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An exact solution for the free-
vibration analysis of functionally 
graded carbon-nanotube-
reinforced composite beams with 
arbitrary boundary conditions
Zeyu Shi1, Xiongliang Yao1, Fuzhen Pang1 & Qingshan Wang2,3

We present an exact method to model the free vibration of functionally graded carbon-nanotube-
reinforced composite (FG-CNTRC) beams with arbitrary boundary conditions based on first-order shear 
deformation elasticity theory. Five types of carbon nanotube (CNT) distributions are considered. The 
distributions are either uniform or functionally graded and are assumed to be continuous through the 
thickness of the beams. The displacements and rotational components of the beams are expressed as a 
linear combination of the standard Fourier series and several supplementary functions. The formulation 
is derived using the modified Fourier series and solved using the strong-form solution and the weak-
form solution (i.e., the Rayleigh–Ritz method). Both solutions are applicable to various combinations 
of boundary constraints, including classical boundary conditions and elastic-supported boundary 
conditions. The accuracy, efficiency and validity of the two solutions presented are demonstrated via 
comparison with published results. A parametric study is conducted on the influence of several key 
parameters, namely, the L/h ratio, CNT volume fraction, CNT distribution, boundary spring stiffness 
and shear correction factor, on the free vibration of FG-CNTRC beams.

Carbon nanotube (CNT)-reinforced composites have shown outstanding physical, mechanical, thermal and elec-
trical properties over traditional structural materials, drawing interest from numerous researchers. CNTs are 
recognized as well suited to reinforce polymer composites due to their high elastic modulus and tensile strength 
and low density1–4. As a result, enthusiasm for research activities involving CNTs has been ignited in recent years. 
Wagner et al.5 performed tensile experiments on multi-walled carbon nanotubes (MWCNTs) and analysed the 
transformation of the elastic modulus and the break stress of nanoscale reinforced composites. Qian et al.6 devel-
oped homologous research two years later, noting that the addition of only 1% MWCNT to polystyrene signifi-
cantly improved its polymeric mechanical properties. Fiedler et al.7 demonstrated the superiority of the CNTs as 
nanofillers in polymers and suggested that a distribution of CNTs should be concentrated or dispersed to realize 
the best possible properties. Han8 and Wan9 found that the introduction of low volume fractions of nanotubes 
in matrices can result in notable strengthening of the composite properties. Relative to micron-scale counter-
parts, the interfacial regions between the nanoparticles and the matrix are strongly reactive. Coleman et al.10  
compared mechanical properties and various manufacturing processes of single-walled carbon nanotube 
(SWCNT)-reinforced composites to MWCNT-reinforced composites. However, the collective problems of dis-
persion and stress transfer still lack solutions.

To overcome these issues, functionalization through chemical procedures, for example, has been adopted 
by researchers. Functionally graded (FG) materials, which act as primitive thermal barrier materials in the aer-
ospace industry, are widely known for their smooth and continuous variations in material properties. In this 
way, the integration of single materials with different properties can be improved, and the advantages of material 
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properties can be combined11–13. Shen14 in 2009 first proposed a new distribution form with CNTs distributed 
in an FG manner in the matrix; the volume fraction of CNTs was assumed to vary along the thickness direc-
tion. The issue of nonlinear bending behaviour of functionally graded carbon-nanotube-reinforced composite 
(FG-CNTRC) plates was investigated in which a transverse uniform or sinusoidal load in thermal environments 
was taken into consideration. The results revealed that mechanical, electrical and thermal properties varied con-
siderably with the FG distribution of CNTs.

CNT-reinforced composites, which are increasingly used, can be formed into structures such as beams, plates 
and shells. Beams are a fundamental and significant structure in comprehensive engineering applications in the 
fields of marine, aerospace, civil, and mechanical engineering, among others areas. In this regard, various studies 
have focused on dynamic characteristics analysis of beam structures to guide structurally reliable design of such 
engineering applications15–20. Incorporating first-order beam theory, Yas and Samadi21 adopted the generalized 
differential quadrature method to analyse the issue of vibrations and buckling of carbon-nanotube-reinforced 
composite (CNTRC) beams on elastic foundations. Four different CNT distributions were considered, and the 
material properties of the nanocomposites were obtained from the rule of mixtures. In light of the von Kármán 
geometric nonlinearity displacement–strain relationship and Euler beam theory, the linear and nonlinear vibra-
tion behaviours of CNT-reinforced FG composite beams were presented by Rafiee et al.22. Numerical results 
showed that an increase in the CNT volume fraction led to an increase in the nonlinear-to-linear frequency ratio 
and the natural frequencies. Lin and Xiang23,24 investigated the free-vibration characteristics of CNT-reinforced 
beams with soft-clamped and hard-clamped boundary conditions, with uniformly distributed (UD) CNTs and 
FG distribution being considered. The model was established based on first-order and third-order shear defor-
mation elasticity theories and solved using the polynomial Ritz method. The research showed that ratios of 
nonlinear-to-linear frequency parameters and natural frequencies based on first-order and third-order shear 
deformation elasticity theories with soft-clamped boundary conditions showed manifest deviations. Ke et al.25 
investigated the nonlinear vibration characteristics of FG-CNTRC beams with various boundary conditions 
using a direct iterative method. The influences of the vibration amplitude, volume fraction of CNTs, ratio of 
length to thickness, boundary conditions and CNT distribution were taken into account to characterize nonlinear 
vibration in the beams. The response of CNT-reinforced FG composite beams under low-velocity impact was 
first analysed by Jam and Kiani26. On the basis of first-order beam theory, the behaviour of FG-CNTRC beams 
exposed to the impact of a small mass was solved by means of the conventional polynomial Ritz method and the 
Runge–Kutta method. The peak contact force was found to be proportionate to the volume fraction of CNTs and 
inversely proportional to the temperature, while the contact time behaved oppositely.

With the rapidly increasing industrial use of composite materials, various numerical tools and theories have 
been promoted to analyse the mechanical behaviour of composite structures27–30. The problem of nonlinear vibra-
tion of composite plates reinforced by CNTs was presented by Wang31. The governing equation of the CNTRC 
plate was derived according to higher-order shear deformation theory, and the theoretical model was solved 
using the improved perturbation technique. Zhang et al.32 focused attention on the free-vibration characteristics 
of CNT-reinforced FG composite triangular plates and adopted the element-free IMLS-Ritz method based on 
first-order beam theory. In view of the first order shear deformation theory, Rafiee et al.33 employed the Galerkin 
method and the harmonic balance method to investigate initially imperfect piezoelectric composite plates rein-
forced by SWCNTs. The vibrational characteristics and buckling of an FGM microplate with two different sup-
ports were studied by Ke et al.34. Wang35,36 developed a unified semi-analytical approach and applied it to the 
issue of free-vibration analysis of FG-CNTRC structures of revolution, including spherical panels and doubly 
curved shells. The differential quadrature method and the Mindlin plate theory were applied in this research to 
enable scientific conclusions to be drawn. Based on the FEM and two types of shear deformation theory, Yas and 
Heshmati37 established an analytical model of a FG-CNTRC beam subjected to a moving load.

Numerous studies have been conducted to illustrate the vibrational characteristics of CNTRC beams. 
Nevertheless, the investigations mentioned above are limited to several representative boundary conditions. A 
diversity of boundary restraints leads to notable changes in the free-vibration characteristics. Relatively little 
study has addressed the free vibration of CNT-reinforced beams with elastic supports, although various possibil-
ities of boundary conditions appear in engineering practice. Furthermore, most actual solution procedures are 
customized to restricted forms of certain classes at both ends of the beam. Consequently, existent contributions 
are urgently sought not only to guide engineering applications but also to enhance complementary research.

Aiming at satisfying practical needs, in this investigation, a unified and satisfactorily accurate method is pre-
sented for the free-vibration analysis of FG-CNTRC beams with arbitrary boundary conditions, including various 
classical boundary conditions and elastic supports. The modified Fourier method was first proposed by Li to 
analyse the vibration of a beam38 and was subsequently extended to plates39–47 and shells48–53. The two functions 
of displacement and two functions of rotation are expressed as a linear combination of an original Fourier cosine 
series expansion and two complementary auxiliary polynomial functions. The supplemental items are introduced 
to remove the potential discontinuities of displacement components and derivatives of displacement functions 
at the ends of the beam and to accelerate convergence of the solution procedures. Arbitrary boundary conditions 
can be conveniently achieved through assigning the appropriate stiffness to four sets of boundary springs at each 
edge of the CNTRC beam without updating the solution procedure.

In the present work, a strong-form solution procedure of the modified Fourier method is proposed and used 
to solve generalized eigenvalue problems directly by submitting a modified Fourier series to the governing equa-
tions and the boundary conditions. In addition, the results obtained from the Rayleigh–Ritz technique associated 
with the modified Fourier method are presented here as a weak-form solution for comparison. Numerical results 
calculated by the present method are checked against available results published in the open literature to evaluate 
accuracy and validity. New results in terms of frequency parameters and mode shapes of CNTRC beams with 
elastic boundary conditions are presented here to provide a benchmark for future researchers in this field.
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Theory and formulation.  As depicted in Fig. 1, we consider a general CNT-reinforced composite beam 
with a rectangular cross section. A right-handed Cartesian coordinate system is established in which the length 
L, width b, and thickness h are respectively defined along the x-, y- and z-directions. The main purpose of this 
work is to investigate the CNTRC beam with arbitrary boundary conditions, and thus, two sets of linear springs 
(k L

u
0,  and k L

w
0, ) and two sets of rotational springs (K L

s
0,  and K L

c
0, ) are artificially introduced to simulate boundary 

restraint forces at the two ends of the beam. By assigning a suitable stiffness to the four sets of boundary springs, 
an arbitrary combination of classical and elastic boundary conditions can be realized. For example, if linear and 
rotational restraining spring coefficients at both ends are set to infinity (or a sufficiently large number in practical 
numerical simulations), the perfectly clamped boundary condition can be conveniently achieved.

It is assumed that the CNTRC beam consists of a polymer matrix mixture that can be generally treated as an 
isotropic material and CNTs. SWCNT reinforcements are placed along the length direction and are either UD or 
FG in the thickness direction. Four- types of FG distribution forms are taken into account, namely, FG-X, FG-O, 
FG-V and FG-Λ, as illustrated in Fig. 2.

Regardless of the various distribution patterns of CNT reinforcement at the cross section, four types of 
FG-CNTRC beams are assumed to contain an equal CNT total weight of mtcnt and total CNT volume fraction 
Vtcnt. The expressions of CNT volume fraction for different distributions can be written as:

=V VUD: (1a)cnt tcnt

=‑ V
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The effective material properties of CNTRC beams, e.g., the Young’s modulus (E11 and E22), shear modu-
lus (G12) and Poisson’s ratios (v12 and v21), are estimated according to matching molecular dynamics simulation 
results based on the rule of mixtures, which can be expressed as follows:

Figure 1.  Geometry and coordinate system of a CNTRC beam. A right-handed Cartesian coordinate system is 
established in which the x-, y- and z-axes are taken along the length L, width b and height h of the beam, 
respectively. Four sets of springs (k L

u
0, , k L

w
0, , K L

s
0,  and K L

c
0, ) are artificially introduced to simulate boundary 

restraint forces at the two ends of the beam.

Figure 2.  Cross section of UD, FG-Λ, FG-V, FG-O and FG-X CNTRC beams.
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where E cnt
11 , E cnt

22  and G cnt
12  indicate the Young’s modulus along the longitudinal direction, Young’s modulus in the 

transverse direction and shear modulus of CNTs, respectively. Em and Gm indicate the Young’s modulus and shear 
modulus of the isotropic matrix, respectively. υ cnt

12  and ρcnt represent the Poisson’s ratio and mass density of CNT, 
respectively, and vm and ρm are the corresponding properties of the matrix. Vm represents the matrix volume 
fraction, and ηj (j = 1, 2, 3) denotes the CNT efficiency parameters, which are determined from the results of 
molecular dynamics simulations.

The displacement field for the CNTRC beam under the assumptions of first-order shear deformation elasticity 
theory can be expressed as follows:

θ= +U x z t u x t z x t( , , ) ( , ) ( , ) (3a)

φ=V x z t z x t( , , ) ( , ) (3b)

=W x z t w x t( , , ) ( , ) (3c)

where u and w are the axial and transverse displacements along the x- and z-directions in the middle surface, 
respectively, and θ and φ represent the rotations of the normal to the section about the y- and x-axes, 
respectively.

The strain and curvatures are defined in terms of the mid-plane displacements and rotations as:

ε θ= ∂ ∂ + ∂ ∂u x z x/ / (4a)x
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0
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The constitutive equations are given by:
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in which εx and γxz denote the normal and shear strain, respectively. εx
0, εy

0 and γxy represent the strain at the mid-
dle surface; kx, ky and kxy are the bending and twisting curvatures; Nx, Ny and Nxy indicate the force resultants at 
the middle surface; Mx, My and Mxy are the bending and twisting moment resultants; and Qxy and Qyz represent 
the shear force resultants.

Regarding the CNTRC beam, certain force and moment resultants, namely, Ny, Nxy, Qyz and My, are equal to 
zero, while the corresponding strains εy

0, γxy and curvature ky are assumed to be non-zero. Consequently, Eq. (5) 
can be expressed as:
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The extensional stiffness coefficients Aij, coupling stiffness coefficients Bij, bending stiffness coefficients  
Dij(i, j = 1, 2, 6) and transverse shear stiffness A55 are defined as functions of material properties, which can be writ-
ten as:
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where κ denotes the shear correction factor. The reduced stiffness coefficients =Q i( 1, 2, 6)ij  are defined by the 
following equations:
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With the aim of deriving the governing equations and boundary conditions of the CNTRC beam according 
to Hamilton’s principle, the energy expressions are defined as follows. The total linear elastic strain energy (Us) 
function of the CNTRC beam can be expressed as

∫

∫

ε γ

ε ε ε

γ

= + + +

=







+ + +

+ + +








( )U b N M k M k Q dx

b A B k B k D k

D k k D k A
dx

2

2

( ) 2 2 ( )

2 ( ) ( ) (10)

s
L

x x x x xy xy xz xz

L x x x x xy x

x xy xy xz

0

0

0

11
0 2

11
0

16
0

11
2

16 66
2

55
2



www.nature.com/scientificreports/

6Scientific REPOrTS | 7: 12909  | DOI:10.1038/s41598-017-12596-w

and the homologous kinetic energy (T) function is given by
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in which the inertia terms can be written as
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In addition, four sets of boundary springs are introduced at each end of the beam; the boundary springs defor-
mation strain energy (Usp) function is given by
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and the Hamilton’s principle with regard to the arbitrary initial time t1 and final time t2 is given by
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Substituting Eqs (10), (11) and (13) into Eq. (14) and integrating by parts to eliminate the variational terms, 
the governing equations and boundary conditions can be obtained as follows:
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Because of the arbitrariness of the virtual displacements δu and δw, only when the values of the virtual dis-
placements coefficients are equal to zero is Eq. (15) tractable. The governing equations can be expressed in terms 
of the differentials of displacement components as
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∂
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∂
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∂
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2
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θ φ φ∂
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∂
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=
∂
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B u
x

D
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D
x
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t (16d)16

2

2 16

2
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2

2 3

2
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and the general boundary conditions can be stated as

θ
φ

=











− =
− =

− =
− =

x

N k u
Q k w
M K
M K

0:

0
0
0
0 (17a)

x
u

xz
w

x
c

xy
s

0

0

0

0
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θ
φ

=











+ =
+ =

+ =
+ =

x L

N k u
Q k w
M K
M K

:

0
0
0
0 (17b)

x L
u

xz L
w

x L
c

xy L
s

Therefore, all classical boundary conditions and elastic supports can be directly achieved by means of the artificial 
spring boundary technique to assign the rigidities of the boundary springs at a certain value.

The appropriate choice of admissible displacement functions plays a significant role to ensure the validity 
and accuracy of the proposed solution procedures. Eqs (16a–16d) indicate that the translation and rotations dis-
placements of the CNTRC beam are required up to the second derivative. For the sake of satisfying the arbitrary 
boundary conditions at both ends of the beam, the displacements and rotational components are represented as 
1D Fourier cosine series expansions with two supplemental auxiliary function terms. These terms are introduced 
to improve the convergence of the primary Fourier series representations and avoid the potential discontinuities 
of the displacement functions and their first-order derivatives at the boundaries. Accordingly, the functions of 
flexural displacements and rotation of the CNTRC beam can be universally expressed as

∑ λ= + +
=

u x A x a P x a P x( ) cos ( ) ( )
(18a)m

M

m m
0

1 1 2 2

∑ λ= + +
=

w x B x b P x b P x( ) cos ( ) ( )
(18b)m

M

m m
0

1 1 2 2

∑θ λ= + +
=

x C x c P x c P x( ) cos ( ) ( )
(18c)m

M

m m
0

1 1 2 2

∑φ λ= + +
=

x D x d P x d P x( ) cos ( ) ( )
(18d)m

M

m m
0

1 1 2 2

where λ π= m L/m . M represents the truncation number, Am, Bm, Cm and Dm are the expansion coefficients of the 
standard Fourier series, and ai, bi and ci (i = 1, 2) denote the corresponding expansion coefficients of the auxiliary 
function P1(x) and P2(x), which are defined as:

=


 −



P x x x

L
( ) 1

(19a)1

2

=


 −



P x x

L
x
L

( ) 1
(19b)2

2

According to the modified Fourier series, the free-vibration characteristics of the CNTRC beam can be solved 
by means of strong-form solution procedures and weak-form solutions, as described below. The strong-form 
solution procedure is given step by step as follows.

We rewrite Eq. (18) in matrix form as

θ

φ

= +

= +

= +

= +

u x
w x

x
x

H A H a
H B H b
H C H c
H D H d

( )
( )
( )
( ) (20)

f a

f a

f a

f a

where

λ λ λ=  x x xH [cos , cos , cos ] (21a)f m M0

= P x P xH [ ( ), ( )] (21b)a 1 2

= = A A A a aA a[ , , , ] [ , ] (21c)m M
T T

0 1 2

= = B B B b bB b[ , , , ] [ , ] (21d)m M
T T

0 1 2

= = C C C c cC c[ , , , ] [ , ] (21e)m M
T T

0 1 2
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= = D D D d dD d[ , , , ] [ , ] (21f)m M
T T

0 1 2

Substituting Eqs (20) and (21) into Eq. (16), we obtain

ω
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




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


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

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

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f a f a
2

in which

=





















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
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

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
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

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H H

H H H H
H H H
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H H
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i i i i

i i i

i

i i
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i i
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and the coefficients of the linear operator are defined as follows
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∂
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∂
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=
∂
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=
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x
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2
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2

2 14 16

2
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2
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2

2 32 55 33 11

2

2 55 34 16

2

2

41 16

2

2 43 16

2

2 44 66

2

2

11 22 1 13 31 2 33 44 3

Similarly, substituting Eqs (20) and (21) into Eq. (17), the boundary conditions of CNTRC beams are stated as


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

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where

=
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
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Therefore, the expansion coefficients of the standard Fourier cosine series and corresponding auxiliary func-
tions have a certain relationship according to the boundary conditions, which are expressed as:
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Substituting Eqs (26) and (27) into Eq. (22), then multiplying the transpose of displacement functions matrix 
Hf on the left side and integrating both sides of the equality from 0 to L with respect to x, the partial differential 
equations are transformed into a standard eigenvalue problem as follows:

ω− =K M G( ) 0 (28)2

in which K and M are the stiffness matrix and mass matrix, respectively, G is a vector that contains all undeter-
mined coefficients of the standard Fourier series, and these matrices can be written as:
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=G A B C D[ ] (29c)T

The natural frequencies and modes of CNTRC beams can be obtained directly by solving the standard eigen-
value equation.

Exact solutions are often unavailable in complex vibration problems, and an approximate method is employed 
to complete the vibrational analysis. The Rayleigh–Ritz method associated with modified Fourier series, i.e., 
weak-form solution, is also presented below to compare with the strong-form solution.

In the Ritz-variational energy procedure, the accuracy of the solution will rest on how well the actual displace-
ment can be faithfully represented by an appropriate admissible displacement field in general. Hence, auxiliary 
functions play a crucial role. The same displacement functions are selected for comparative purposes, and all 
expansion coefficients of the modified Fourier series can be regarded as generalized coordinates independently 
and equally.

With regard to free-vibration analysis, the Lagrange energy function of CNTRC beams consists of the strain 
energy, kinetic energy and boundary spring deformation strain energy as follows:

= − −L T U U (30)s sp

Substituting Eqs (10), (11) and (13) into Eq. (30), minimizing the total expression of the Lagrange energy 
function via taking the derivatives of the equation with respect to the generalized coordinates and setting all 
expressions equal to zero to find the stationary value of the energy function, we obtain:
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A total of 4(M + 3) linear algebraic equations for the undetermined coefficients are achieved, which can be 
added and represented in a matrix form as

ω− =⁎ ⁎ ⁎K M G( ) 0 (32)2

where G* indicates the undetermined coefficients column vector, K* is treated as the total stiffness matrix of the 
CNTRC beams and M* indicates the corresponding mass matrix. Their expressions can be written as:
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The detailed expressions of the elements of K* and M* are listed in the Appendix. The Rayleigh–Ritz method 
associated with the modified Fourier series is equivalent to strong-form solution procedures to obtain the vibra-
tion results by solving a standard eigenvalue equation.

Numerical results and discussions.  With the achievement of the theoretical formulation of the modi-
fied Fourier method mentioned above, selected numerical examples for the free-vibration analysis of CNTRC 
beams with arbitrary boundary conditions are presented to validate the feasibility, accuracy and efficiency of the 
proposed method. Several key parameters representing the vibrational characteristics of CNTRC beams, such 
as the L/h ratio, CNT volume fraction and boundary spring stiffness, are discussed, and new results and useful 
conclusions are obtained.

The following material properties for CNTs and PMMA matrixes are applied unless otherwise illustrated: 
Em = 2.5 GPa, vm=0.3, ρm = 1150 kg/m3, = .E 5645 6cnt

11  GPa, =E 7080cnt
22  GPa, = .G 1944 5cnt

12  GPa, υ = .0 175cnt
12  

and ρ = 2100cnt  kg/m3. By matching with the results calculated from molecular dynamics simulations, three types 
of CNT efficiency parameters with special CNT volume fractions are given as: η1 = 0.137, η2 = 1.022 for 
Vtcnt = 0.12; η1 = 0.142, η2 = 1.138 for Vtcnt = 0.17; η1 = 0.141, η2 = 1.109 for Vtcnt = 0.28. In the absence of shear 
modulus results in molecular dynamics simulations, η3 is defined as 0.7 η2.

In addition, the non-dimensional frequency parameters of the natural frequency take the form of 
Ω ω ρ= L E h/( )m m2 2  in the latter subsections unless otherwise stated. The corresponding boundary conditions 
at the ends of beam can be defined in terms of the spring stiffness as:

Clamped (C): = = = =k k K K 10L
u

L
w

L
c

L
s

0, 0, 0, 0,
15

Simply supported (S): = = = =k k K K10 , 0L
u

L
w

L
s

L
c

0, 0, 0,
15

0,
Free (F): = = = =k k K K 0L

u
L

w
L

c
L

s
0, 0, 0, 0,

Elastically restrained case 1 (E1): = = = =k K K k0, 10L
u

L
c

L
s

L
w

0, 0, 0, 0,
8

Elastically restrained case 2 (E2): = = = =k K k K0, 10L
u

L
s

L
w

L
c

0, 0, 0, 0,
8

The rationality of these definitions of boundary conditions in terms of assigning spring stiffness will be estab-
lished through numerical examples in subsequent studies. For brevity, symbolism is applied to illustrate the 
boundary condition of FG-CNTRC beams, e.g., SE1 indicates a beam with S (simply supported) and E1 (elasti-
cally restrained case 1) boundary conditions at = 0 and x = L, respectively.

Convergence and validation.  As previously mentioned, modified Fourier series with infinite terms in the 
current solution framework are infinitely approximate in the real results. Nevertheless, the infinite terms must 
be numerically truncated in practical numerical simulations. Consequently, convergence studies are conducted 
to determine the number of series terms M used in the computation. The first four lowest frequency parameters 
Ω for perfectly clamped and simply supported FGV-CNT beams are considered in Table 1, in which the results 
obtained from strong-form solution procedures and the Rayleigh–Ritz method are given. Excellent convergence 
and satisfactory numerical stability of two types of current solutions can be observed. The frequency parameters 
Ω converge sharply as the number of series terms M increases from 4 to 15, and the results are almost invariant 
when the truncated number reaches a certain value (M = 10). Thus, unless otherwise illustrated, the truncated 
number was uniformly chosen as 10 in subsequent studies.

With satisfactory results for the convergence studies of the FG-CNTRC beam, which is assumed to feature a 
perfectly clamped boundary condition at both ends, the numerical validity and rationality of the mentioned defi-
nition of the boundary conditions in terms of assigning boundary spring rigidities is evaluated in this section. The 
first three non-dimensional frequency parameters ω ρ υΩ = −L E[1 ( ) ]/m m m2  for FG-CNTRC beams with var-
ious CNT distributions and boundary conditions are compared with those reported in the publications of Lin et 
al.20 and Yas et al.18, as shown in Table 2 and Table 3.

The geometrical and material constants of the beams are provided as follows: L/h = 15, =E 600cnt
11  GPa, 

=E 10cnt
22  GPa, = .G 17 2cnt

12  GPa, Em = 2.5 GPa, υ = .0 19cnt
12 , vm=0.3, ρ = 1400cnt  kg/m3, and ρ = 1190m  kg/m3. 

Table 2 presents the first three non-dimensional frequency parameters ω ρ υΩ = −L E[1 ( ) ]/m m m2  for UD-CNT, 
FGV-CNT and FGX-CNT beams with a total volume fraction Vtcnt = 0.28, and two classical boundary conditions 
are considered, namely, S-S and C-F. The solutions from the two present numerical approaches are in outstanding 
agreement with the results from Lin et al.20 and Yas et al.18.

The first three dimensionless natural frequencies ω ρ υΩ = −L E[1 ( ) ]/m m m2  for FG-CNTRC beams with 
C-S boundary conditions are presented in Table 3. The results in the present investigation are close to those in the 
references, and the two present numerical approaches are sufficiently accurate to enable vibrational characteriza-
tion of FG-CNTRC beams subject to various boundary conditions. Moreover, a further comparison is explored 
to illustrate the applicability of the linear theories and assumptions in this investigation. Table 4 demonstrates the 
comparison of natural frequencies between the results calculated by the present method and those reported in 
studies54,55 that adopted first-order beam theory along with von Karman geometric nonlinearity.
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The first three frequency parameters Ω of simply supported FG-CNTRC beams with different volume frac-
tions are presented in Table 4. Consistency can be observed between the calculated results and the data from the 
literature. Thus, the mentioned numerical examples indicate that the current solutions possess rapid convergence 

M

Strong form solution Rayleigh–Ritz method

1st 2nd 3rd 4th 1st 2nd 3rd 4th

4 13.8945 28.2878 44.3428 71.7823 13.8554 27.9426 43.7914 62.2869

5 13.8809 28.0239 44.3052 60.4087 13.8552 27.9151 43.7895 59.6012

6 13.8680 28.0193 43.9247 60.3735 13.8548 27.9151 43.7415 59.5985

7 13.8648 27.9574 43.9195 59.8050 13.8548 27.9118 43.7413 59.4953

8 13.8607 27.9563 43.8183 59.8001 13.8548 27.9118 43.7344 59.4951

9 13.8596 27.9344 43.8169 59.6313 13.8547 27.9111 43.7344 59.4775

10 13.8579 27.9340 43.7781 59.6299 13.8547 27.9111 43.7327 59.4774

11 13.8574 27.9244 43.7776 59.5605 13.8547 27.9108 43.7327 59.4727

12 13.8566 27.9242 43.7595 59.5600 13.8547 27.9108 43.7322 59.4727

13 13.8564 27.9193 43.7593 59.5259 13.8547 27.9108 43.7322 59.4711

14 13.8560 27.9192 43.7497 59.5257 13.8547 27.9108 43.7320 59.4711

15 13.8558 27.9164 43.7496 59.5070 13.8547 27.9107 43.7320 59.4704

Table 1.  Convergence of the first four lowest frequency parameters Ω for a perfectly clamped FGV-CNT beam 
(Vtcnt = 0.12, L/h = 10).

Distributions Modes

S-S C-F

Lin20 Yas18

Present

Lin20 Yas18

Present

Strong form Weak form Strong form Weak form

FGV-CNT

1 1.3975 1.4027 1.3639 1.3639 0.4753 0.4761 0.4600 0.4600

2 3.8370 3.8639 3.7701 3.7703 2.2543 2.2685 2.2106 2.2108

3 6.6976 6.7618 6.6301 6.6307 4.9590 5.0007 4.8923 4.8933

FGX-CNT

1 1.6409 1.6493 1.6086 1.6086 0.6566 0.6586 0.6405 0.6405

2 4.4333 4.4752 4.3927 4.3928 2.6763 2.6987 2.6446 2.6448

3 7.2258 7.3068 7.1907 7.1913 5.5589 5.6150 5.5169 5.5178

UD-CNT

1 1.4348 1.4401 1.3985 1.3981 0.5600 0.5612 0.54320 0.5430

2 4.1050 4.1362 4.0505 4.0500 2.4449 2.4614 2.4061 2.4056

3 6.8595 6.9245 6.8086 6.8086 5.2005 5.2446 5.1457 5.1452

Table 2.  Comparison of the first three frequency parameters ω ρ υΩ = −L E[1 ( ) ]/m m m2  for FG-CNTRC 
beams with various CNT distributions and boundary conditions (L/h = 15, Vtcnt = 0.28).

Vtcnt Distributions

C-S

Yas Strong form solution Rayleigh–Ritz method

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

0.12

UD-CNT 1.2444 3.0159 4.9342 1.2154 2.9668 4.8734 1.2156 2.9671 4.8734

FGV-CNT 1.1529 2.8472 4.7474 1.1226 2.7932 4.6778 1.1226 2.7931 4.6774

FGO-CNT 1.0331 2.6814 4.5619 1.0021 2.6224 4.4840 1.0022 2.6227 4.4844

FGX-CNT 1.3577 3.1817 5.1092 1.3315 3.1383 5.0557 1.3317 3.1386 5.0562

0.17

UD-CNT 1.5602 3.8402 6.3370 1.5214 3.7701 6.2451 1.5217 3.7705 6.2452

FGV-CNT 1.4344 3.6064 6.0765 1.3949 3.5306 5.9733 1.3949 3.5305 5.9727

FGO-CNT 1.2769 3.3772 5.8126 1.2374 3.2973 5.7032 1.2375 3.2976 5.7037

FGX-CNT 1.7188 4.0843 6.6094 1.6834 4.0219 6.5288 1.6836 4.0223 6.5295

0.28

UD-CNT 1.8040 4.3112 6.9987 1.7622 4.2312 6.8867 1.7626 4.2315 6.8867

FGV-CNT 1.6933 4.1393 6.8633 1.1226 2.7932 4.6778 1.6501 4.0513 6.7355

FGO-CNT 1.5229 3.9112 6.6127 1.4786 3.8195 6.4808 1.4783 3.8184 6.4775

FGX-CNT 1.9813 4.6030 7.3560 1.9416 4.5250 7.2448 1.9415 4.5240 7.2418

Table 3.  Comparison of the first three dimensionless frequencies ω ρ υΩ = −L E[1 ( ) ]/m m m2  for FG-CNTRC 
beams with various CNT distributions and volume fractions (L/h = 15, C-S).
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and satisfactory accuracy, which will be employed for calculating the results for the parametric studies in the 
following subsections.

Parametric studies.  Tables 2–5 indicate the accuracy and convergence of the present solution. With 
enhanced confidence in the present solution approach, a variety of further results for FG-CNTRC beams with 
different boundary conditions and material and geometrical parameters are provided in this section to serve as 
benchmark solutions for potential studies. In addition, the frequencies calculated by the strong-form solution 
procedures are close to the results obtained using the Rayleigh–Ritz method. For brevity, only the results obtained 
from the strong-form solution procedures are included.

Figure 3 illustrates the relationship between the first three frequency parameters Ω and the length-to-thickness 
ratio L/h for FG-CNTRC beams with various boundary conditions and CNT distributions. The total CNT volume 
fraction Vtcnt is fixed at 0.17, and the length-to-thickness ratio varies from 0.5 to 4. All dimensionless frequencies 
increase with increasing length-to-thickness ratio. The fundamental parameter rises gradually with increasing L/h 
ratio; in contrast, the second and third frequency parameters increase sharply. Furthermore, the graphs provide 
notable results regarding the influence of CNT distributions. The frequency parameters of FG-XCNT beams are 
always larger than the results of other distributions and beams, with FGO-CNT distributions having the smallest 
values regardless of the boundary conditions. The same phenomenon can also be found in the following tables.

Table 5 shows the changes in the dimensionless frequencies of FG-CNTRC beams with various CNT dis-
tributions. The data in Table 5 lead us to conclude that the CNT distributions have a significant impact on 
the free-vibration characteristics of FG-CNTRC beams. Furthermore, symmetrical CNT distributions, i.e., 
FG-XCNT and FG-OCNT, play a notable role in changing the frequency parameters of the CNTRC beams rela-
tive to the uniform and asymmetric distributions through the beam thickness.

One of the primary purposes of this work is to investigate the free-vibration characteristics of FG-CNTRC 
beams with elastic boundary constraints. Accordingly, Fig. 4 illustrates the effects of four types of boundary 
spring parameters on the first three frequency parameters of FG-CNTRC beams with elastic supports. The total 
CNT volume fraction Vtcnt and ratio L/h are 0.28 and 10, respectively. The UD-CNT, FGΛ-CNT and FGX-CNT 
beams are taken into consideration. The symbols Γu, Γw, Γθ and Γϕ are defined to indicate the various kinds of 
boundary springs, and the boundary condition is defined as elastically restrained only at x = 0, where only one 

Vtcnt

Mode 
number

UD-CNT FGV-CNT

Present

Ansari54 Shen55

Present

Ansari54 Shen55Strong form Weak form Strong form Weak form

0.12

1 15.8367 15.8362 15.8569 15.8363 13.4627 13.4553 13.4913 13.5444

2 51.7703 51.7733 51.8191 51.8139 46.2414 46.1848 46.2767 46.1920

3 93.5087 93.4972 93.5513 93.8709 86.6740 86.6616 86.7826 86.8513

0.17

1 19.2292 19.2281 19.2565 19.2279 16.2347 16.2333 16.2828 16.2286

2 64.0863 64.1134 64.1797 64.1381 56.7354 56.7282 56.8608 56.6836

3 117.5058 117.4909 117.5724 117.8051 108.1623 111.7350 108.3287 108.1428

0.28

1 23.4763 23.4754 23.4954 23.4774 19.9998 19.9986 20.0344 19.9556

2 74.3537 74.3500 74.3903 74.4687 67.3595 67.3525 67.4387 66.9973

3 131.4088 131.3941 131.4391 132.2442 124.4277 124.4110 124.5196 123.8009

Table 4.  Comparison of the first three frequency parameters Ω of simply supported FG-CNTRC beam with 
various volume fractions (L/h = 25, h = 0.01).

Boundary conditions Modes

CNT distributions

UD-CNT FGΛ-CNT FGV-CNT FGX-CNT FGO-CNT

C-C

1 14.2538 13.8550 13.8550 14.6267 13.4354

2 28.5113 27.9120 27.9120 29.1546 27.3180

3 44.3037 43.7355 43.7355 44.9606 43.0775

F-F

1 23.9206 21.9745 21.9745 25.7045 20.3792

2 40.3698 39.1137 39.1137 41.5025 37.8475

3 57.7140 56.5360 56.5360 58.8994 55.3918

S-F

1 16.8444 15.4133 15.4133 18.1527 14.2823

2 34.1859 32.9718 32.9718 35.2902 31.7971

3 50.5951 49.6210 49.6210 51.5213 48.7128

S-S

1 11.3232 11.1214 11.1214 12.3011 9.4702

2 27.9037 26.8855 26.8855 28.8111 25.9048

3 44.0270 43.3760 43.3760 44.7878 42.4459

Table 5.  First three frequency parameters Ω for FG-CNTRC beams with various CNT distributions (L/h = 10, 
Vtcnt = 0.12).
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group of boundary springs is assigned to variable stiffness values ranging from 102 to 1016 and the other groups 
are assumed to be infinite while the other boundary is clamped at x = L.

Figure 4 shows that the dimensionless frequency parameters remain stable as the restraint parameters Γu 
and Γϕ change. In contrast, the dimensionless frequencies increase sharply as the restraint parameters Γw and Γθ 
increase from 106 to 1010. Furthermore, there is little variation in the frequency parameters beyond this range. In 
addition, the results confirm that the influence of the restraint parameter Гw is more easily detectable than that 
of Гθ. Therefore, the definition of the boundary conditions mentioned above in terms of assigning the values of 
boundary spring stiffness is reasonable to simulate the real restraints.

The next example is focused on the influence of the total CNT volume fraction on FG-CNTRC beams with 
classical and elastic boundary conditions. The material properties of the beams are provided as follows: 

=E 600cnt
11  GPa, =E 10cnt

22  GPa, = .G 17 2cnt
12  GPa, Em = 2.5 GPa, υ = .0 19cnt

12 , vm = 0.3, ρ = 1400cnt  kg/m3, and 
ρ = 1190m  kg/m3. Table 6 indicates the changes in the value of the first three dimensionless frequencies 

ω ρ υΩ = −L E[1 ( ) ]/m m m2  of FG-CNTRC beams as the total CNT volume fraction Vtcnt increases from 0.12 to 
0.28. The frequency parameters uniformly increase as the total CNT volume fraction increases.

By introducing the shear correction factor κ, the first-order shear deformation elasticity theories address the 
shortcomings of the Euler beam theory, which neglects the effects of transverse shear and rotary inertia. Note that 
all results in this study are based on the first-order beam theory and that it is necessary to study the influence of 
the shear correction factor on the free-vibration characteristics of FG-CNTRC beams.

Table 7 presents the fundamental frequency parameters Ω for FG-CNTRC beams in the case in which the 
shear correction factor increases from 0.1 to 0.9 and compares the results with those calculated by Lin21 based on 

Figure 3.  The first three lowest frequency parameters Ω of FG-CNTRC beams with various length-to-thickness 
ratios. The total CNT volume fraction Vtcnt is equal to 0.17, and the length-to-thickness ratio varies from 0.5 to 
4. Three boundary conditions are considered: (a) F-F, (b) C-C, and (c) C-S.



www.nature.com/scientificreports/

1 4Scientific REPOrTS | 7: 12909  | DOI:10.1038/s41598-017-12596-w

third-order shear deformation elasticity theory. The beam material properties and geometrical parameters are the 
same as for the FG-CNTRC beams presented in Table 5, where two classical boundary conditions and three types 
of CNT distribution are considered. The figures reveal that the frequency parameters monotonically increase as 
the shear correction factor increases from 0.1 to 0.9. To make the frequency parameters consistent with the results 
based on third-order beam theory, the appropriate shear correction factor κ should be selected in calculations 
with regard to the different boundary conditions.

Because the free-vibration results for FG-CNTRC beams with arbitrary boundary conditions are extremely 
limited in the literature, new results are calculated in Table 8 to provide reference data for practising engineers 
and to act as a benchmark for potential future studies. Finally, aiming at strengthening our understanding of 
vibration behaviours of FG-CNTRC beams, several selected mode shapes of the beams addressed in Table 8 are 
plotted in Fig. 5.

Conclusions
An accurate method is developed for the vibration analysis of FG-CNTRC beams. The distribution of CNTs 
through the thickness of the beam is assumed to vary continuously and smoothly, and five types of distribution, 
namely, UD-CNT, FGΛ-CNT, FGV-CNT, FGO-CNT and FGX-CNT, are considered. Note that this approach 
can be uniformly and conveniently applied in vibrational analysis of FG-CNTRC beams with arbitrary boundary 
conditions, including general elastic boundary conditions. The general boundary conditions can be enforced 
using the artificial spring technique, in which boundary springs can be assigned any value of stiffness to simulate 
the real boundary conditions. The energy expressions of the FG-CNTRC beams are written as functions of four 

Figure 4.  Variation of the first three dimensionless frequencies Ω versus the elastic restraint parameters for FG-
CNTRC beams with various CNT distributions: (a) UD-CNT, (b) FGΛ-CNT, and (c) FGX-CNT. The symbols 
Γu, Γw, Γθ and Γϕ denote the various types of boundary springs. The boundary conditions are considered to be 
elastically restrained at x = 0 and perfectly clamped at x = L.
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displacement components based on first-order shear deformation elasticity theory. Regardless of the boundary 
conditions, specific geometry and material properties, the displacements and rotational components of the beam 
are expressed as a superposition of the standard cosine Fourier series and two auxiliary functions. The introduced 
auxiliary terms are intended to remove potential discontinuous displacement functions and their derivatives at 
each edge and to ensure the convergence of the series expansions.

By submitting modified Fourier series to governing equations and boundary conditions, the strong-form solu-
tion procedure of the modified Fourier method is proposed. For comparison, the Rayleigh–Ritz technique asso-
ciated with the modified Fourier method is also presented as a weak-form solution. Numerical results obtained 

Distributions Modes

C-C F-E2 E1-E1

Vtcnt Vtcnt Vtcnt

0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28

UD-CNT

1 1.6491 2.1148 2.3280 2.9960 3.7022 4.1434 2.9914 3.5911 4.0499

2 3.3231 4.2801 4.6726 4.9598 6.3034 6.8853 4.8392 6.1079 6.7064

3 5.2064 6.7288 7.2926 6.9132 8.8820 9.6260 6.8542 8.7698 9.5473

FGΛ-CNT

1 1.5838 2.0227 2.2799 2.8056 3.4356 3.9199 2.7912 3.2931 3.7621

2 3.2315 4.1583 4.6299 4.7946 6.0708 6.7783 4.6535 5.8333 6.5515

3 5.1083 6.6000 7.2979 6.7713 8.6870 9.6050 6.6681 8.5104 9.4608

FGX-CNT

1 1.7071 2.2055 2.4427 3.1219 3.9621 4.4443 3.1879 3.8920 4.3940

2 3.4144 4.4220 4.8777 5.0329 6.5356 7.1911 5.0016 6.3703 7.0351

3 5.3051 6.8933 7.5571 7.0170 9.1109 9.9864 7.0236 9.0436 9.9426

FGO-CNT

1 1.5199 1.9310 2.1956 2.5979 3.2208 3.7011 2.6456 3.0803 3.5206

2 3.1455 4.0359 4.5151 4.5655 5.8423 6.5693 4.4812 5.5769 6.3101

3 5.0069 6.4532 7.1648 6.5760 8.4811 9.4203 6.5040 8.2692 9.2386

Table 6.  First three dimensionless frequencies ω ρ υΩ = −L E[1 ( ) ]/m m m2  for FG-CNTRC beams with 
various total CNT volume fractions (L/h = 10).

B.C Distributions

Shear correction factor

Lin210.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C-C

UD-CNT 5.2652 7.3778 8.9543 10.2477 11.3572 12.3343 13.2099 14.0044 14.7321 12.1067

FGΛ-CNT 5.2587 7.3378 8.8701 10.1122 11.1656 12.0830 12.8965 13.6271 14.2898 11.9480

FGX-CNT 5.2976 7.4449 9.0616 10.3993 11.5562 12.5833 13.5109 14.3591 15.1418 12.6733

S-S

UD-CNT 5.0675 6.8610 8.0726 8.9814 9.7000 10.2873 10.7786 11.1970 11.5583 11.3732

FGΛ-CNT 5.0616 6.8288 8.0108 8.8900 9.5802 10.1408 10.6072 11.0025 11.3424 11.1601

FGX-CNT 5.1597 7.0759 8.4185 9.4579 10.3027 11.0103 11.6153 12.1407 12.6025 12.3850

Table 7.  Fundamental frequency parameters Ω for FG-CNTRC beams with various shear correction factors.

Distributions Vtcnt

Boundary conditions

C-H C-E1 C-E2 S-E1 F-E1 E1-E1 E1-E2 E2-E2

UD-CNT

0.12 12.6727 20.0666 21.6346 19.7997 26.0059 27.7315 27.7315 28.6638

0.17 15.8697 23.8453 26.2452 23.2895 31.3209 32.8113 32.8113 34.3048

0.28 16.9814 25.1491 27.4021 24.9031 33.8933 35.1169 35.1169 36.2263

FGΛ-CNT

0.12 12.2716 19.3900 20.9652 18.8305 24.4182 26.3462 27.5432 27.5432

0.17 15.3206 22.8423 25.3703 21.8020 29.0142 30.7114 32.6552 32.6552

0.28 16.8148 24.4339 27.0534 23.7048 32.0973 33.4830 35.1771 35.1771

FGV-CNT

0.12 12.2716 19.3900 20.9652 18.8305 24.4182 26.3462 27.5432 27.5432

0.17 15.3206 22.8423 25.3703 21.8020 29.0142 30.7114 32.6552 32.6552

0.28 16.8148 24.4339 27.0534 23.7048 32.0973 33.4830 35.1771 35.1771

FGX-CNT

0.12 13.2801 20.8041 22.2828 20.7267 27.5075 29.0560 29.7225 29.7225

0.17 16.7565 25.0030 27.2059 24.7818 33.6037 34.9173 35.9925 35.9925

0.28 18.0569 26.6800 28.6737 26.6242 36.4362 37.5207 38.2933 38.2933

FGO-CNT

0.12 11.4464 18.8696 20.3463 18.1069 23.1569 25.2541 29.7225 26.5735

0.17 14.2058 22.0359 24.5154 20.7113 27.2019 29.0735 35.9925 31.2253

0.28 15.7506 23.5927 26.2948 22.5337 30.2494 31.7811 33.8016 33.8016

Table 8.  Fundamental frequency parameters Ω for a FG-CNTRC beam with various boundary conditions.
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by these two present methods are compared with the available results previously reported, and both accuracy and 
satisfactory convergence are observed. The free-vibration characteristics of FG-CNTRC beams are analysed with 
a variety of key parameters, for example, the L/h ratio, CNT volume fraction, CNT distribution, boundary spring 
stiffness and shear correction factor. New vibration results containing frequency parameters and mode shapes for 
the FG-CNTRC beams with classical boundary conditions and elastic supports are calculated to provide reference 
data for practising engineers and act as a benchmark for future studies.

Data availability statement.  All data generated or analysed during this study are included in this pub-
lished article.

References
	 1.	 Salvetat-Delmotte, J.-P. & Rubio, A. Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40, 1729–1734, 

https://doi.org/10.1016/S0008-6223(02)00012-X (2002).
	 2.	 Gibson, R. F., Ayorinde, E. O. & Wen, Y.-F. Vibrations of carbon nanotubes and their composites: A review. Composites Science and 

Technology 67, 1–28, https://doi.org/10.1016/j.compscitech.2006.03.031 (2007).
	 3.	 Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 354, 56 (1991).
	 4.	 Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993).
	 5.	 Wagner, H. D., Lourie, O., Feldman, Y. & Tenne, R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer 

matrix. Applied Physics Letters 72, 188–190, https://doi.org/10.1063/1.120680 (1998).
	 6.	 Qian, D., Dickey, E. C., Andrews, R. & Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene 

composites. Applied Physics Letters 76, 2868–2870, https://doi.org/10.1063/1.126500 (2000).
	 7.	 Fiedler, B. et al. Fundamental aspects of nano-reinforced composites. Composites Science and Technology 66, 3115–3125, https://doi.

org/10.1016/j.compscitech.2005.01.014 (2006).
	 8.	 Han, Y. & Elliott, J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. 

Computational Materials Science 39, 315–323, https://doi.org/10.1016/j.commatsci.2006.06.011 (2007).
	 9.	 Wan, H., Delale, F. & Shen, L. Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites. 

Mechanics Research Communications 32, 481–489, https://doi.org/10.1016/j.mechrescom.2004.10.011 (2005).
	10.	 Coleman, J. N., Khan, U., Blau, W. J. & Gun’ko, Y. K. Small but strong: A review of the mechanical properties of carbon 

nanotube–polymer composites. Carbon 44, 1624–1652, https://doi.org/10.1016/j.carbon.2006.02.038 (2006).
	11.	 Yang, J. & Chen, Y. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures 83, 

48–60, https://doi.org/10.1016/j.compstruct.2007.03.006 (2008).
	12.	 Ke, L.-L., Yang, J. & Kitipornchai, S. Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end 

shortening. Composite Structures 90, 152–160, https://doi.org/10.1016/j.compstruct.2009.03.003 (2009).
	13.	 Shahba, A. & Rajasekaran, S. Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded 

materials. Applied Mathematical Modelling 36, 3094–3111, https://doi.org/10.1016/j.apm.2011.09.073 (2012).
	14.	 Shen, H.-S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. 

Composite Structures 91, 9–19, https://doi.org/10.1016/j.compstruct.2009.04.026 (2009).
	15.	 Lv, X., Shi, D., Wang, Q. & Liang, Q. 1953. A unified solution for the in-plane vibration analysis of multi-span curved Timoshenko 

beams with general elastic boundary and coupling conditions. Journal of Vibroengineering 18 (2016).
	16.	 Shao, D., Hu, S., Wang, Q. & Pang, F. A unified analysis for the transient response of composite laminated curved beam with 

arbitrary lamination schemes and general boundary restraints. Composite Structures 154, 507–526, https://doi.org/10.1016/j.
compstruct.2016.07.070 (2016).

	17.	 Shao, D., Hu, S., Wang, Q. & Pang, F. Free vibration of refined higher-order shear deformation composite laminated beams with 
general boundary conditions. Composites Part B: Engineering 108, 75–90, https://doi.org/10.1016/j.compositesb.2016.09.093 (2017).

	18.	 Shi, D., Wang, Q., Shi, X. & Pang, F. An accurate solution method for the vibration analysis of Timoshenko beams with general 
elastic supports. Proceedings of the Institution of Mechanical EngineersPart C: Journal of Mechanical Engineering Science 229, 
2327–2340, https://doi.org/10.1177/0954406214558675 (2015).

Figure 5.  The first three lowest mode shapes of a FGX-CNT beam with two typical elastic boundary conditions. 
Two beams are taken into account: (a) S-E1, L/h = 10, Vtcnt = 0.28 and (b) E2-E2, L/h = 10, Vtcnt = 0.28.

http://dx.doi.org/10.1016/S0008-6223(02)00012-X
http://dx.doi.org/10.1016/j.compscitech.2006.03.031
http://dx.doi.org/10.1063/1.120680
http://dx.doi.org/10.1063/1.126500
https://doi.org/10.1016/j.compscitech.2005.01.014
https://doi.org/10.1016/j.compscitech.2005.01.014
http://dx.doi.org/10.1016/j.commatsci.2006.06.011
http://dx.doi.org/10.1016/j.mechrescom.2004.10.011
http://dx.doi.org/10.1016/j.carbon.2006.02.038
http://dx.doi.org/10.1016/j.compstruct.2007.03.006
http://dx.doi.org/10.1016/j.compstruct.2009.03.003
https://doi.org/10.1016/j.apm.2011.09.073
http://dx.doi.org/10.1016/j.compstruct.2009.04.026
http://dx.doi.org/10.1016/j.compstruct.2016.07.070
http://dx.doi.org/10.1016/j.compstruct.2016.07.070
http://dx.doi.org/10.1016/j.compositesb.2016.09.093
http://dx.doi.org/10.1177/0954406214558675


www.nature.com/scientificreports/

17Scientific REPOrTS | 7: 12909  | DOI:10.1038/s41598-017-12596-w

	19.	 Wang, Q., Shi, D. & Liang, Q. Free vibration analysis of axially loaded laminated composite beams with general boundary conditions by 
using a modified Fourier–Ritz approach. Journal of Composite Materials 50, 2111–2135, https://doi.org/10.1177/0021998315602138 
(2016).

	20.	 Wu, H. L., Yang, J. & Kitipornchai, S. Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with 
geometric imperfections. Composites Part B: Engineering 90, 86–96, https://doi.org/10.1016/j.compositesb.2015.12.007 (2016).

	21.	 Yas, M. H. & Samadi, N. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on 
elastic foundation. International Journal of Pressure Vessels and Piping 98, 119–128, https://doi.org/10.1016/j.ijpvp.2012.07.012 
(2012).

	22.	 Rafiee, M., Yang, J. & Kitipornchai, S. Large amplitude vibration of carbon nanotube reinforced functionally graded composite 
beams with piezoelectric layers. Composite Structures 96, 716–725, https://doi.org/10.1016/j.compstruct.2012.10.005 (2013).

	23.	 Lin, F. & Xiang, Y. Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. 
Applied Mathematical Modelling 38, 3741–3754, https://doi.org/10.1016/j.apm.2014.02.008 (2014).

	24.	 Lin, F. & Xiang, Y. Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams. International 
Journal of Structural Stability & Dynamics 14, 133–146, https://doi.org/10.1142/S0219455413500569 (2013).

	25.	 Ke, L.-L., Yang, J. & Kitipornchai, S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. 
Composite Structures 92, 676–683, https://doi.org/10.1016/j.compstruct.2009.09.024 (2010).

	26.	 Jam, J. E. & Kiani, Y. Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal 
environment. Composite Structures 132, 35–43, https://doi.org/10.1016/j.compstruct.2015.04.045 (2015).

	27.	 Shao, D., Hu, F., Wang, Q., Pang, F. & Hu, S. Transient response analysis of cross-ply composite laminated rectangular plates with 
general boundary restraints by the method of reverberation ray matrix. Composite Structures 152, 168–182, https://doi.org/10.1016/j.
compstruct.2016.05.035 (2016).

	28.	 Wang, Q., Shi, D., Liang, Q. & Ahad, F. An improved Fourier series solution for the dynamic analysis of laminated composite 
annular, circular, and sector plate with general boundary conditions. Journal of Composite Materials 50, 4199–4233, https://doi.
org/10.1177/0021998316635240 (2016).

	29.	 Wang, Q., Shi, D., Liang, Q. & Pang, F. Free vibration of four-parameter functionally graded moderately thick doubly-curved panels 
and shells of revolution with general boundary conditions. Applied Mathematical Modelling, https://doi.org/10.1016/j.
apm.2016.10.047.

	30.	 Shao, D., Hu, S., Wang, Q. & Pang, F. An enhanced reverberation-ray matrix approach for transient response analysis of composite 
laminated shallow shells with general boundary conditions. Composite Structures 162, 133–155, https://doi.org/10.1016/j.compst-
ruct.2016.11.085 (2017).

	31.	 Wang, Z.-X. & Shen, H.-S. Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Computational 
Materials Science 50, 2319–2330, https://doi.org/10.1016/j.commatsci.2011.03.005 (2011).

	32.	 Zhang, L. W., Lei, Z. X. & Liew, K. M. Free vibration analysis of functionally graded carbon nanotube-reinforced composite 
triangular plates using the FSDT and element-free IMLS-Ritz method. Composite Structures 120, 189–199, https://doi.org/10.1016/j.
compstruct.2014.10.009 (2015).

	33.	 Rafiee, M., He, X. Q. & Liew, K. M. Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced 
composite plates with initial geometric imperfection. International Journal of Non-Linear Mechanics 59, 37–51, https://doi.
org/10.1016/j.ijnonlinmec.2013.10.011 (2014).

	34.	 Ke, L.-L., Yang, J., Kitipornchai, S. & Bradford, M. A. Bending, buckling and vibration of size-dependent functionally graded annular 
microplates. Composite Structures 94, 3250–3257, https://doi.org/10.1016/j.compstruct.2012.04.037 (2012).

	35.	 Wang, Q., Pang, F., Qin, B. & Liang, Q. A unified formulation for free vibration of functionally graded carbon nanotube reinforced 
composite spherical panels and shells of revolution with general elastic restraints by means of the Rayleigh-Ritz method. Polymer 
Composites, https://doi.org/10.1002/pc.24339 (2017).

	36.	  Xiang, H. J. & Shi, Z. F. Analysis of flexural vibration band gaps in periodic beams using differential quadrature method. Computers 
& Structures 87, 1559–1566, doi:https://doi.org/10.1016/j.compstruc.2009.07.009(2009).

	37.	 Yas, M. H. & Heshmati, M. Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon 
nanotube under the action of moving load. Applied Mathematical Modelling 36, 1371–1394, https://doi.org/10.1016/j.
apm.2011.08.037 (2012).

	38.	 Li, W. L. Free vibrations of beams with general boundary conditions. Journal of Sound and Vibration 237, 709–725, https://doi.
org/10.1006/jsvi.2000.3150 (2000).

	39.	 Wang, Q., Shi, D., Liang, Q. & Pang, F. A unified solution for vibration analysis of moderately thick functionally graded rectangular 
plates with general boundary restraints and internal line supports. Mechanics of Advanced Materials and Structures 24, 943–961, 
https://doi.org/10.1080/15376494.2016.1196797 (2016).

	40.	 Wang, Q., Shi, D., Liang, Q. & Shi, X. A unified solution for vibration analysis of functionally graded circular, annular and sector 
plates with general boundary conditions. Composites Part B: Engineering 88, 264–294, https://doi.org/10.1016/j.
compositesb.2015.10.043 (2016).

	41.	 Shi, D., Liang, Q., Wang, Q. & Teng, X. A unified solution for free vibration of orthotropic circular, annular and sector plates with 
general boundary conditions. Journal of Vibroengineering 18, 3138–3152 (2016).

	42.	 Shi, D., Lv, X., Wang, Q. & Liang, Q. A unified solution for free vibration of orthotropic annular sector thin plates with general 
boundary conditions, internal radial line and circumferential arc supports. Journal of Vibroengineering 18, 361–377 (2016).

	43.	 Shi, D., Wang, Q., Shi, X. & Pang, F. A series solution for the in-plane vibration analysis of orthotropic rectangular plates with non-
uniform elastic boundary constraints and internal line supports. Archive of Applied Mechanics 85, 51–73, https://doi.org/10.1007/
s00419-014-0899-x (2015).

	44.	 Wang, Q., Shi, D. & Shi, X. A modified solution for the free vibration analysis of moderately thick orthotropic rectangular plates with 
general boundary conditions, internal line supports and resting on elastic foundation. Meccanica 51, 1985–2017, https://doi.
org/10.1007/s11012-015-0345-3 (2016).

	45.	 Shi, X., Shi, D., Li, W. L. & Wang, Q. A unified method for free vibration analysis of circular, annular and sector plates with arbitrary 
boundary conditions. Journal of Vibration and Control 22, 442–456, https://doi.org/10.1177/1077546314533580 (2016).

	46.	 Wang, Q., Shi, D. & Liang, Q. & e Ahad, F. A unified solution for free in-plane vibration of orthotropic circular, annular and sector 
plates with general boundary conditions. Applied Mathematical Modelling 40, 9228–9253, https://doi.org/10.1016/j.apm.2016.06.005 
(2016).

	47.	 Zhang, H., Shi, D. & Wang, Q. An improved Fourier series solution for free vibration analysis of the moderately thick laminated 
composite rectangular plate with non-uniform boundary conditions. International Journal of Mechanical Sciences 121, 1–20, 
doi:https://doi.org/10.1016/j.ijmecsci.2016.12.007(2016).

	48.	 Wang, Q., Shi, D. & Pang, F. & e Ahad, F. Benchmark solution for free vibration of thick open cylindrical shells on Pasternak 
foundation with general boundary conditions. Meccanica 52, 457–482, https://doi.org/10.1007/s11012-016-0406-2 (2017).

	49.	 Jin, G., Ye, T., Chen, Y., Su, Z. & Yan, Y. An exact solution for the free vibration analysis of laminated composite cylindrical shells 
with general elastic boundary conditions. Composite Structures 106, 114–127, https://doi.org/10.1016/j.compstruct.2013.06.002 
(2013).

	50.	 Su, Z., Jin, G., Shi, S. & Ye, T. A unified accurate solution for vibration analysis of arbitrary functionally graded spherical shell 
segments with general end restraints. Composite Structures 111, 271–284, https://doi.org/10.1016/j.compstruct.2014.01.006 (2014).

http://dx.doi.org/10.1177/0021998315602138
https://doi.org/10.1016/j.compositesb.2015.12.007
http://dx.doi.org/10.1016/j.ijpvp.2012.07.012
https://doi.org/10.1016/j.compstruct.2012.10.005
http://dx.doi.org/10.1016/j.apm.2014.02.008
http://dx.doi.org/10.1142/S0219455413500569
http://dx.doi.org/10.1016/j.compstruct.2009.09.024
https://doi.org/10.1016/j.compstruct.2015.04.045
http://dx.doi.org/10.1016/j.compstruct.2016.05.035
http://dx.doi.org/10.1016/j.compstruct.2016.05.035
http://dx.doi.org/10.1177/0021998316635240
http://dx.doi.org/10.1177/0021998316635240
http://dx.doi.org/10.1016/j.apm.2016.10.047
http://dx.doi.org/10.1016/j.apm.2016.10.047
http://dx.doi.org/10.1016/j.compstruct.2016.11.085
http://dx.doi.org/10.1016/j.compstruct.2016.11.085
http://dx.doi.org/10.1016/j.commatsci.2011.03.005
http://dx.doi.org/10.1016/j.compstruct.2014.10.009
http://dx.doi.org/10.1016/j.compstruct.2014.10.009
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.10.011
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.10.011
https://doi.org/10.1016/j.compstruct.2012.04.037
http://dx.doi.org/10.1002/pc.24339
http://dx.doi.org/10.1016/j.compstruc.2009.07.009(2009)
http://dx.doi.org/10.1016/j.apm.2011.08.037
http://dx.doi.org/10.1016/j.apm.2011.08.037
http://dx.doi.org/10.1006/jsvi.2000.3150
http://dx.doi.org/10.1006/jsvi.2000.3150
http://dx.doi.org/10.1080/15376494.2016.1196797
http://dx.doi.org/10.1016/j.compositesb.2015.10.043
http://dx.doi.org/10.1016/j.compositesb.2015.10.043
http://dx.doi.org/10.1007/s00419-014-0899-x
http://dx.doi.org/10.1007/s00419-014-0899-x
http://dx.doi.org/10.1007/s11012-015-0345-3
http://dx.doi.org/10.1007/s11012-015-0345-3
https://doi.org/10.1177/1077546314533580
http://dx.doi.org/10.1016/j.apm.2016.06.005
http://dx.doi.org/10.1016/j.ijmecsci.2016.12.007(2016)
https://doi.org/10.1007/s11012-016-0406-2
https://doi.org/10.1016/j.compstruct.2013.06.002
https://doi.org/10.1016/j.compstruct.2014.01.006


www.nature.com/scientificreports/

1 8Scientific REPOrTS | 7: 12909  | DOI:10.1038/s41598-017-12596-w

	51.	 Shi, D., Zhao, Y., Wang, Q., Teng, X. & Pang, F. A unified spectro-geometric-Ritz method for vibration analysis of open and closed 
shells with arbitrary boundary conditions. Shock and Vibration 2016, 1–30, https://doi.org/10.1155/2016/4097123 (2016).

	52.	 Wang, Q., Shi, D., Pang, F. & Liang, Q. Vibrations of Composite Laminated Circular Panels and Shells of Revolution with General 
Elastic Boundary Conditions via Fourier-Ritz Method. Curved and Layered Structures 3, 105–136, https://doi.org/10.1515/cls-2016-
0010 (2016).

	53.	 Wang, Q., Shi, D., Liang, Q. & Pang, F. Free vibrations of composite laminated doubly-curved shells and panels of revolution with 
general elastic restraints. Applied Mathematical Modelling 46, 227–262, https://doi.org/10.1016/j.apm.2017.01.070 (2017).

	54.	 Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. & Sadeghi, F. Nonlinear forced vibration analysis of functionally graded 
carbon nanotube-reinforced composite Timoshenko beams. Composite Structures 113, 316–327, https://doi.org/10.1016/j.
compstruct.2014.03.015 (2014).

	55.	 Shen, H.-S. & Xiang, Y. Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal 
environments. Engineering Structures 56, 698–708, https://doi.org/10.1016/j.engstruct.2013.06.002 (2013).

Acknowledgements
The authors would like to thank the anonymous reviewers for their very valuable comments. The authors are 
most appreciative of the support from the National Natural Science Foundation of China (Grant No. 51479041, 
51705537 and 51679056).

Author Contributions
Q.W. conceived the idea of the project. Z.S., X.Y. and F.P. developed the theoretical formulations and the 
numerical simulation. Z.S. wrote the manuscript. All authors read and edited the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-12596-w.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

https://doi.org/10.1155/2016/4097123
https://doi.org/10.1515/cls-2016-0010
https://doi.org/10.1515/cls-2016-0010
https://doi.org/10.1016/j.apm.2017.01.070
http://dx.doi.org/10.1016/j.compstruct.2014.03.015
http://dx.doi.org/10.1016/j.compstruct.2014.03.015
https://doi.org/10.1016/j.engstruct.2013.06.002
http://dx.doi.org/10.1038/s41598-017-12596-w
http://creativecommons.org/licenses/by/4.0/

	An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with ar ...
	Theory and formulation. 
	Numerical results and discussions. 
	Convergence and validation. 
	Parametric studies. 
	Conclusions

	Data availability statement. 

	Acknowledgements

	Figure 1 Geometry and coordinate system of a CNTRC beam.
	Figure 2 Cross section of UD, FG-Λ, FG-V, FG-O and FG-X CNTRC beams.
	Figure 3 The first three lowest frequency parameters Ω of FG-CNTRC beams with various length-to-thickness ratios.
	Figure 4 Variation of the first three dimensionless frequencies Ω versus the elastic restraint parameters for FG-CNTRC beams with various CNT distributions: (a) UD-CNT, (b) FGΛ-CNT, and (c) FGX-CNT.
	Figure 5 The first three lowest mode shapes of a FGX-CNT beam with two typical elastic boundary conditions.
	Table 1 Convergence of the first four lowest frequency parameters Ω for a perfectly clamped FGV-CNT beam (Vtcnt = 0.
	Table 2 Comparison of the first three frequency parameters for FG-CNTRC beams with various CNT distributions and boundary conditions (L/h = 15, Vtcnt = 0.
	Table 3 Comparison of the first three dimensionless frequencies for FG-CNTRC beams with various CNT distributions and volume fractions (L/h = 15, C-S).
	Table 4 Comparison of the first three frequency parameters Ω of simply supported FG-CNTRC beam with various volume fractions (L/h = 25, h = 0.
	Table 5 First three frequency parameters Ω for FG-CNTRC beams with various CNT distributions (L/h = 10, Vtcnt = 0.
	Table 6 First three dimensionless frequencies for FG-CNTRC beams with various total CNT volume fractions (L/h = 10).
	Table 7 Fundamental frequency parameters Ω for FG-CNTRC beams with various shear correction factors.
	Table 8 Fundamental frequency parameters Ω for a FG-CNTRC beam with various boundary conditions.




