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(DiScrn): Applications to Prostate 
Cancer Detection from MRI and 
Needle Biopsies
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There has been recent substantial interest in extracting sub-visual features from medical images for 
improved disease characterization compared to what might be achievable via visual inspection alone. 
Features such as Haralick and Gabor can provide a multi-scale representation of the original image by 
extracting measurements across differently sized neighborhoods. While these multi-scale features 
are effective, on large-scale digital pathological images, the process of extracting these features is 
computationally expensive. Moreover for different problems, different scales and neighborhood sizes 
may be more or less important and thus a large number of features extracted might end up being 
redundant. In this paper, we present a Discriminative Scale learning (DiScrn) approach that attempts 
to automatically identify the distinctive scales at which features are able to best separate cancerous 
from non-cancerous regions on both radiologic and digital pathology tissue images. To evaluate the 
efficacy of our approach, our approach was employed to detect presence and extent of prostate cancer 
on a total of 60 MRI and digitized histopathology images. Compared to a multi-scale feature analysis 
approach invoking features across all scales, DiScrn achieved 66% computational efficiency while also 
achieving comparable or even better classifier performance.

A major challenge to overcome in development and application of radiomic and computer assisted decision sup-
port methods is to find a way to balance the contrasting requirements of accuracy and computational complexity, 
especially in the context of very large images such as digital pathology slides1–7. Hand-crafted features, such as 
Gabor Wavelet8, Haralick9, Scale Invariant Feature Transform (SIFT)10, Speeded-Up Robust Features (SURF)11, 
Local Binary Pattern (LBP)12 have been shown to be extremely useful for object detection. For example, the LBP 
descriptor of a pixel is a string of binary bits, each of which is obtained by comparing the gray value of the pixel 
with pixels within a ring centered on the pixel under consideration.

Computer aided disease detection often needs an exhaustive search of an entire image to accurately match all 
pixels to the individual disease classes. Salient image descriptions is often a critical pre-requisite for identifying 
image regions corresponding to disease presence. Finding an appropriate local window size is critical for extract-
ing the salient image descriptions at a pixel-by-pixel level. Too large a window size can substantially increase the 
computational complexity, while too small a window size could lead to inability in capturing relevant architec-
tural image detail. The conventional solution to the problem is to extract features at a variety of scales, e.g., by 
performing the same operations at multiple resolutions in a pyramid. When classification is performed, feature 
matching then takes place at each of the individual scales and the similarity is calculated across the different 
scales12. In this approach, salient feature patterns are under-emphasized due to the sampling of patterns that are 
irrelevant to disease appearance. Instead of extracting features at many different scales and then matching all of 
them, it appears more appropriate to only extract features at the most discriminating scales10,13. However, the 
same features or filters extracted at different scales can capture different types of attributes associated with the 
region of interest (e.g. local edge orientations for a Gabor filter at lower scales and dominant gradient orientations 
at higher scales). Consequently, the ability to invoke and combine feature responses across different scales will 
allow for improved discriminability. Conventional approaches that address the problem of discriminative scale 
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selection tend to rely heavily on scale sampling such as dense sampling12 or ad hoc sampling14. There is not, to the 
best of our knowledge, principled ways to efficiently handle this problem.

In this paper, we present a new Discriminative Scale learning (DiScrn) based approach to tackle the problem 
of selecting discriminating scales for multi-scale feature extraction from medical images. Unlike existing solu-
tions12,14, DiScrn provides a principled way to guarantee that the selected feature scales are the most discrimi-
nating. The key idea is to learn a scale weight vector by minimizing the square of similarity distances between 
positive class samples and jointly maximizing the dissimilarity metrics between positive (cancer) and negative 
class samples. This results in an optimization problem. Together with the additional constraints that each element 
of the vector must be in the range of [0, 1] and their sum should sum to one, we obtain a typical convex optimi-
zation problem. An iterative solution is presented to resolve this convex optimization problem. In practical real 
world applications one is only concerned with the testing stage, i.e. how the system and classifier perform in real 
time. The optimization is no longer needed during the testing stage, since the scales have already been learned.

We evaluate the application of DiScrn in the context of two different prostate cancer detection problems. In 
the first application, we attempt to use DiScrn for pixel based detection of prostate cancer on multi-parametric 
MRI. We specifically look at patients who are receiving a staging MRI and subsequently going on to get a radical 
prostatectomy. Consequently by deformably registering the in vivo imaging with the ex vivo pathology we are able 
to spatially map disease extent onto the in vivo imaging. This “ground truth” mapping for disease extent allows for 
training and evaluating the discriminative scale based learning approach for cancer diagnosis. To robustly evalu-
ate our approach we used data from two different institutions, using data from one site to train and data from the 
other site to validate the DiScrn approach. This is, to the best of our knowledge, the first instance of an attempt to 
use data from different sites to train and validate a computer aided diagnosis classifier for prostate cancer from 
multi-parametric MRI. For our second use case, we evaluated DiScrn in terms of identifying regions of cancer on 
digitized histological slide images of prostate cancer biopsy samples. Pathologist annotations of cancer extent on 
the digitized biopsy samples was used to train and evaluate the DiScrn approach.

The rest of the paper is organized as follows. In Section II we briefly review previous related work on scale 
selection and discuss the novelty of our approach. In Section III we describe the discriminative scale learning 
approach in detail and also explain how the approach was used to construct the classifier. In Section IV we present 
the experimental results and accompanying discussion for constructing classifiers from MRI and digital pathol-
ogy images for prostate cancer detection. Section V closes the paper with concluding remarks.

Related Work and Brief Overview of DiScrn
Scale selection has been a key research issue in the computer vision community since the 1990s15. Early investiga-
tions in scale selection were based on identifying scale-invariant locations of interest10,13,16,17.

Although the idea of locating high interest points is interesting, it is not very feasible for applications where 
there is a need to investigate every image pixels, e.g., scenarios where one is attempting to identify the spatial loca-
tion of cancer presence on a radiographic image. In these settings the ability to identify a single, most discrimi-
nating scale associated with each individual image pixel is computationally untenable. To address this challenge, 
Wang et al.18 presented a scale learning approach for finding the most discriminative scales for Local Binary 
Patterns (LBP) for prostate cancer detection on T2W MRI.

While a number of recent papers have focused on computer assisted and radiomic analysis of prostate cancer 
from MRI19,20, these approaches typically involve extraction of a number of different texture features (Haralick 
co-occurrence, Gabor filter, and LBP texture features) to define “signatures” for the cancer and non-cancerous 
classes. Similarly, some researchers have taken a computer based feature analysis approach to detecting and grad-
ing prostate cancer from digitized prostate pathology images using shape, morphologic, and texture based fea-
tures2,6,21–23. However with all these approaches, features are typically either extracted at a single scale or then 
extracted across multiple scales. Feature selection is then employed for identifying the most optimally discrimi-
nating scales2,3.

In this paper we present a new generalized discriminative scale learning (DiScrn) framework that can be 
applied across an arbitrary number of feature scales. The conventional dissimilarity measurement for multi-scale 
feature is to assign a uniform weight to each scale. Based on this weighting idea, DiScrn invokes a scale selection 
scheme that retain the scales associated with large weights and ignores those scales with relatively trivial weights. 
Figure 1 illustrates the pipeline of the new DiScrn approach. It consists of two stages: training and testing. At 
each stage, we first perform superpixel detection on each image to cluster homogeneous neighboring pixels. This 
greatly reduces the overall computational cost of the approach. At the training stage, we sample an equal number 
of positive and negative pixels from each of the labeled training images via the superpixel based approach. We 
subsequently extract four types of multi-scale features for each pixel: local binary patterns (LBP)12, Gabor wavelet 
(Gabor)8, Haralick9 and Pyramid Histogram of Visual Words (PHOW)24. The discriminability of these features 
has been previously and substantively demonstrated for medical images2,3. For each feature type, the correspond-
ing most discriminating scales are independently learned via the DiScrn algorithm.

DiScrn is different compared to traditional feature selection approaches25–28 in that DiScrn specifically aims at 
selecting most discriminative feature scales while traditional feature selection approach aims to directly select the 
most discriminating subset of features. Both could potentially reduce the number of features, and therefore may 
significantly reduce the computational burden associated with feature extraction. However, only DiScrn guaran-
tees that only the most predictive feature scales will be used for subsequent feature extraction during the testing 
phase. This is particularly beneficial for feature extraction in parallel.

Once the DiScrn approach has been applied, texture features will only be extracted at the learned scales for 
both the classifier training and subsequent detection. In particular, cancerous regions are detected via exhaustive 
classification over the entire input image. This results in a statistical probability heatmap, where coordinates 
having higher probabilities represent cancerous regions. Majority voting within each superpixel is finally applied 
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to smooth the generated probability map. To evaluate the performance of DiScrn, multi-site datasets (MRI and 
histopathology) and testing are employed.

Detailed Description of Approach
Superpixel Segmentation. The superpixel algorithm29 enables the decomposition of an image into visually 
homogeneous regions. Among the existing superpixel approaches, the Simple Linear Iterative Clustering (SLIC) 
is simple and efficient29. SLIC is based on a spatially localized version of k-means clustering, in which each pixel 
is associated with a feature vector and then k-means clustering is performed.

SLIC takes two parameters: the nominal size of superpixels rSize and the strength of the spatial regularization 
parameter reqStr. SLIC first divides an image into a grid with step rSize. The center of each grid tile is then used 
to initialize the corresponding k-means algorithm. Finally, the k-means centers and clusters are merged, yielding 
superpixels. In practice rSize and reqStr must be chosen or found via experimentation.

Multi-Scale Feature Extraction. Here we describe the four multi-scale hand-crafted features that we uti-
lize in conjunction with DiScrn.

One class of features considered in this work are LBPs12. For an arbitrary pixel, the corresponding LBP number 
is obtained by counting the number of times the intensity of the pixel under consideration is greater or smaller 
than the intensities of pixels equally spaced within a circle of pre-defined size centered on it. LBP is thus inher-
ently invariant to local gray-scale shift, and can be rotationally-invariant as well. In practice, multi-scale LBP is 
often used, which consists of a set of single LBP values captured at a family of differently sized circles centered 
on the pixel of interest. The metric for measuring similarity between a pair of multiscale LBPs is the Hamming 
distance.

The second family of filters that we consider in this work is the Gabor filter bank8. The Gabor filter bank when 
convolved with an image results in a series of multi-scale, multi-oriented gradient responses. Gabor wavelets 
are based on Gaussian filters, such that as the distance from the center pixel increases, the value of the function 
becomes exponentially suppressed. The most critical parameter is the standard deviation σ of the Gaussian func-
tion, also called the scale factor, which determines the effective size of the neighborhood of the pixel within which 
the filter response is being measured. A commonly used similarity metric for the Gabor feature is the Euclidean 
distance.

The third class of features considered in this work is the Haralick feature9. This feature is based off a squared 
gray-level co-occurrence matrix centered at each image pixel. The Haralick feature consists of 14 statistics, cap-
turing different measurements pertaining to the joint intensity distributions within local neighborhoods. The 
size of the gray-level co-occurrence matrix determines how many adjacent pixels are involved when calculating 
the statistics. Varying the size of this co-occurrence matrix leads to multi-scale Haralick features. The similarity 
metric for Haralick features is the Euclidean distance.

Figure 1. Pipeline of the new DiScrn approach. At the training stage, superpixel detection is performed. An 
equal number of positive and negative pixels based off the superpixels (see details in Section III.D) are selected 
during the training phase. Up-to-N different textural features are extracted at various scales for each sampled 
pixels. For each feature class, its most discriminating scales are learned via DiScrn. Subsequently, a cancer/
non-cancer classifier is trained only with the features extracted at the learned scales. At the testing stage, with 
superpixels detected on a test image, the features and the corresponding scales identified during the learning 
phase are employed for creating new image representations. Exhaustive labeling over the entire input image is 
performed to generate a probability map reflecting the probability of cancerous and non-cancerous regions. 
Majority voting within each superpixel is finally applied to smooth the generated probability map.
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The final class of features considered in this work is dense Scale Invariant Feature Transform (SIFT), also 
known as PHOW (Pyramid Histogram Of visual Words)24. SIFT is invariant to geometrical transform, illu-
mination changes and small image distortion. However, the SIFT feature is only suitable for sparse keypoint 
representation, as it relies on a time-consuming keypoint detection step to determine the optimal image scale. 
Motivated by this, PHOW was invented to apply SIFT to generate a dense pixel representation in a manner that is 
computationally efficient. The similarity metric for Haralick feature is also the Euclidean distance.

DiScrn. Assuming the feature x is extracted at S different scales, scale selection seeks a vector w ∈ RS×1 such 
that the dissimilarity metric turns to a weighted sum
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=

whx x x x w h( , ) ( , ) ,
(1)s

S

s s s
T

1

where x and x′ are a pair of features extracted at the s th scale. h(·) is a basic distance metric defined at each scale, 
and h is a column vector of ′h x x( , )s s . ws ∈ w is the weight of the s th feature scale.

Our goal is to learn an optimal w from a set   of positive representative samples (extracted from cancer pixels 
in our case) and a set   of negative multi-scale feature descriptors (non-cancer pixels in our case), by simultane-
ously minimizing the weighted distance metric between all samples of   and maximizing that distances of sam-
ples within   and  . Compared to Linear Discriminant analysis, the objective here is not to minimize the 
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we measure the metric distances on a per slice basis. Consequently the objective function becomes
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where H is now a row matrix of h and Ts represents the number of slices. For simplicity, we denote by =S H Hp p p
T, 
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where = … ∈ ×b b[1, , 1] ,T S 1. This is a standard discriminant component analysis problem but with con-
straints. To solve the problem properly, we follow30 to convert the formulation to a least-squares framework:
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p is the Cholesky decomposition of Sp and a represents the unknown regression coefficients. More 
details of the intermediate steps and equations can be found in30. In practice, the constraint bTw = 1 may be too 
restrictive, giving rise to a coarse estimation of w. Thus we relax the constraint and instead employ a − norm1  
regularization on w, which in turn forces w to have a small number of nonzero elements:
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where the alternative constraint =w 12
2  is to avoid trivial solutions and η is a sparsity controller.

Now a new problem is introduced with an extra unknown a. Thus problem 3 can be numerically solved by 
alternating optimization over a and w.

 1. Solving w given a: For fixed a, w is solved by minimizing a LASSO problem:

α η− + + .
≥

−H R a H w w wmin
(4)b

T
p b

T

w 0

1

2

2
2
2

1

This problem is easily transformed to a sparse nonnegative least-squares (SNNLS) problem



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 12375  | DOI:10.1038/s41598-017-12569-z

α
η











−











+ .

≥

−

×

H
I

w
H R a

0
wmin

(5)

b
T

S

b
T

p

Nw 0

1

1
2

2

1
b

The SNNLS problem can be efficiently solved using an existing solver such as the block principal pivoting 
algorithm31.

 2. Solving a given w: For fixed w, the optimal a is obtained as
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Given the learned scale weights w, we define a threshold σ, 0 < σ < 1, to automatically determine the number 
of selected scales. Only the top scales whose weight scores are no smaller than σ × wmax will be selected, where 
wmax is the largest weight value. The threshold, σ, can be determined empirically on a test set.

Imbalanced Classifier Training. A major issue from a classification perspective is the relatively small num-
ber of cancer pixels compared to non-cancer pixels (see an example in Fig. 2). This causes a serious classification 
bias when training a classifier with an imbalanced learning set. There are two typical ways to address this issue 
in the machine learning literature32. One is to assign distinct costs to training examples while the other is to 
re-sample the original dataset, either by over-sampling the minority class and/or under-sampling the majority 
class33. While randomly under-sampling the majority class is the simplest and most popular approach, it cannot 
guarantee that the sampled instances are actually independent. Hence repeated under-sampling is often required.

Here we replace the random re-sampling with a smarter strategy based off superpixels. Since superpixels rep-
resent a cluster of homogeneously appearing pixels, we sample only one pixel from each superpixel of the majority 
class to minimize the dependency on the sampled data. In order to train a balanced classifier, we (1) include all 
the cancer pixels in the positive training class, (2) utilize all the centers of superpixels of non-cancer regions rep-
resenting the negative training class, and (3) randomly sample some non-cancer pixels to balance the number of 
positive and negative instances.

With a balanced training set, a Random Forest classifier34 is finally trained for distinguishing cancer pixels 
from the non-cancerous ones.

Heatmap Smoothing via Superpixels. Multiple features at the learned scales are extracted for each pixel 
in a testing image. The pixel is then classified as cancer or non-cancer with a probability generated by the trained 
RF classifier. Generally it is safe to assume that spatially-adjacent and texturally-similar pixels should have similar 
probabilities. Therefore, we take advantage of the superpixel algorithm to smooth the generated probability map.

Let V denote an arbitrary superpixel, consisting of n pixels pi ∈ V. Suppose each pixel pi has a probability value 
ci ∈ {0, 0.1, 0.2, …, 0.9, 1}, with 0 representing non-cancer and 1 cancer, the class of the superpixel V is determined as
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Figure 2. Visualization of multi-scale (b) Gabor, (c) Haralick, (d) LBP and (e) PHOW features. Each feature 
is extracted at the same three scales: 3 × 3, 5 × 5, and 7 × 7. As compared to the (a) cancer ground truth, we 
can see that (1) no scale pattern is obviously more discriminative than the others, and (2) no individual feature 
appears to perfectly distinguish cancer and benign regions. Therefore, it is necessary to combine all these 
features and learn the most discriminating scales for each of the features.
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which is the probability value associated with a majority of the pixels. In this way, all pixels within a superpixel are forced 
to have a single probability value, yielding a smoother probability map. Figure 3 illustrates this super-pixel voting idea.

Experimental Results
Data Description. DiScrn was evaluated on two different use cases. Details of the datasets are summarized 
in Table 1 and described below.

Ethics Statement. Data analysis was waived review and consent by the IRB board, as all data was being analyzed 
retrospectively, after de-identification. All experimental protocols were approved under the IRB protocol #02-13-
42C with the University Hospitals of Cleveland Institutional Review Board, and all experiments were carried out 
in accordance with approved guidelines. Under this IRB, we were allowed to obtain de-identified images from St 
Vincent’s Hospital and University of Pennsylvania,and material transfer agreements were signed and agreed upon 
between Case Western Reserve University and University of Pennsylvania and St. Vincent’s Hospital.

Prostate MRI. Three different sets of MRI scans were employed in this study. D1: This dataset consists of in vivo 
T2w MRI images collected from 16 patients diagnosed with prostate cancer via core needle biopsies. The axial T2w 
imaging was performed with 3 mm slice thickness. Imaging FOV (field of view) was 14 cm. D2: This dataset com-
prises ADC (Apparent Diffusion Coefficient) MRI prostate images corresponding to the same set of 16 patients 
listed in D1. Each ADC study comprised roughly 55 slices and with an X-Y plane resolution of 320 × 320 pixels. 
Imaging FOV was 24 cm. The ADC imaging was performed with 4 mm slice thickness. D3: This dataset comprises 
T2w MRI prostate scans from 22 prostate cancer patients. The axial T2w imaging was performed with 3 mm slice 
thickness and 1.0 mm gap. Imaging FOV (field of view) was 14 cm, and acquisition matrix size was 256 by 128–179.

The surgically resected prostate gland, after fixation in formalin, was sectioned in a plane perpendicular to 
the urethral axis from apex to base into 3–4 mm slices. Each slice was then divided into 4 quadrants, stained with 
H&E and digitized by the Aperio whole slide scanner at 20× magnification. The goal of this study was to distin-
guish between cancer and benign regions on a per pixel basis on T2w MRI. In this study we focused on patients 
with prostate cancer who were undergoing radical prostatectomy and had a staging MRI done. The advantage 
of using surgical patients was that we had access to the ex vivo pathology and the in vivo imaging which in turn 
allowed us to co-register and hence map spatial extent of the cancer from the ex vivo histopathology onto the in 
vivo imaging. The co-registration of the pathology and in vivo imaging was done using the approaches described 
in35,36 and briefly described below.

 1. Correspondences between MRI and H&E stained histological slices were jointly identified by an expert 
radiologist and pathologist working together, employing distances between slices and major anatomical 
landmarks;

 2. Histological sections are first registered to MRI slices by using thin plate splines (TPS)36, which maximizes 
the overlap between the target and template landmarks. This procedure helps establish accurate spatial 

Figure 3. Superpixel-wise voting. As shown, the class probability of all pixels within each superpixel is unified 
based on majority voting.

Dataset Site Modality #Patients Resolution

D1 S1 T2w MRI 16 512 × 512

D2 S1 ADC MRI 16 320 × 320

D3 S2 T2w MRI 22 256 × 256

D4 S2 Histology 22 1100 × 1000

Table 1. Summary of the datasets employed in this study. The T2w and ADC MRI in D1 and D2 come from 
the same S1 site. The T2w MRI in D3 comes from the different S2 site. The MRI imaging of D1, D2 and D3 was 
performed with 3 mm, 4 mm and 3 mm slice thickness, respectively.
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correspondences while minimizing the bending energy to generate smooth transformations;
 3. Manually selected landmarks are used to align the boundaries of prostate on the mapped histological and 

MR images;
 4. Spatial extent of cancer on histology is mapped onto corresponding MRI sections.

Prostate Biopsy Core Samples. The goal of this study was to detect cancer regions on a per pixel basis from dig-
italized images of prostate core needle biopsy specimens. This dataset (D4) comprises digitized images of H&E 
stained histological prostate biopsy images from 22 patients. Tumor area on the digital slide was annotated by 
expert pathologist.

Experimental Design. The four feature classes (Gabor, Haralick, LBP and PHOW) used in this work 
were extracted at multiple scales for distinguishing cancerous from non-cancerous regions. Owing to the 
size of the MRI scans in D1, D2 and D3, only 3 feature scales (3 × 3, 5 × 5, and 7 × 7) were employed. On the 
high-resolutional histological images in D4, up to 9 feature scales are used: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 
13 × 13, 15 × 15, 19 × 19, and 25 × 25. Figure 4 illustrates how the feature scales were defined for the MRI and 
histopathology datasets.

DiScrn was compared with the scheme using all predefined feature scales (termed as AllScales) and T-test 
features selected from all predefined feature scales (termed as T-test). Two different evaluation metrics were 
employed for evaluating DiScrn and comparative approaches. First, the cancer detection accuracy of the two 
schemes are compared in terms of their resulting AUC (area under ROC (Receiver Operating Characteristic) 
curve) values. Second is the time required to extract the four feature classes at the testing stage. Each experiment 
was repeated ten times and the average AUC values and computational times at run-time reported. To systemat-
ically evaluate DiScrn, we designed the following various experiments:

•	 E1 (D1) - randomized K-fold cross validation on D1 with K ∈ {2, 4, 6}. The goal of this experiment was to 
evaluate the scalability of DiScrn on T2w MRI as a function of various training set sizes.

•	 E2 (D2) - randomized K-fold cross validation on D2 with K ∈ {2, 4, 6}. The goal of this experiment was to 
evaluate the scalability of DiScrn on ADC MRI as a function of various training set sizes.

•	 E3 (D1 + D2) - randomized K-fold cross validation on the combination of D1 and D2 with K ∈ {2, 4, 6}. The 
goal of this experiment was to evaluate the scalability of DiScrn on T2w + ADC MRI as a function of various 
training set sizes.

•	 E4 (D1 → D3) - using D1 for training and D3 for testing.
•	 E5 (D3 → D1) - using D3 for training and D1 for testing.
•	 E6 - randomized K-fold cross validation on D4. K was fixed to be 5, i.e., randomly selecting 80% of the 22 

studies in D4 for training and using the remaining cases for testing.

All the experiments were conducted within a Matlab environment on a 64-bit Linux machine with 4-core 
CPU and 4G memory. On all the experiments, different values of the key parameters were tested on a smaller set 
and thereafter kept constant. rSize and reqStr are the two critical parameters for superpixel segmentation. For all 
experiments we empirically set the parameters as rSize = 8 and reqStr = 0.01. The regularization controllers in Eq. 
(6) were set as α = 0.1 and μ = 0.001. The feature selection threshold σ is set at 0.3. The angles for the Gabor filter 

Figure 4. Illustrating the used feature scales for MRI and histology. Three feature scales - 3 × 3, 5 × 5, 7 × 7 - 
are used for feature extraction on the low-resolution MRI images of D1, D2 and D3. For the high-resolutional 
histological images, up-to 9 feature scales are used: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, 19 × 19, 
and 25 × 25.
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bank were set to 0°, 90° and 180°. The bit length for the LBP feature at each scale is set to 8. The PHOW length at 
each scale is set to 128. The number of trees employed in the random forest classifier is set to 50. Different values 
of σ were experimented with on a smaller set of cases and the optimal value locked down as 0.3 and employed for 
all subsequent experiments.

Results of DiScrn in detecting cancer on Prostate MRI scans. We begin by noting that the objective 
of the experiments in this study was not that DiScrn yields the best possible prostate cancer detection classifier 
on MRI and histopathology. Instead we seek to show that comparable accuracy can be obtained (along with 
substantial computational efficiency) in employing features only at a subset of scales. Figure 5 shows the AUC 
performance for E1, E2 and E3, respectively. DiScrn not only significantly reduces the time required for feature 
extraction at the testing stage, but also slightly improves the accuracy of cancer detection for most cases. While 
this is somewhat surprising, since intuitively one would expect that employing all the scales should outperform 
a classifier that only uses features at a subset of scales, DiScrn might be suppressing features at certain scales that 
negatively contribute to the classification results of the multi-scale (all scale) approach. Note that the lower AUC 
values for the ADC images in E2 as compared to that of T2w MRI in E1 might be on account of the lower resolu-
tion (320 × 320) of the ADC MRI. This may also explain why combining T2w and ADC MRI in E3 is worse than 
using T2w MRI alone (E1), since we physically resize the T2w MRI from 512 × 512 to 320 × 320. However, clearly 
combining T2w MRI and ADC features (E3) improves performance compared to using ADC features alone (E2). 
Figure 6 shows examplar cancer detection heatmaps generated for the E1 experiment. With DiScrn, the cancer 
region is more likely to be correctly detected, which is also reflected in the AUC values shown in Fig. 5. Table 2 
summarizes the average time cost of feature extraction at the testing stage (E3). Clearly the computational cost 
associated with each feature is greatly reduced, once the most critical discriminating scale has been identified.

Table 3 summarizes the results of the cross-site E4 and E5 experiments. In particular, we perform a baseline 
comparison that uses the intensity value of each pixel for the purposes of prediction. Since D1 and D3 come from 
different sites and have different image sizes, the AUC values of E4 and E5 are generally lower than the results of 
E1–E3 (see Fig. 5). However, the scale learning approach still significantly reduces the time cost and improves the 
overall AUC result. The most significant AUC improvement appears in E5.

Figure 7 summarizes the weight distributions for each of the individual scales learned from experiments E1–
E5. The most discriminating scales identified for Gabor, LBP and PHOW were 3 × 3, 7 × 7, and 7 × 7, respectively. 
These results appear to suggest that the Gabor filter bank allows for capture of local features while the LBP and 
PHOW tend to capture larger macro level features that best discriminate between cancerous and non-cancerous 
regions. In most cases, 7 × 7 is the sole discriminative scale for the Haralick feature, but 3 × 3 is also selected 
when D1 is used for training and D3 for testing. In our analysis, since the X-Y image plane size (512 × 512) of 
D1 is double of that of D3 (256 × 256), a scale size of 3 × 3 in D1 approximately corresponds to the 7 × 7 scale 
size for the studies in D3. Moreover, the consistency of the weights for the individual scales reveals that DiScrn 
appears to be robust to the size and variability within the training set. Note that while the AUC results for DiScrn 
for prostate cancer detection on MRI appear to be lower than what has been reported by other groups including 

Figure 5. Experimental results of the E1, E2 and E3 experiments. (a–c) are the resulting AUC values of the 
three experiments. (d–f) are the per-slice feature extraction time at the testing stages of these experiments.
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our own37–40, it needs to be stressed that our results should not be directly compared against these previous 
findings. The reasons are on account of the fact that (a) these previous studies primarily focused on multi-modal 
fusion (e.g. DCE MRI, MR Spectroscopy, T2w, Diffusion) and (b) none of these approaches looked at cross-site 
validation and limited to training and evaluating their classifiers to data from a single site. However in spite of 
these competititve disadvantages, DiScrn still manages to provide high accuracy for voxel-level classification on 
individual imaging protocols and more importantly provides consistent and highly efficient classification results 
across multi-institutional data. We argue that further improvement in accuracy will most likely be driven by iden-
tification and choice of new features. This is not the stated goal of this work which is to take existing handcrafted 
features and improve their efficiency. All things being equal, our major contribution is that without compromis-
ing on accuracy we are able to provide substantial improvements in efficiency for the problem of prostate cancer 

Figure 6. Examplar heatmaps (%) of cancer detection on T2w MRI images for the E1 experiment. The color bar 
reflects the corresponding probability value. Higher probability indicates more likely cancer region. Given the 
(a) ground truth, the presented scale learning approach leads to (c) slightly more accurate cancer heatmaps as 
compared to (b) the results of using all predefined feature scales. Note that the feature extraction time of DiScrn 
is only about 1/3 of using all predefined feature scales (AllScales).

Feature DiScrn (seconds) AllScales (seconds)

Gabor 0.12 ± 0.02 0.56 ± 0.05

Haralick 5.64 ± 0.16 16.35 ± 0.55

LBP 0.05 ± 0.01 0.11 ± 0.03

PHOW 0.52 ± 0.05 1.65 ± 0.13

Table 2. Detailed time cost of feature extraction at the testing stage of the E3 experiment. The mean and 
standard deviations are calculated over all the K folds of cross validation.

Method Feature scales AUC Feature extraction time per slice (seconds)

DiScrn

Gabor: 3 × 3, LBP: 5 × 5
E4: 0.656 16.60

Haralick: 5 × 5, PHOW: 7 × 7

Gabor: 3 × 3, LBP: 5 × 5
E5: 0.657 214.46

Haralick: 5 × 5, PHOW: 7 × 7

T-test

Gabor: 3 × 3, 5 × 5, 7 × 7
E4: 0.613 N/A

LBP: 3 × 3, 5 × 5, 7 × 7

Haralick: 3 × 3, 5 × 5, 7 × 7
E5: 0.618 N/A

PHOW: 3 × 3, 5 × 5, 7 × 7

AllScales

Gabor: 3 × 3, 5 × 5, 7 × 7
E4: 0.640 28.54

LBP: 3 × 3, 5 × 5, 7 × 7

Haralick: 3 × 3, 5 × 5, 7 × 7
E5: 0.603 631.11

PHOW: 3 × 3, 5 × 5, 7 × 7

Baseline Intensity: 1 × 1
E4: 0.518

≈0.0
E5: 0.475

Table 3. Summary of the cross-site E4 and E5 experiments. DiScrn is compared with using all predefined 
feature scales, T-test features selected from all predefined feature scales, and a baseline scheme that uses raw 
pixel intensities. The evaluation metrics are the AUC and the feature extraction time per slice at the testing 
stage. The second column shows the feature scales used for feature extraction. Note that we did not report the 
run time of T-test for feature extraction at the testing stage. This is because we did the feature extractions in 
parallel across all scales. In practice, feature selection can save the extraction time.
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detection on MRI as well as digitized pathology images. This was evidenced by the extensive evaluation on two 
different use cases and with independent training and testing datasets.

Results on Histological Images. Figure 8 shows weights learned via the DiScrn approach for the individ-
ual scales of the different feature classes in E6. Table 4 summarizes the cancer detection results for DiScrn and the 
multi-scale approach for E6. The weight distributions in Fig. 8 appear to suggest that only a small subset of scales 
are contributory to the final prediction. For σ = 0.3, the selected scales for Gabor, Haralick, LBP and PHOW are 
shown in Table 4. Each feature class appears to have its own discriminative scale patterns, which implies that 
manually selecting the optimal scale for each feature is difficult. Table 5 shows that as a result of using the scales 
selected by DiScrn, the feature extraction time is significantly reduced by about 60%. Meanwhile, the AUC value 
increases from 0.826 to 0.836. Note that these classification results are actually comparable and even superior to 
results previously reported for this problem2.

Figure 7. The learned scale weights (mean + std) of (a) Gabor, (b) Haralick, (c) LBP, and (d) PHOW on MRI 
images from the experiments of E1 (D1), E2 (D2), E3 (D1 + D2), E4 (D1 → D3) and E5 (D3 → D1). The 
horizontal axis represents the used three feature scales (i.e., 3 × 3, 5 × 5, 7 × 7) for the five different experiments. 
The vertical axis represents the learned weights. High weight indicates high importance and vice versa.

Figure 8. The learned scale weights of (a) Gabor, (b) Haralick, (c) LBP, and (d) PHOW on histological images 
used in E6. The horizontal axis represents the evaluated 9 feature scales, i.e., 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 
13 × 13, 15 × 15, 19 × 19 and 25 × 25. The vertical axis represents the learned weight distributions of the 9 
feature scales. Note that only a subset of scales were identified as being important for this problem.
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For each experiment involving statistical significance testing, we first counted the total number of features 
selected via DiScrn. Then we forced the T-test based selection method to select the same number of features. 
Since the information of feature scales is not implicitly considered by T-test, all feature scales tend to be selected 
by T-test. However, as shown in Tables 3 and 4, DiScrn outperforms T-test in terms of AUC value.

Concluding Remarks. This paper presented a discriminative feature scale learning (DiScrn) approach to 
address the issue of finding and combining the optimal scales at which the most discriminating features could 
be identified. We evaluated DiScrn on two different problems relating to prostate cancer detection, one involving 
MRI from two different sites and the other involving digital pathology images. By learning a vector that weighs the 
discrimination score at each individual scale, DiScrn allows for computation of a metric that better represents the 
target class. When evaluated on the two different use cases considered in this work, DiScrn was able to improve 
the accuracy of cancer prediction as compared to an approach that attempted to combine features from all possi-
ble scales. Most critically, DiScrn significantly reduces the computational time associated with feature extraction, 
especially during the testing phase. Our main findings in using DiScrn were that (1) different feature classes tend 
to be most discriminating at unique scales (i.e. there is no single magic scale at which all features tend to be most 
discriminating), and (2) using features at only the most discriminating scales results in classification performance 
that is comparable and in many cases superior to an approach that employs features from across all scales.

A key strength of this work was that DiScrn was rigorously and robustly evaluated on different problems, dif-
ferent imaging modalities and sequences, different image resolutions, and most critically using data from different 
institutions. Our results showed that DiScrn was robust to the size and variety of the training sets and achieved 
consistent prediction results when data from different sites were used for training and independent testing. This 
work represents to the best of our knowledge the first attempt to evaluate a machine learning approach for pros-
tate cancer detection from multiple different sites37–40. Moreover, we observe that (1) in MRI images it is sufficient 
to select only one scale for each feature type, and (2) in large-scale histological images, each feature was found to 
be discriminating across several scales.
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