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Entropy production and non-
Markovian dynamical maps
S. Marcantoni   1,2, S. Alipour3, F. Benatti   1,2, R. Floreanini2 & A. T. Rezakhani4

In the weak-coupling limit approach to open quantum systems, the presence of the bath is eliminated 
and accounted for by a master equation that introduces dissipative contributions to the system 
reduced dynamics: within this framework, there are no bath entropy contributions to the entropy 
balance. We show that, as a consequence, the entropy production fails to be positive for a class of 
physically legitimate, that is completely positive and trace preserving, non-Markovian dynamical maps. 
Moreover, in absence of the semigroup property, if the reduced dynamics has a thermal asymptotic 
state, this need not be stationary. Then even the integrated entropy production becomes negative. 
These observations imply that, when the conditions leading to reduced dynamics of semigroup type are 
relaxed, a consistent formulation of the second law of thermodynamics requires that the environment 
contribution to the entropy balance be explicitly taken into account.

Since the late seventies the laws of thermodynamics have been formulated for an open quantum system interact-
ing with a reservoir (called also alternatively, “environment” or “bath”) in equilibrium at inverse temperature β 
using the theory of quantum dynamical semigroups1. In this approach, a reduced dynamics for an open quantum 
system is obtained through so-called weak-coupling limit techniques based on three hypotheses: 1) that the envi-
ronment be weakly coupled to the system of interest, 2) that the initial common state be factorized and 3) that 
the time scales of system and environment be clearly separated so that a Markovian approximation is feasible. 
It follows that the reduced dynamics consists of a semigroup of trace-preserving completely positive dynamical 
maps affecting only the degrees of freedom of the subsystem: the presence of the bath is eliminated and accounted 
for by a dissipative modification of the master equation that effectively embodies bath induced noisy and damping 
effects. Within this framework, it has been shown that the entropy production, defined in analogy with classical 
irreversible thermodynamics2 as the difference between the total entropy variation and the entropy flux due to 
the heat exchange with the environment, can be related to the time-derivative of the relative entropy and is always 
nonnegative3,4. This important property has been proposed as a statement of the second law of thermodynamics 
in a context where no entropic bath terms contribute directly to the entropy balance. However, this formulation 
of the second law relies on both the semigroup composition law and on the assumption of a thermal asymptotic 
state. Though a more general formulation can be given for a quantum dynamical semigroup relaxing to a state 
that is not in the Gibbs form5, in this case a direct thermodynamic interpretation of the relative entropy is not 
available.

In the last decade, non-Markovian dynamics of open quantum systems received considerable attention since 
a realistic description of many physical open quantum systems in interaction with their environment requires to 
relax the third hypothesis of above, thus renouncing the usual Markovian approximation6–8. Even though the very 
definition of Markovianity in the quantum domain is still debated, in the following we adopt the point of view of 
refs9,10 associating a non-Markovian behavior with the lack of a property known as “CP-divisibility”.

The thermodynamics of an open quantum system experiencing a non-Markovian time evolution is an inter-
esting subject of current research11,12. In particular, it is worth studying whether the second law of thermody-
namics can be derived from the properties of the dynamical maps as in the Markovian case. It has been argued in 
refs13,14 that non-completely-positive (non-CP) dynamics can lead to a negative entropy production and hence 
to a violation of the second law of thermodynamics. We, however, show in this paper that a negative entropy 
production can also occur for a class of CP (thus physically legitimate) non-Markovian dynamics. We argue 
that this interesting outcome should not be interpreted as a violation of the second law of thermodynamics but 
as an evidence that, by relaxing the conditions leading to reduced dynamical maps of semigroup type, a proper 
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formulation of the laws of thermodynamics can only be obtained by explicitly dealing with the environment. As 
a consequence, the second law of thermodynamics must be expressed in terms of the sum of the variations of the 
entropy of both open quantum system and environment which, in absence of initial correlations between the two 
systems is known to be non-negative15–17. Whether this argument also extends to more general approaches that 
go beyond the weak-coupling limit, for instance by considering correlations in the bath higher than the second 
order18, is an interesting open problem, deserving a separate investigation.

In the following, we first review the standard thermodynamic description of open quantum systems in the 
Markovian case, with particular emphasis on what has been proposed as a statement of the second law. Then, we 
briefly present the basic features of non-Markovian dynamical maps. We concentrate on evolutions that thermal-
ize the system to a unique Gibbs state, so that we can write the entropy production by means of a well-defined 
reference temperature. Subsequently, we firstly discuss an example of non-Markovian dynamics in which the 
entropy production is not always positive and an example showing that the integrated entropy production can 
be negative too if the asymptotic thermal state is not an invariant state for the dynamics. This can happen when 
the semigroup property does not hold19. Finally, we comment on when the necessary positivity of the entropy 
balance of open system and bath together leads to the positivity of the entropy production for the open system 
alone, showing that the connection can fail by means of a third example. The paper is concluded with some final 
remarks.

Thermodynamics of an open quantum system
Consider a (possibly driven) open quantum system with (a possibly time-dependent) Hamiltonian Hτ described 
by a finite-dimensional Hilbert space , whose state at time τ (where τ ⩾ 0) is given by ρτ. The internal energy is 
given by

 ρ=τ τ τH: Tr[ ], (1)

and one can distinguish the heat and work contributions to its time variation ( ∂τ τ) as follows3:

 ρ∂ = ∂τ τ τ τ τH: Tr[ ], (2)

 ρ∂ = ∂ .τ τ τ τ τH: Tr[ ] (3)

This is a reasonable choice since the work power vanishes if the Hamiltonian is time-independent, namely if there 
is no external driving; whereas the heat flux is zero when the system is isolated from any kind of environment and 
thus evolves according to the Schrödinger time evolution generated by Hτ. In the following, we concentrate on 
undriven open quantum systems (where Hτ = H) exchanging heat with their environment, which is taken to be a 
heat bath at inverse temperature β (note that an explicitly time-dependent Hamiltonian can always be considered 
by extending the formalism as done in ref.3).

Concerning the entropy balance, one can use the von Neumann entropy  to describe the total entropy of the 
system out of equilibrium and define the entropy production στ in analogy with classical irreversible 
thermodynamics,

 ρ ρ= −τ τ τ: Tr[ log ], (4)

S Qσ β= ∂ − ∂ .τ τ τ τ τ: (5)

Throughout the paper we assume kB ≡ ħ ≡ 1. A straightforward calculation shows that στ can be conveniently 
rewritten in terms of the derivative of the relative entropy between the state ρτ and the Gibbs state ρ(β) = e−βH/
Tr[e−βH], i.e.,

σ ρ ρ= −∂τ τ τ
β( ), (6)

( )

where  ρ ρ ρ ρ ρ ρ′ = − ′( ) : Tr[ log log ]. Equation (6) holds provided that the Hamiltonian is time-independent 
and that the environment is a heat bath in thermal equilibrium, without other dynamical assumptions.

If the reduced dynamics of the open quantum system is described by a master equation in the Lindblad form 
such that the unique asymptotic state is a Gibbs thermal state at the heat bath temperature,

  ∑ρ ρ ρ ρ ρ ρ ρ ρ∂ = − + = − =τ τ τ τ τ τ τ τ τ
β

→∞

† †( { })i H V V V V[ , ] [ ], [ ] , , lim ,
(7)k

k k k k
1
2

( )

one can consistently express the second law of thermodynamics through the nonnegativity of the entropy produc-
tion στ ⩾ 03. The proof is based on the fact that any asymptotic state is necessarily also an invariant state for the 
dynamics due to the semigroup property (given ρτ = Λτ[ρ0], one has Λτ+δ = ΛτΛδ) and that the relative entropy is 
decreasing under CP maps20,

 

 

ρ ρ ρ ρ

δ
ρ ρ ρ ρ

∂ Λ = ∂ Λ Λ

= Λ Λ Λ Λ − Λ Λ .

τ τ
β

τ τ τ
β

δ
δ τ δ τ

β
τ τ

β

→ +
⩽( )

( [ ] ) ( [ ] [ ])

lim 1 ( [ ] [ ]) ( [ ] [ ]) 0
(8)

0
( )

0
( )

0 0
( )

0
( )
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In the above approach the dynamics of the open quantum system is dissipative due to the presence of a suita-
ble environment. However, its presence is not explicitly taken into account in the two definitions (2) and (3). 
A different perspective was recently considered towards a formulation of thermodynamics of two interacting 
quantum systems none of which can be neglected21. In this case, the heat balance relation strongly depends on the 
correlations between the two parties built up through the interactions. We shall use this approach in Example III.

Non-Markovian dynamical maps
Recently, the study of non-Markovian quantum dynamical maps has received much attention because of the high 
degree of control reached in many experimental setups that allows to exploit physical effects not explainable with 
the use of a quantum dynamical semigroup. Although various approaches exist in the literature, a general formu-
lation of non-Markovianity is still under debate6.

In this work, we use the definition adopted in ref.9, where the non-Markovianity is associated with the lack of 
CP-divisibility of a dynamical map. A (CP and trace-preserving) dynamical map Λτ is called CP-divisible if one 
can write

 τΛ = Λτ τ ⩽ ⩽s, 0 , (9)s s,

such that the intertwining map τ s,  is CP for all τ,s. The quantum dynamical semigroup generated by the Lindblad 
master equation (7) obviously satisfies this property because there we have  = Λτ τ−s s, . When τ s,  is positive, the 
map Λτ is called P-divisible (which is weaker than CP-divisibility). Most non-Markovianity measures are based 
on P-divisibility6.

Following ref.22, we call a dynamical map which is not even P-divisible an essentially non-Markovian map.
In order to have a meaningful thermodynamic interpretation of this kind of dynamics and to compare it with 

the situation described in the previous section, we restrict to those evolutions that have a Gibbs state ρ(β) as their 
unique asymptotic state. In this case, one can use β−1 as a reference equilibrium temperature and the entropy pro-
duction στ reads as in Eq. (6). For a non-Markovian evolution the asymptotic state is not necessarily an invariant 
state of the dynamics19, thus we can distinguish two different situations,

	 (i)	 τ ρ ρ∀ Λ =τ
β β[ ]( ) ( ),

	(ii)	 τ ρ ρ∃ Λ ≠τ
β βsuch that [ ]( ) ( ).

In the first case, since Λτ is always taken to be CP, the integrated entropy production ∫ σ τΣ =
′

′τ
τ

τ: d
0

 is always 
nonnegative. Indeed, by means of Eq. (6), one obtains

   ρ ρ ρ ρ ρ ρ ρ ρΣ = − Λ = − Λ Λτ
β

τ
β β

τ τ
β ⩾( ) ( [ ] ) ( ) ( [ ] [ ]) 0, (10)0

( )
0

( )
0

( )
0

( )

where we have used that the relative entropy monotonically decreases under completely positive maps and prop-
erty (i). Note, however, that the rate στ can become temporarily negative if the dynamics is essentially 
non-Markovian (i.e., not P-divisible). Instead, it has been recently proved that if Λτ is at least P-divisible, then 
 ρ ρ∂ Λ Λτ τ τ ⩽( [ ] [ ]) 01 2 , for any pair of density matrices ρ1 and ρ2

23; in which case σ τ∀τ ⩾ 0 . Concerning the 
lack of P-divisibility, in Example I, we discuss a dynamics which fulfills property (i) but with στ < 0 in a certain 
time interval.

In case (ii) the above line of argumentation cannot be used to show that Στ ⩾ 0 because the necessary substi-
tution ρ(β) → Λτ[ρ(β)] is not allowed. In fact, in Example II, we show that the inequality in Eq. (10) may be 
violated.

We argue that in a non-Markovian context a possible negative entropy production is not directly associated 
with a violation of the second law of thermodynamics. Rather, it indicates that the presence of the environment 
at the origin of the dissipative dynamics cannot be entirely neglected. This point of view is also supported by the 
characterization of non-Markovianity in terms of a backflow of information from the environment to the system. 
Indeed, lack of P-divisibility can make the distinguishability of two states of the system increase in time6. One may 
then relate such a behavior to processes that cause the entropy of the environment to increase. In fact, the main 
purpose of this work is to motivate and support the point of view that a proper formulation of the second law 
of thermodynamics for a non-Markovian open quantum system cannot be based only on its reduced dynamical 
maps. In this respect, it seems better to follow the approach of refs16,21 and consider explicitly the reservoir in the 
entropy balance—as we will explicitly do in Example III.

Example I: Qubit in a thermal bath
As a first example, we consider the following master equation11:

ρ ω σ ρ
γ

σ ρ σ σ σ ρ
γ

σ ρ σ σ σ ρ∂ = − 



 +

+
− + −τ τ τ

τ
τ τ

τ
τ τ− + + − + − − +( { }) ( { })i n n

2
, ( 1)

2
2 ,

2
2 , , (11)z

where n = (eβω − 1)−1, γτ is a time-dependent damping rate, and σa (a ∈ {x, y, z}) are the Pauli matrices (with 
σ± = σx ± iσy). By choosing a constant damping, we can readily recover the usual Lindblad master equation for a 
qubit interacting with a thermal bath at inverse temperature β. One can show that Eq. (11) generates a CP dynam-
ical map Λτ iff ∫ γ τ′

τ
τ′ ⩾d 0

0
 (see Theorem 3.1 in ref.24). Moreover, Λτ is both CP-divisible and P-divisible iff 

γτ ⩾ 022.
By means of the Bloch representation
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ρ σ σ σ= + + +( )x y z1
2

1 (12)x y z

of ρ, the solution of Eq. (11) in terms of the Bloch vector components, (x, y, z), reads

± = ±τ τ
ωτ−Γ ±τx iy x iye ( ), (13)

i
0 0

= − +τ
− Γ

∞ ∞
τz z z ze ( ) , (14)2

0

where ∫βω γ τΓ = ′τ
τ

τ′(1/2)coth( /2) d
0

 and z∞ = −tanh(βω/2). Note that the Gibbs state is an invariant state of 
the dynamics and it is also the unique asymptotic state provided that Γ = ∞τ τ→∞lim . Hence, the integrated 
entropy production Στ is nonnegative because of Eq. (10). Nevertheless, we could expect the entropy production 
to become transiently negative when the dynamics fails to be P-divisible, i.e., becoming essentially 
non-Markovian. This is indeed the case as we show in the following.

A straightforward calculation yields the heat flux as

 ω ω γ βω βω∂ = ∂ = − +τ τ τ τ τ
− Γτ ( )z z

2 2
coth( /2) e tanh( /2) , (15)

2
0

so that its sign depends both on the initial condition and on the instantaneous rate γτ. The entropy variation is 
written by means of the eigenvalues (1 ± rτ)/2 of the density matrix as



γ
βω βω

∂ = −
+
−

∂

= ×
+
−

× + + +

τ τ
τ

τ
τ τ

τ

τ

τ

τ
τ τ τ τ

( )
( ) ( )

r
r

r

r
r
r

x y z z

1
2

log 1
1

4
coth( /2) log 1

1
2 2 tanh( /2) ,

(16)
2 2 2

where = + +τ τ τ τr x y z2 2 2 , and the sign of ∂τ τ again depends on the rate γτ and on the initial condition, as one 
can see rewriting the term in the last bracket as

βω+ + + = − + + + − .τ τ τ τ
− Γ

∞
− Γ

∞ ∞
τ τx y z z z z x y z z z2 2 tanh( /2) e ( ) e ( ( ) ) (17)

2 2 2 4
0

2 2
0
2

0
2

0

The entropy production thus reads

σ γ βω

βω

= 
 + + + | |

+
−

+ + | | −
| | +

−



τ τ
τ

τ

τ

τ

τ

τ

− Γ − Γ
∞

∞
∞

τ τ( ) ( )
( ) ( ( ))

x y z z
r

r
r

z z z
r

r
r

coth( /2) e 2e [ ] 1
4

log 1
1

2 2
log 1

1
,

(18)

2
0
2

0
2 2

0
2

0

We prove in the Supplementary Information that the expression in the square brackets above is always positive, 
whence the sign of στ corresponds to the sign of γτ. In other words, whenever the damping rate is negative (so 
that the dynamics is essentially non-Markovian), the entropy production becomes negative too.

We stress the fact that a physically legitimate dynamics, namely CP and trace-preserving, can lead to a nega-
tive entropy production. This property is associated with the lack of P-divisibility, that is, it arises in the class of 
essential non-Markovian maps.

Example II: Qubit amplitude damping channel
This second example aims at highlighting the role of the existence of an asymptotic non-invariant state concern-
ing the entropy production. Consider a generalized amplitude damping channel Φ ⋅ = ∑ ⋅=

†E E[ ] ( )i i i0
3  where

⟩⟨ ⟩⟨ ⟩⟨

⟩⟨ ⟩⟨ ⟩⟨

γ γ

γ γ

= | | + − | | = | |

= − − | | + | | = − | |

E p E p

E p E p
( 0 0 1 1 1 ), 0 1 ,

1 ( 1 0 0 1 1 ), (1 ) 1 0 , (19)

0 1

2 3

and p, γ ∈ [0, 1]20. Adjusting the parameters pτ and γτ as suitable functions of time, one can construct a physically 
legitimate dynamics namely a one-parameter family of CP and trace-preserving maps Φτ as

ρ σ σ σ ρ σ σ σ= + + + Φ = + + +τ τ τ τ( ) ( )x y z x y z1
2

1 [ ] 1
2

1 , (20)x y z x y z0 0

where the Bloch representation (12) of the density matrix has been used. Explicitly, the Bloch vector components 
at time τ read

γ γ γ γ± = − ± = − + + − .τ τ τ τ τ τ τ τx iy x iy z p z1 ( ), 2 (1 ) (21)0 0 0

We can impose a unique asymptotic state to exist for this family of dynamical maps by means of the condition 
γ∞ = 1; moreover, it is a Gibbs state ρ =β βσ βσ− −e /Tr[e ]( ) z z , if the further condition 2p∞ − 1 = −tanh(β) is ful-
filled. The initial condition instead implies that γ0 = 0. We can choose the time dependence of p and γ such that 
they become compatible with all these constraints. A possibility is to set
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ετ β γ− = − = −τ
ετ

τ
λτ− −p2 1 e sin ( ) tanh( ), 1 e , (22)

2 2

so that a quantum dynamical semigroup is recovered for ε = 0. This can be seen from the time-dependent gen-
erator of Φτ,

 σ σ σ σ σ σ σ σ⋅ = ⋅ − ⋅ + ⋅ − ⋅τ τ τ
−

− + + −
+

+ − − +( { }) ( { })a a[ ] ( ) 1
2

, ( ) 1
2

, , (23)
( ) ( )

where

γ
γ γ=



 −

∂ ± ∂


τ

τ

τ
τ τ τ τ τ

±
±

a
p

p1
4 1

,
(24)

( )
( )

with = −τ τ
−p p1( )  and =τ τ

+p p( ) , which becomes a time-independent Lindbladian in the limit ε → 0.
The quantity of interest is the difference between the relative entropies [Eq. (10)],

 ρ ρ ρ ρ

β

Σ = −

= −




−
−



 −





+
−



 +





+
−



 + −

τ
β

τ
β

τ τ τ

τ
τ

r
r

r r
r

r r
r

z z

( ) ( )

1
2

log 1
1 2

log 1
1 2

log 1
1

( ),
(25)

0
( ) ( )

2

0
2

0 0

0
0

where rτ has been defined as in Example II, the length of the Bloch vector. If we consider the special case where 
x0 = y0 = z0 = 0 (implying in turn rτ = |zτ|), Eq. (25) is simplified as follows:

Σ = −
+ | | 

 + | | −
− | | 

 − | | .τ
τ

τ
β τ

τ
βτ τ( ) ( )z z z z1

2
log 1 e 1

2
log 1 e (26)

z z

Figure 1 depicts this quantity for β = 0.1 and ε = λ = 1, which explicitly shows that Στ ⩽ 0 in a certain time 
interval.

On the basis of these two examples, one may conclude that either the second law of thermodynamics can 
be violated by physically legitimate dynamical maps, or a more careful formulation of the second law should 
be given. The latter possibility seems more natural in particular because a general statement has been proven in 
refs15–17 considering explicitly both system S and bath B in the entropy balance. Specifically, it has been shown that

 ∆ + ∆τ τ ⩾ 0, (27)S B, ,

where   ∆ = −τ τ:S S S, , ,0 and   ∆ = −τ τ:B B B, , ,0. This inequality is valid provided that the initial state of the 
composite system SB is factorized, without further particular restrictions on the reduced dynamics of S or B. 
Indeed, under this condition one can see that

   ρ ρ ρ∆ + ∆ = ⊗ .τ τ τ τ τ ⩾( ) 0 (28)S B SB S B, , , , ,

In this respect, Eq. (27) should be considered as a general formulation of the second law.
Conversely, we have shown that the validity of στ ⩾ 0 is subject to further dynamical constraints. Heuristically, 

one can think of obtaining στ ⩾ 0 as a particular case of relation (27) in three steps. First, one should assume that 
relation (27) holds also in a differential form,  ∂ + ∂τ τ τ τ ⩾ 0S B, , . Moreover, since the bath is usually considered 
in thermal equilibrium at inverse temperature β, one can use the relation S Qβ∂ = ∂τ τ τ τB B, , . Finally, the heat flux 
of the bath is basically related to the heat flux of the system as  ∂ = −∂τ τ τ τB S, , . These assumptions, although 
reasonable, can be violated if the system and the bath are strongly coupled and correlated. Thus one should not 
consider στ ⩾ 0 as an a priori valid formulation of the second law.

Figure 1.  Transient negativity of the integrated entropy production Στ.
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Example III: Dephasing qubit
In this section we use the approach presented in ref.21 (and mentioned after Eq. 8), which explicitly considers the 
presence of a second system interacting with the one of thermodynamic interest—without eliminating it by any 
effective procedure as in the usual weak-coupling limit. In this framework, ∆ τB,  is explicitly computed, together 
with ∆ τS , , and the previous inequality (27) naturally arises. Instead, the three assumptions mentioned after Eq. 
(27) that relate στ and Eq. (27) are in general violated, as shown in the following example.

Consider a total Hamiltonian given by Htot = HS + HB + Hint with

† †∑ ∑
ω

σ ω λσ= = = ⊗ +
=

∞

=

∞
∗( )H H H f f

2
, a a , a a ,

(29)S z B
k

k k k z
k

k k k k
0

1
int

1

where ak is the bosonic annihilation operator of mode k, satisfying the canonical commutation relations 
δ=†[a , a ]k l kl, and the complex parameters fk are such that ∑ < ∞=

∞ fk k1
2 . We assume that the initial state of the 

total system can be written as ρ ρ ρ= ⊗ β
SB S B,0 ,0

( ), where ρS,0 is the initial state of the qubit and ρ β
B
( ) is the Gibbs 

state of the thermal bath at inverse temperature β,

∑ρ ρ ρ σ=
′

′ = = − .β
β ω

β ω
′=

− ∑

− ∑
   

 





†

†, e

Tr[e ]
, ( )

(30)
S B z,0

, 0

1
( )

a a

a a

k k k k

k k k k

The dynamics of the total system can be analytically solved (see ref.21 for details) and by partial tracing one can 
obtain the reduced density matrices of the two subsystems at any time, ρS,τ and ρB,τ. One can quantify the correla-
tions between S and B through the operator χτ =:  ρSB,τ − ρS,τ ⊗ ρB,τ, which plays a prominent role in the approach 
of ref.21. This can be seen from the variation of the total energy  ρ= τH: Tr [ ]SBtot tot ,  as

 ρ ρ ρ ρ χ

ρ ρ χ

∂ = 
 ∂ ⊗ 

 + 
 ⊗ ∂ 

 + ∂

= 
∂

′ 
 + 

∂
′ 

 + ∂

=

τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

H H H

H H H

Tr Tr Tr[ ]

Tr Tr Tr[ ]

0, (31)

S B S B

S S B B

tot tot , tot , , tot

, , , , int

where a modified Hamiltonian ′ τHa,  (a ∈ {S, B}) has been defined for each subsystem as

ρ′ = + 



τ τH H H: Tr , (32)S S B B, , int

(and similarly for ′ τHB, ) and the last equality in Eq. (31) holds because the global unitary evolution is generated by 
Htot. These are the same Hamiltonians that one finds in the evolution equation for the reduced density matrices

ρ ρ χ∂ = − ′ −τ τ τ τ τi H i H[ , ] Tr [ , ], (33)S S S B, , , int

ρ ρ χ∂ = − ′ −τ τ τ τ τi H i H[ , ] Tr [ , ], (34)B B B S, , , int

where, beside the commutators, terms appear that account for dynamical correlations between the two systems 
and which, in the weak-coupling limit, would give rise to a dissipative contribution to the master equation for the 
reduced dynamics. One can then interpret the first two terms in the second line of Eq. (31) as the heat exchanged 
by S, respectively B, because they are similar to Eq. (3) with the effective Hamiltonians substituting HS and HB:

 ρ ρ∂ = ∂ ′ ∂ = ∂ ′ .τ τ τ τ τ τ τ τ τ τH H: Tr[ ], : Tr [ ] (35)S S S B B B, , , , , ,

Accordingly, the last term in Eq. (31) can thus be associated with the variation of the energy stored in the correla-
tions, which is called the binding energy Uχ,τ =:  Tr[χτHint].

Therefore, one of the three steps in the comments after Eq. (27) is invalid in the presence of correlations 
between the subsystems because the heat balance now reads

Q Q U∂ + ∂ = −∂ .τ τ τ τ τ χ τ (36)S B, , ,

Moreover, a second assumption is also found to be unwarranted. Indeed, even though Eq. (27) holds because the 
relative entropy is positive, the differential statement

 ∂ + ∂τ τ τ τ ⩾ 0 (37)S B, ,

does not remain valid in general.
In the following, we present the explicit expressions of the entropy variations and heat fluxes for both system 

and bath, computed in ref.21 using the previous approach. This highlights how the assumptions can be violated in 
a physically meaningful model.

Concerning qubit S, one finds that ∂ =τ τ 0S , , whereas the entropy is

 λ
ρ

∂ = −




+

−



 × ∂ =

| | 



+

−



 × ∂ Γτ τ

τ

τ
τ τ

λ

τ

τ

τ
τ τ

− Γτr
r

r
r

r
r

1
2

log
1
1

16 e
log

1
1

,
(38)

S
S

S
S

S

S

S
,

,

,
,

2 01
2 16

,

,

,
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where

∫ ω
ω
ω

βω ωτ ρ ρ ρΓ =
| |

= − − | | .τ τ
λ∞ − Γτ

f rd ( ) coth( /2) sin ( /2), 1 4 ( e ) (39)S
0

2

2
2

, 00 11
16

01
22

In writing Γτ, the continuum limit has been taken and the sum over the bath modes ∑ fk k
2 has been recast into 

the integral ∫ ω ω
∞ f ( ) d

0
2 . Concerning the bath quantities, one has

Q Sλ σ βλ σ λ∂ = − ∂ ∆ ∂ = − ∂ ∆ +τ τ τ τ τ τ τ τ O4 (1 ) , 4 (1 ) ( ), (40)B z B z,
2 2

,
2 2 3

where

∫
ω
ω

ωτ ω∆ = .τ

∞ f ( )
sin ( /2)d (41)0

2
2

It is evident that S Qβ∂ = ∂τ τ τ τB B, , , up to leading order in the coupling constant, so that the hypothesis of a 
thermal bath almost in equilibrium seems to be robust. However, one obtains that  ∂ ≠ ∂τ τ τ τS B, ,  because the 
first one is identically vanishing whereas the latter is not. As already mentioned, this is possible due to the corre-
lations between the subsystems that can store and exchange energy, effectively acting as a third subsystem21. The 
third hypothesis can be also violated. Indeed, one can show that  ∂ + ∂τ τ τ τS B, ,  possibly becomes negative even 
though its integral is always positive. The sign of ∂τ τB,  is equal to the sign of ∂τΔτ; whereas the sign of ∂τ τS ,  
depends on ∂τΓτ. One can see that ∂τΓτ < 0, which corresponds to an essentially non-Markovian dynamics for S, 
by choosing a super-Ohmic spectral density

ω ω
ω

= ω ω
−

−f ( ) e ,
(42)

s

s
2

c
1

/ c

with s > scr(β) (ωc is a cutoff frequency). The critical ohmicity parameter scr at zero temperature is 2, but it becomes 
3 in the infinite temperature limit25. Indeed, for high temperature one can expand the hyperbolic cotangent in 
Γτ and

~

β
ω τ ω τ∂ Γ Γ − + 

 − 
τ τ

− −
 s s1

2
( 1) (1 ( ) ) sin ( 1) arctan ( ) ,

(43)

s

c
2

1
2

c

where Γ is the Euler gamma function. Moreover, one can see that ∂τΔτ < 0 if s > 1, because

ω
ω τ ω τ∂ ∆ = Γ + + 

 + 
.τ τ

− +
~ s s

2
( 1) (1 ( ) ) sin ( 1) arctan ( ) (44)

s
c
2

c
2

1
2

c

Thus for s = 4 and at sufficiently high temperature one can find ∂ <τ τ 0S ,  and ∂ <τ τ 0B,  simultaneously. This 
happens when π/3 < arctan(ωcτ) < π/2.

This example explicitly shows that, in general, the statement (27) of the second law is not equivalent to στ ⩾ 0. 
Hence a violation of the latter inequality should not be interpreted as unphysical. Note that, while the expressions 
for heat and work are those proposed in refs3,4, the Hamiltonian operators appearing in them are effectively rede-
fined to take into account the interaction between system and environment. In this sense our perspective is simi-
lar in spirit to the ones in refs26,27, the concrete operative definitions of heat and work being different, though.

Conclusions
In this paper, we have studied the entropy production, or differential entropy rate, in open quantum system 
undergoing non-Markovian time-evolutions that extend those obtained via the weak-coupling limit and the 
Markovian approximation. In this framework, the open system dynamics is dealt with by eliminating the bath 
degrees of freedom; hence, bath entropy variations cannot contribute to the entropy balance. In particular, we 
have shown that the class of so-called essentially non-Markovian dynamics is compatible with a negative entropy 
production. Moreover, also the integrated entropy production for the open system alone can be negative if the 
asymptotic state is thermal, but not invariant at finite times, a fact impossible when the dynamics satisfies the 
semigroup composition law.

Unlike when it is the lack of complete-positivity that leads to a negative entropy production, we have explic-
itly shown that such a phenomenon can also be due to completely-positive (thus physically legitimate), but 
non-Markovian dynamics. This outcome cannot be interpreted as a violation of the second law of thermodynam-
ics. On the contrary, it suggests a more standard approach: in presence of a non-Markovian reduced dynamics, a 
proper formulation of the second law of thermodynamics requires the bath to be explicitly considered instead of 
being effectively eliminated by weak-coupling limit techniques. Including the bath entropy variations to those of 
the entropy of the open subsystem, one then gets the positivity of the entropy balance.
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