LANA, RTA, ORF57 and K8.1. Significant increase in RTA, ORF57 and 
K8.1 were observed upon addition of 1, 25(OH)2 D3 (Fig. 4A and B). We then tested whether the increase in 
the expression of lytic genes also correlated to progeny virus production. For this latently infected JSC-1 cells 
were used, wherein cell-free virus was isolated from JSC-1 supernatants 2 days post 1, 25(OH)2 D3 treatment,.
Viral DNA was extracted, and viral genome copy number determined by qPCR(4D,E and F). Figure 4G clearly 
demonstrates that 1, 25(OH)2 D3 induced virus production when compared to the controls. However, KSHV 
reactivation was comparatively lower in 1, 25(OH)2 D3 treatment than in the positive control, TPA (Fig. 4G). To 
validate further, a time course treatment of JSC-1 and HBL-6 cells with 1, 25(OH)2 D3 or a combination of both 
TPA and sodium butyrate (NaB) as a potent positive control for KSHV reactivation was performed [0,6,12,24,36 
and 48 h] (Fig. 4C). Immunobloting, for expression of ORF57 and K8α showed lytic replication at the 24 h and 
36 h with peak activation at 24 h (Fig. 4C). These results indicate that 1, 25(OH)2 D3 induces expression of lytic 
genes and progeny virus production.

Figure 3. Effects of caspases inhibition by Z-VAD-FMK on apoptosis in PEL cells. JSC-1 cells were pre-treated 
with the caspase inhibitor Z-VAD-FMK (20 µM) for 2 h, followed by treatment with 10 nM 1, 25(OH)2 D3 
for 24 h. (A) Cells were stained with Annexin V/PI, and apoptosis was determined using flow cytometry. 
Values for cells treated with DIM and Z-VAD-FMK were significantly reduced as compared to treatment with 
1, 25(OH)2 D3 alone. Total protein extracts were prepared and subjected to Western blot assay for cleaved 
PARP and cleaved caspase-3 (B). Cell lysates collected 24 h after induction with the 1, 25(OH)2 D3 (10 nm) 
were immunoblotted with anti-ORF57 and anti K8.1 antibody. Effect of Caspase inhibitor on the expression of 
ORF57 or K8.1 in cells treated with 1, 25(OH)2 D3 alone or both 1, 25(OH)2 D3 and Z-VAD-FMK (C and D). 
β-actin was used to normaliz protein loading.
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1, 25(OH)2 D3 activates KSHV replication involving MAPK signalling pathway. To gain insights 
into the mechanism underlying the role of 1, 25(OH)2 D3 in the induction of reactivation, we explored cellular 
signalling pathways that may mediate KSHV reactivation downstream of VDR signalling. Previous studies have 
shown that the mitogen-activated protein kinase (MAPK) signalling pathways play important roles in KSHV 
reactivation induced by phorbol esters, Ras and oxidative stress41–44. We therefore examined whether MAPK sig-
nalling is required for KSHV reactivation induced by 1, 25(OH)2 D3. PD 98059, a specific inhibitor of ERK, and 
SB 203580, a specific inhibitor of p38 MAPK, significantly inhibited KSHV reactivation induced by 1, 25(OH)2 
D3, as indicated ORF57 protein levels (Fig. 5B). In contrast, the JNK inhibitor SP 600125 did not significantly 
affect KSHV reactivation induced by 1, 25(OH)2 D3 (Fig. 5B). Since 1, 25(OH)2 D3 upregulated RTA transcrip-
tion (Fig. 4A and B), we further tested whether ERK or p38 signaling is involved in this upregulation. Both PD 

Figure 4. 1, 25(OH)2 D3 induces viral lytic gene expression in KSHV-infected PEL cells. JSC-1 (A) and HBL-6 
(B) cells were treated with either 1, 25(OH)2 D3 (10 mM), or vehicle for 48 h, then viral latent (LANA) and 
lytic gene (RTA, K8.1, ORF57) transcripts were quantified using qRT-PCR. Error bars represent the S.E.M for 
three independent experiments. (C) JSC-1 and HBL-6 cells were treated as above and TPA (20 ng/mL used as 
positive control) and then the expression of viral lytic protein K8.1 and ORF57 was checked by western blotting. 
β actin was used as loading control. (D) Standard curves for the quantification of Viral DNA (KSHV), Dilution 
series containing between 101 and 109 copies of LANA plasmid were used as quantification standards. (E and 
F) Absolute copy numbers of viral DNA derived from standard curve was plotted for controls and 1, 25(OH)2 
D3 treated JSC-1 and HBl-6 cells (G) JSC-1 cells were treated by vehicle, 1, 25(OH)2 D3 (10 mM), and TPA 
(20 ng/mL as a positive control), respectively, for 48 h, then the virions were collected as described in Methods, 
followed by infection of 293 cells. LANA transcripts from each group were quantified by qRT-PCR. Error bars 
represent the S.E.M. for 3 independent experiments.
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98059 and SB 203580 inhibited RTA upregulation but not SP 600125 (Fig. 5C). Thus, ERK and p38 signalling are 
involved in the upregulation of RTA and KSHV reactivation downstream of VDR signalling.

Effect of VDR knockdown on 1, 25(OH)2 D3 mediated KSHV Reactivation. To further confirm 
the role of VDR in KSHV reactivation, we also used lentiviral shVDR, a plasmid that express short hairpin RNA 
(shRNA) targeting VDR, to examine the effect of VDR depletion on KSHV reactivation. Table 1 shows the 2 
shRNA constructs targeting 2 discrete regions of the human VDR transcript. We selected transfected cells with 
puromycin resistance gene to obtain stably transduced cells JSC-1-VDRKO. VDR knock-down JSC-1 cells were 
used in 1, 25(OH)2 D3 reactivation assays. Viral reactivation was measured by western analysis for the lytic pro-
tein, ORF-57. The control cell line, pTRCJSC-1 showed significant reactivation with 1, 25(OH)2 D3 (Fig. 6D) as 
compared VDR knockdown cells. Notably, all knock-down cell lines were responsive to lytic reactivation by TPA, 
and showed significant reactivation (Fig. 6D). In summary, VDR knock-down lowers 1, 25(OH)2 D3 induced 
viral reactivation.

Figure 5. Induction of MAPK signalling by 1, 25(OH)2 D3. 1, 25(OH)2 D3 induces MAPK signalling pathway 
in PEL cells. (A) Western blotting with anti-phospho-p38, p-JNK,and anti p-ERK and anti β-actin antibodies 
of cell lysates of JSC-1 and HBL-6 cells treated with 10 nM D3 for 0 to 48hr showed phosphorylation of p-38 
and induction of MAPK activity. (B) Cells were induced with 1, 25(OH)2 D3 in the presence of inhibitor of p38 
(SB203580), ERK (PD98059) and JNK (SP600125), and analysed for the expression of ORF57 protein at 24 h. 
(C) Total RNA was extracted and subjected to qRT-PCR with the indicated primers to examine RTA expression 
in JSC-1 and HBL-6 cells. All the experiments were carried out three times, each with three replicates.
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Discussion
In summary, we report here compelling evidence to KSHV reactivation through VDR signalling. VDR mediated 
reactivation from latency offers a paradigm for how KSHV may initiate lytic replication in vivo. The mechanisms 
controlling KSHV latncy and lytic replication are complex. Whether KSHV undergoes latent or lytic replication 
might depend on diverse factors including: the status of cellular signalling pathways, cell cycle, extracellular fac-
tors, cell types, stages of viral infection, and viral regulatory factors, and susceptibility to disease development45–51. 
Understanding the key cellular and molecular basis of KSHV latency and reactivation may provide newer control 
stategies. In this report, we demonstrate the involvement of VDR-dependent signal transduction in KSHV reac-
tivation in latently infected cells.

The present work dissects the action of 1, 25(OH)2 D3 in PEL cells. Vitamin D receptor belongs to the superfam-
ily of steroid receptors, which act as ligand dependent transcription factor. It is reported that VDR is constitutively 
expressed in primary effusion lymphoma B cells at high levels11,52. It has been previously demonstrated that active 
form of 1, 25(OH)2 D3 promotes growth inhibition in lymphocytes and in a variety of human cancer cell lines53–57. 
PEL cell line used in this study responds robustly to 1, 25(OH)2 D3 during a 48 h treatment period (Fig. 1). We 
observed strong growth inhibition at early time point from 24 h. However, this response was lost with incubation 
beyond 72 hours in JSC-1 cells (Fig. 1A). In contrast, a delayed response was noted in HBL-6 cells and growth 
inhibition starts 72 h post treatment (Fig. 1B). On the other hand, DG-75 cells showed no inhibition. Difference in 
sensitivity of these (PEL) cells to ligand may be due to the difference in receptor expression (Fig. 1C).

Reduction in growth, proliferation and induction of apoptosis are likely to cause Herpes virus reactivation58–60. 
Previous studies have shown that two seemingly conflicting phenotypes of KSHV reactivation and the death of 
PEL cells occur simultaneously43. Notably, 1, 25(OH)2 D3 mediated inhibition of proliferation was associated 
with apoptosis of the PEL cells (Fig. 2). On the other hand, the reactivation of PEL cells observed (expression 
of lytic transcripts ORF57 and K8.1) was not affected by pan caspase inhibitor (Fig. 3C and D) although it was 
able to suppress apoptosis (Fig. 3A), clearly indicating that these two actions are independent of each other. Even 
though the extent of reactivation by 1, 25(OH)2 D3 is comparatively lower than those caused by strong inducers, 
such as TPA. More importantly, unlike TPA and butyrate, 1, 25(OH)2 D3 is a natural product of cellular metab-
olism and plays a critical role in several physiological and pathological conditions. It is likely that 1, 25(OH)2 D3 
may play a pivotal role in regulation and equilibrium between latent and lytic replication in PEL cells. Thus, our 
findings elucidate one of the possible mechanisms for the pathogenesis and reactivation associated with KSHV 
infection. To identify the mechanisms of reactivation of KSHV in PEL cells, several different signalling pathways 
have been investigated. Several authors have shown the involvement of MAPK pathways in 1, 25(OH)2 D3 treated 
cells. MAPK p38 has been shown to be involved skeletal and intestinal cells, thereby affecting cell cycle, growth 
and differentiation61,62. Previous reports have also shown the involvement of MAPK pathways in KSHV lytic 

Figure 6. VDR knockdown inhibits KSHV reactivation. JSC-1 cells were transduced with lentiviral particles 
containing either scrambled shRNA or shRNAs directed against the human VDR transcript. (A) Western blot 
analysis of stably transduced cells shows near complete absence of VDR protein in JSC-1 cells. (B and C) Cell 
apoptosis was significantly decreased in JSC-1 cells with VDR knockdown as compared to control shRNA 
transduced cells. (D) Western blotting with anti caspase-3, anti ORF57 and β-actin antibodies of cell lysates 
of JSC-1 VDR KO cell line and JSC-1 Ctrl treated with 10 nM of 1, 25(OH)2 D3 and 20 ng/ml of TPA used as 
positive control.
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replication during productive primary infection and reactivation from latency63,64. In this study, the p38 MAPK 
pathway however appears to be generally activated by 1, 25(OH)2 D3 in PEL cells as assessed by expression of 
p-p38 protein (Fig. 6A). Most importantly, this activation of p38 MAPK by 1, 25(OH)2 D3 led to reactivation of 
KSHV in PEL cells. Furthermore, the p38 kinase inhibitor SB203580 not only prevented p38 phosphorylation 
but also abrogated KSHV reactivation (Fig. 5B). On the other hand, ERK inhibitor, PD98059 only partially sup-
pressed KSHV reactivation, while there was no change with JNK inhibitor (Fig. 5A and B) suggesting that MAPK 
pathways p38 and ERK may be involved in switching from latency to lytic phase in KSHV.

Treatment of 1, 25(OH)2 D3 in PEL cells caused p38, ERK expression and caspase activation indicating that 
signalling events bifurcate downstream of VDR in mediating these two processes, i.e., virus reactivation and cell 
death. KSHV reactivation from latency depends on the expression of RTA. Our finding mirrors this as RTA expres-
sion occurred following stimulation by 1, 25(OH)2 D3 (Fig. 4A and B). As RTA does not contain any VDRE, it is 
speculated that 1, 25(OH)2 D3 indirectly increases the RTA expression most likely via p38. Thus, increase in the RTA 
expression induced by 1, 25(OH)2 D3 may lead to a greater degree of KSHV reactivation, making RTA a sensitive 
regulator between latency and reactivation as also confirmed through infection of 293 cells (Fig. 4G).

Lastly, we determined the effects of VDR knockdown on PEL cell proliferation and KSHV reactivation. VDR 
Knockdown rendered JSC-1 cells significantly less susceptible to 1, 25(OH)2 D3 mediated KSHV reactivation, 
while virus reactivation by phorbol esters remained intact (Fig. 6D). The findings further suggest that 1, 25(OH)2 
D3 may activate latent KSHV in vivo. Thus, our findings clearly establish a key role in which VDR signalling 
allows the virus to escape a cell that is destined to die and induces KSHV reactivation and lytic replication. These 
findings imply a cross talk between a host cell and a latent KSHV that determine the clinical consequences.
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