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A tunable electron beam source 
using trapping of electrons in 
a density down-ramp in laser 
wakefield acceleration
Henrik Ekerfelt1, Martin Hansson1, Isabel Gallardo González1, Xavier Davoine2 & Olle Lundh1

One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control 
and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we 
report on a numerical study, where we demonstrate that trapping using density down-ramps allows 
for tuning of several electron bunch parameters by varying the properties of the density down-ramp. 
We show that the electron bunch length is determined by the difference in density before and after the 
ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. 
Finally, the amount of trapped charge depends both on the density difference and on the steepness of 
the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. 
We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of 
applications, from those requiring short pulse length and low emittance, such as the free-electron 
lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

In 19791, Tajima and Dawson proposed using a plasma as an accelerating structure for electrons. A focused laser 
pulse can excite a plasma wave due to the fact that the high intensity laser pulse acts as an electron plough, cre-
ating an ion cavity in its wake. This cavity is quickly replenished with electrons which results in a plasma wave 
trailing the laser pulse. The phase velocity of the plasma wave is close to the group velocity of the laser pulse. The 
plasma wave transforms the transverse electric fields of the laser into strong longitudinal electric fields that can 
reach hundreds of GV/m. These fields can in turn be used to accelerate charged particles. This concept is now 
referred to as laser wakefield acceleration (LWFA). In 2004, the first quasi-monoenergetic beams were produced 
using this technique without an external electron injection source2–4. When the driving laser pulse is strong 
enough, the ion cavity is commonly referred to as a bubble5, which is the terminology that will be used to refer to 
the plasma wave behind the laser pulse in this report.

A density down-ramp is a region where the background density of the plasma is making a transition from a 
higher to a lower electron density in the direction of laser pulse propagation. When a laser pulse travels through 
a density down-ramp, the trailing bubble will elongate, since the size of the bubble scales as −ne

1/2, where ne is the 
background electron number density6. The elongation can, under certain conditions, trigger wave breaking at the 
back of the bubble; that in turn causes transverse electron injection. This scheme was first proposed by Bulanov et 
al.7, who considered a slow density transition, and later by Suk et al.8 who suggested using a sharper transition. It 
has since then been studied both experimentally and numerically9–17. The effects of changing the down-ramp 
length (by varying the gradient) have been studied earlier in detail by Samant et al.18. They propose to use the 
density down-ramp injection as an injector for a soft X-ray free-electron laser (FEL). In a recent paper, Massimo 
et al.19 conducts a numerical study on a more shock-like profile where they also vary the peak density. Both papers 
find results that are in agreement with ours. In this paper, we further explain the physical processes and provide 
scaling laws for some of the electron bunch properties.

In previous experimental studies10,13, it was shown that density down-ramp injection is ideal for reproduci-
bility. It allows for control of the electron bunch charge, by tuning the density difference between the two density 
regions, and the bunch energy, by controlling the length of the plasma after the density down-ramp.

1Department of Physics, Lund University, P.O. Box 118, S-22100, Lund, Sweden. 2CEA, DAM, DIF, Bruyères-le-Châtel, 
91297, Arpajon, France. Correspondence and requests for materials should be addressed to H.E. (email: henrik.
ekerfelt@fysik.lth.se)

Received: 10 July 2017

Accepted: 12 September 2017

Published: xx xx xxxx

OPEN

mailto:henrik.ekerfelt@fysik.lth.se
mailto:henrik.ekerfelt@fysik.lth.se


www.nature.com/scientificreports/

2Scientific RepoRts | 7: 12229  | DOI:10.1038/s41598-017-12560-8

Today, LWFA is one of the most promising compact accelerator techniques. There are many different proposed 
applications of the electron beams and/or betatron X-ray beams produced during the acceleration. Each appli-
cation has its preferred set of electron bunch parameters. For example, to use the produced electron bunch as an 
injector for a compact FEL, one would typically prefer a short electron bunch with low emittance, low energy 
spread and high current20. However, if one would like to utilize the betatron (synchrotron-like) X-rays produced 
during the acceleration process, other characteristics such as high charge and large emittance (larger betatron 
oscillations) are preferred21.

In this report, we present a numerical study on the effect of down-ramp injection on the electron bunch 
parameters. The focus of the report lies on investigating the injection process and therefore the setup is kept 
constant until the density down-ramp. It is shown that the amount of charge in the electron bunch can be tuned 
by two parameters in the density profile; the density difference between two density regions where injection 
occurs as well as the steepness of the density down-ramp. The mean electron bunch energy and energy spread 
for different cases are presented and compared at a given distance. Furthermore, the trapped electrons fill up the 
bubble from the back along the optical axis as it expands. This allows for control of the electron bunch duration/
length. Lastly, it is shown that the divergence of the trapped electron bunch depends on the steepness of the den-
sity down-ramp.

This study was performed using the quasi-cylindrical particle-in-cell code CALDER-Circ22. This code 
decreases the computational load by exploiting the cylindrical symmetry of the LWFA process. The numerical 
parameters for the simulations are given in the Method section.

Results
The density profile of a typical simulation is illustrated in Fig. 1a. The plasma profile is composed of an 18-μm 
long entrance ramp to the first plateau density (region I) characterized by the density n1 which extends for 340 
μm, followed by a density down-ramp to the second plateau (region II) characterized by the density n2 which ends 
after 840 μm. The down-ramp between region I and II is characterized by its length L and its gradient ∂n/∂x = (n1 
− n2)/L. In this study we vary L, n2, and consequently ∂n/∂x. All other parameters are kept constant in order to as 
well as possible differentiate all the different mechanisms at play. This ensures that an identical laser pulse enters 
the down-ramp in each simulation. The plasma profile is 130 μm wide in both transverse directions with no den-
sity gradients. n1 is kept constant to keep the laser parameters fixed when the laser pulse enters the down-ramp. 
We emphasize that alternatively, n1 could be varied to achieve similar results for the charge, bunch length, and 
emittance of the electron bunch. However, this would also change the laser pulse’s evolution, and it would be hard 
to isolate what effects comes from changing the down-ramp parameters. Varying n2 greatly impacts the accelera-
tion process since the accelerating fields change.

A typical simulation is illustrated with snapshots from one of the simulations in Fig. 1b. Note that the laser 
pulse effectively excites a bubble by the end of region I yet no injection has occurred until this point. The electrons 

Figure 1. (a) A typical density profile used in the simulations. The profile is divided into a high - density region 
(I), characterized by the density n1, and a low - density region (II), characterized by the density n2. They are 
connected through a density down-ramp characterized by the gradient ∂n/∂x and its length L. The evolution 
of the energy spectrum dQ/dE(x) of the electron bunch as a function of the longitudinal position x of the laser 
pulse’s peak is shown as a density map in the background, where Q is the beam charge and E the beam energy. 
It can be seen that the electron bunch is trapped at the density down-ramp and then accelerated throughout 
the lower plasma density region. (b) Two snapshots from a typical simulation. A plasma wave has been excited 
to the bubble-regime by the laser pulse. The background electron density ne is shown in grayscale, the laser 
intensity Il is shown by the red color scale, and the longitudinal electric field Ex on the optical axis is shown 
as the blue curve in the graph. The upper plot is a snapshot from just before the laser pulse enters the density 
down-ramp. The lower plot shows a snapshot after the laser pulse has passed the down-ramp and traveled into 
the second region of constant density. The bubble expands in the density down-ramp and as a consequence, 
electrons are trapped along the optical axis from the back of the bubble, and begin to accelerate.
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are injected at the back of the first bubble during the density down-ramp by so-called transverse-injection. When 
the back of the bubble has reached the end of the down-ramp the injection stops. In region II, the laser pulse still 
effectively drives a bubble with injected charge.

For the simulations the following laser parameters were used: a normalized vector potential a0 = 1.8, a 
Gaussian laser focus with a full width at half maximum (FWHM) width of 18 μm, and a temporal Gaussian with 
tFWHM = 30 fs. The focal plane of the laser beam in vacuum was located at the beginning of region I, 20 μm into 
the plasma.

In this section we present results that will show that modifying the properties of the density down-ramp is a 
promising method for controlling the electron bunch’s charge, length and transverse emittance. The results pre-
sented in this report are only valid if we are in or close to the bubble regime: the laser pulse length and waist are 
in the same range, a0 is higher than 2, the plasma densities are chosen so that the laser pulse length is smaller than 
the plasma wavelength. The densities should also be high enough to ensure self-focusing and guidance of the laser 
pulse over several Rayleigh lengths.

Amount of accelerated charge and bunch energy. As can be seen in Fig. 1a, a quasimonoenergetic 
beam without a low-energy tail is accelerated to more than 100 MeV after 0.5 mm propagation in region II. The 
electron bunch parameters are measured 0.9 mm into the plasma for different down-ramp lengths and density 
differences. The amount of trapped charge was measured for down-ramps with different density slopes ∂n/∂x and 
density ratios n2/n1. The results are plotted in Fig. 2a.

As is clear from Fig. 2a, the amount of charge have a quasi-linear dependence on the density difference. The 
trend shows that the amount of charge injected in a density down-ramp where the density difference is varied can 
be described by a very simple linear relation for the beam charge Q:
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where k(∂n/∂x) is a function of the density slope and the laser properties. This relation agrees with previous 
experimental findings13. Since n1 is close to the self-injection threshold, injection is reached even for small density 
differences, in contrast to the cases studied by Massimo et al.19.

In Fig. 2b, the average amount of injected charge per μm (the total injected charge Q over the down-ramp 
length L) is plotted for different density slopes with a fixed density ratio of n2/n1 = 0.5. As can be seen, the beam 
charge over the down-ramp length scales nearly linearly with the slope. However, the higher charge per length 
unit with steeper gradient is compensated by the fact that injection occurs over a shorter distance, as an increase 
in steepness by some factor also decrease the gradient length L by the same factor for the same density differ-
ence. Note that, in Fig. 2a, as the slope steepness ∂n/∂x is increased almost one order of magnitude, the amount 
of charge increases by 25% in total for the density ratio of n2/n1 = 0.5. Using a linear fit, Q/L = k1(∂n)/(∂x) + 
k2, from Fig. 2b, one can describe the charge dependence for the different slopes by making it a function of the 
down-ramp length L and adding the linear correction term k2
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Here, k1 is not dependent on the gradient slope and k2 is negative. For our specific laser and plasma conditions, we 
have found that k1 = 34.76 λp1/(n1 μm) pC and k2 = −0.91 pC/μm. To test the validity of the model, Eq. (2) (with 
different k1 and k2) was tested on the data presented by Samant et al.18 and Massimo et al.19. It is found that the 
relation can be used to describe the trend of injected charge for the cases where the down-ramp steepness ∂n/∂x 
> = 2 ⋅ 1016 cm−3 μm−1.

The setup of this numerical experiment, keeping n1 fixed and varying the acceleration density n2 impacts 
the acceleration process. The acceleration part is intimately linked to the injection, through the chosen value of 

Figure 2. (a) Trapped charge as a function of the lower density value for two different gradient slopes. The 
symbols show data taken from the simulations. The corresponding lines are Eq. (2) with k1 = 34.761λp1/(n1μm) 
pC and k2 = −0.912 pC/μm. (b) Trapped charge over down-ramp length as a function of different density 
down-ramp gradients with n2/n1 = 0.5. The amount of charge per length increases with the steepness of the 
gradient. The dashed blue line is Eq. (2) plotted with k1 = 34.76λp1/(n1μm) pC and k2 = −0.91 pC/μm.
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n2, which will directly affect the laser evolution, the accelerating field and the dephasing length. It will also have 
impact on the beamloading effects that depends on n2 and the beam charge/current. Even though this paper is 
mainly focused on the beam parameters that directly results from the injection part of the process, in particular 
the electron bunch length, charge, and transverse emittance; for completeness, we also provide information on 
the electron bunch energy and energy spread for the different scenarios.

In Fig. 3a the energy spread and mean energy for different gradient slopes with n2 = 3 ⋅ 1018 cm−3 is presented. 
The energy spread is lowest for the shortest down-ramp. The trapping of the electrons in the steepest gradient 
takes place over the shortest amount of time, thus the electrons are accelerated for almost the same amount of 
time. The mean energy increases with a decrease in the gradient slope due to the fact that the average background 
density including the density down-ramp is higher, and more charge in the steeper cases decreases the accelerat-
ing field due to a stronger beamloading effect.

In Fig. 3b the energy spread and mean energy for different gradient lengths with (∂n)/(∂x) = 0.1 (n1)/(λp1) is 
shown. Note that caution should be used before interpreting this comparison since the values are measured at the 
same position, and not at the dephasing length for each acceleration process.

Control of electron bunch length. In density down-ramp injection, the electron bunch length is expected 
to be equal to the difference between the bubble lengths in the high and low density regions given that the injec-
tion occurs throughout the down-ramp. It is therefore important to measure and estimate this bubble length and 
growth as precisely as possible. From Fig. 1b it is clear that the pulse length of the trapped electrons is the same as 
the elongation of the wakefield, indicating the possibility of predicting the length of the electron bunch. Similar 
effects can be seen in Massimo et al.19 in which the effects of a varied peak density on the bunch length is pre-
sented. An analytical and numerical scaling law for the bubble radius rb is given in a previous paper by Lu et al.6. 
In this paper6, the relation rb = λc ar p0  is derived. Here, cr is a constant, λp = 2πv/ωp where v ≈ c is the group 

velocity of the laser pulse and ω =
εp
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 is the non-relativistic angular plasma - frequency. ne is the electron 

density, qe is the electron charge, me is the rest mass of the electron and ε0 is the vacuum permittivity.
The constant of proportionality cr is determined from PIC-simulations for a special case when the laser beam 

duration, waist, amplitude, and the plasma density are all matched. These matched properties that are discussed 
in the same paper6 are hereafter referred to as a matched condition. However, in experimental conditions, a 
matched laser pulse can be hard to achieve for different reasons, such as limited available beam power or energy 
in comparison to the laser pulse duration. Furthermore, a laser pulse going through a density down-ramp can not 
be matched in both density regions.

The size of the bubble does not only depend on the local plasma density, but also on the amount of trapped 
charge. The simulations conducted for this study show that it is possible to predict the full width pulse length Leb 
of the electron bunch with the relation

λ= ∆ + .L C C Q (3)eb p1 2
2

Here, Δλp is the difference in λp for the two density regions, C1 is a unitless constant coupling the theoretical 
linear non-relativistic plasma wavelength λp to the true plasma wavelength, and C2 is a constant with units of 
length/charge 2. The second term C2Q2 is chosen to correct for the elongation of the bubble due to the beamload-
ing effects observed in the simulation. C1 includes the dependence of a0 and is taken from the simulations with 
beamloading turned off, i.e., C1Δλp is the true plasma wavelength difference between the two density regions 
without injected charge. How beamloading is turned off in the simulations is explained in the Method section.

The relation presented in Eq. (3) is displayed in Fig. 4a together with the electron beam lengths measured in 
the different simulations. The linear fits displayed in Fig. 2a that model the trapped charge are used to draw the 
predictive lines for the red and blue data sets. For both fits, C1 = 0.83 and C2 = 0.63 ⋅ 10−4 pC−2. C2 is calculated 
by fitting the difference in electron bunch length between the simulation with and without beamloading to the 
amount of charge squared. The quadratic dependence on Q was chosen because it allows for accurately fitting 
both curves with the same constant C2 while still yielding a simple predictive relation. From existing literature by 

Figure 3. (a) In blue, energy-spread (root mean square error from mean energy) as a function of the different 
down-ramp steepness. In red the mean energy is plotted for a fixed lower density of n2 = 3 ⋅ 1018 cm−3. (b) In 
blue, energy spread for different lower densities n2. In red mean energy for the same simulations with a fixed 
steepness of 0.1 (n1)/(λp1). These values are measured 0.9 mm into the plasma.
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Tzoufras et al.23 one would expect a linear dependence on Q, however, a quadratic dependence fits better with the 
simulation parameters in this report. Observe that the parameters in this report differentiates from the paper23 by 
Tzoufras et al. in two significant ways: The analysis by Tzoufras et al. is conducted for the matched regime and are 
making sure the beamloading is optimal. In this report, charge is injected while the background density (and thus 
the wakefield) changes while they are adding charge to a bubble in a constant background density. The green data 
set is taken from simulations where the beamloading effect is turned off, as discussed earlier. These simulations 
without beamloading effects almost perfectly follow the relation in Eq. (3) if Q = 0 and C1 = 0.83. The data points 
are taken for ∂n/∂x = 0.1 λ −n p1 1

1 but there is no difference in bunch length for different ∂n/∂x when beamloading 
is turned off. Do note that the bunch length is significantly elongated by the beamloading effect on the wakefield, 
as can be seen in Fig. 4a.

In the theory from Lu et al. presented above, the bubble radius rb scales with −a0
1/2. The variation of a0 due to 

laser self-focusing or laser beam evolution should thus play a role in the length of the electron bunch. The evolu-
tion of a0 and the FWHM beam waist of the laser is shown in Fig. 4c. However, as previously mentioned, this 
relation only holds for laser wakefield accelerators in a matched regime. In the matched regime, where the equa-
tion 2πW0/λp = a0 (W0 is the e−2 laser beam waist) is fulfilled, a0 can not be changed without changing either λp 
or W0 accordingly. In the case presented in this report, a0 evolves due to a temporal and spatial compression of the 
laser pulse (as can be seen in Fig. 4c). The ratio W0/(λpa0) is therefore no longer constant, and the scaling laws of 
the matched regime are not applicable. The ponderomotive push on the electrons from the laser scales with a0 and 
an increase in bubble length can be expected from this effect. However, at the same time, the laser waist decreases 
and the laser pulse interacts with a smaller number of electrons. Thus, the widths of the plasma column that is 
pushed away decreases, which reduces the bubble length. It is important to note these effects counteract each 
other but the sum of these effects are not generally zero. Thus the model for the bubble radius, which assumes that 

∝r ab 0
1/2, is not valid for this setup. To support this argument, a comparison between the bubble length before and 

after the down-ramp has been performed for different down-ramp lengths. The simulations show that for the 
cases with beamloading suppressed, there is no significant difference in the bubble length after the short and long 
gradients. At the same time, a0

1/2 has increased by more than 10% for the longer gradient (L = 72 μm) due to the 
self-focusing effects from crossing a longer plasma region.

The longitudinal profile of three different electron bunches are shown in Fig. 4b. The charge distribution can 
be approximated as triangles, starting at approximately the same point in x − dQ/dx space and then a straight 

Figure 4. (a) The green circles correspond to the electron bunch length measurements with beamloading 
turned off. The green line is a fit using Eq. (3) with C1 = 0.83 and C2 = 0. The red plus signs are data points 
from the simulation of the electron bunch length, the dashed red curve represents a fit according to Eq. (3). 
The blue crosses and dotted line represents the same values for a gentler gradient slope. (b) Spatial electron 
density profiles of three different acceleration densities: n2 = 3, 4 and 5 ⋅ 1018 cm−3. Here, ∂n/∂x = 0.76n1/λp1 
with beamloading. (c) The peak normalized vector potential a0 (in blue) and FWHM width (dashed red) as 
function of the laser pulse’s peak position during a simulation with n2 = 3 ⋅ 1018 cm−3 and ∂n/∂x = 0.76n1/λp1. 
For the different simulation, the peak value of a0 varies between 3.8 and 4.3, but the behaviour is the same for all 
simulations, a0 increases and the width of the pulse decreases.
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line can be drawn from this point to the end of the bunch length. This may be useful, as a triangular beam shape 
is required for optimal beamloading23, and consequently preservation of energy spread. However, for the param-
eters used in these simulations, optimal beamloading was not obtained.

Controlling emittance. From the simulations, it is clear that the divergence of the electron bunch also 
depends on the density gradient. The normalized emittance24 of electron bunches for different density gradients 
are shown in Fig. 5. A straight-forward relation can be seen between the steepness of the density gradient and 
the emittance. For a steep gradient, the back of the bubble slows down more rapidly, lowering the threshold for 
trapping, thus causing electrons with larger transversal momentum to be trapped.

In Fig. 6, two sequences of density down-ramp injection are portrayed in the form of density sections from the 
simulations as the laser pulse passes through the down-ramp. The sequences are divided into the left and right 
side of the figure. They are from two different down-ramps: ∂n/∂x = 0.76 λ −n p1 1

1 with L = 9 μm and ∂n/∂x = 0.1 
λ −n p1 1

1 with L = 72 μm, respectively. For both simulations n2 = 3 ⋅ 1018 cm−3. Every part of the sequence is accom-
panied by a number of tracked macro particles with their trajectories throughout the whole simulation plotted as 
lines. The dot on each line mark the position of the macro particle at the time of the depicted frame. From these 
examples, the difference in emittance is visually obvious.

It is clear that these simulations span over different injection regimes. The steep gradient (to the left) results in 
an electron beam with large oscillations from a non-trivial process. Macro particles injected almost at the same 
time are spread out over the electron bunch. The bubble expands rapidly over the plasma wave structure, and elec-
trons are suddenly placed within the accelerating structure. Some of the trapped particles first enters in a decel-
erating and defocusing region behind the bubble, providing them with a big transverse momentum. However, 
due to the fast bubble expansion, these particles eventually reenter through the back of the bubble and become 
trapped, but keep a significant amount of their transverse momentum, increasing the overall beam transverse 
emittance. The gentler gradient (to the right in Fig. 6) gives rise to a smoother trapping of the macro particles over 
the course of the gradient where they align nicely after each other. The macro particles that are injected first are at 
the front of the bunch, the last to be injected are placed at the end of the bunch, in contrast to the steep gradient.

Discussion
Described here is a numerical study on density down-ramps of different steepness and heights. Using only those 
two parameters, it is possible to tune three important parameters of the electron bunch. Given that the laser pulse 
is strong enough to drive a wakefield in both density regions, we should see similar effects for different densities 
and different density regions. It is also possible to vary the density n1. Care should be taken to keep the acceler-
ating density n2 large enough to sustain a bubble and maintain a decent acceleration. In these simulations, it was 
clear that for densities below 3 ⋅ 1018 cm−3 the electron bunch was driving its own significant wakefield, ruining 
the acceleration process.

First, we have shown numerically that the electron beam charge depends quasi- linearly on the density jump 
Δn in our case. However, a general expression for the injection cross section is hard to derive due to the complex 
nature of the wavebreaking process. As is demonstrated in this report, the injection process itself is affecting the 
expansion of the bubble through the beamloading effect. This makes the process rather complicated. Kostyokov 
et al.25 derives a cross section σ for self-injection in a matched regime

σ
π

≈





−





−

R dR
dt

8 ,
(4)

2
1

where R is the bubble radius normalized to c/ωp. Comparing the results in this report to the model, we can not 
find a quantitative match. However, as the density down-ramp is getting steeper and dR/dt increases, the cross 
section σ increases which agrees well with the findings here.

To maximize the amount of charge in the electron bunch, a sharp density transition should be chosen. This 
comes at the price of a large emittance; however, if one wants a betatron source, this is ideal. From the particle 

Figure 5. The normalized emittance as a function of the different density gradients. The normalized emittance 
scales with the sharpness of the density down-ramp. All the shown data is from simulations where n2 = 3 ⋅ 1018 
cm−3. Here ε  and ε⊥ is the normalized transverse emittance parallel and perpendicular to the polarization of 
the laser pulse.
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trajectories in Fig. 6 it can be seen that that the trapping mecanism is different in the two different cases. In the 
gentler gradient, particles travelling along the edge of the bubble are trapped. This is well described by Kalmykov 
et al.26 where they present a model that states that the particles with the longest slippage time are the particles that 
are trapped. The slippage time is defined as the time that a particle interacts with the bubble. In other words, the 
particles that travels along the edge of the bubble until the back are the particles that get trapped first. The same 
paper also explains that as the change in density increases, the expansion rate of the bubble increases, and parti-
cles with shorter slippage time can be trapped. This implies that even particles that are experiencing decelerating 

Figure 6. To the left, a series of 3 snapshots from the injection process for a steep gradient where ∂n/∂x = 0.76 
λ −n p1 1

1 with L = 9 μm. To the right, 3 snapshots from the injections process for a gentler gradient where ∂n/∂x = 
0.1 λ −n p1 1

1 with L = 72 μm. For both simulations n2 = 3 ⋅ 1018 cm−3. The trajectories are for 4 tracked macro 
particles from each process. The dot represent each macro particle's position in the frame at the time of the 
snapshot. As can be seen, for the steep gradient, injection is a complex process. Macro particles located in a 
defocusing and decelerating region are suddenly placed within the bubble structure as the bubble expands, and 
they can then be trapped. For the gentler gradient, the macro particles enters from the rear of the bubble as a 
continuous process throughout the gradient.
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and defocusing fields are trapped, and as can be seen from the trajectories, some of them enter the bubble with a 
relatively large radial momentum, which causes a large oscillation for the particle. The larger the emittance, the 
more oscillations, which produces more X-rays21.

The bunch length is an important quality of the electron bunch. For example, the produced X-ray pulse in a 
betatron source will not be shorter than the generating electron bunch21. It also affects the acceleration process 
in LWFA. In the blowout regime, the accelerating electric field is changing linearly with respect to the position 
in the bubble. This will cause an increase in energy spread for any extended electron bunch. The difference in 
energy gain will thus increase linearly with the electron bunch length. This might pose a problem for long electron 
bunches over an extended acceleration region as the energy spread will increase. Since the acceleration process 
starts earlier for the head of the electron bunch, those electrons will have higher energies in the beginning. Unless 
optimal beamloading23 is achieved, the tail of the electron bunch will gain more energy than the head due to 
phase-space rotation of the bunch. At some point during the acceleration process, the tail of the electron bunch 
will have gained roughly the same amount of energy that as the front part. If this happens, the bunch has reached 
a minimum in energy spread. For the simulation summarized in Fig. 1a, this happens when the average energy 
is around 40 MeV.

In conclusion, we show a possibility to tailor the parameters of the electron bunch produced in LWFA by 
tuning the density down-ramp. We demonstrate that the amount of charge, the bunch length, and the emittance 
can be controlled in a simple manner. However, these parameters are not fully decoupled and can therefore not 
be tuned independently.

Methods
The results here are presented for a laser with a central wavelength of 800 nm. The density down-ramp is char-
acterized by three parameters: n1 is defined as the electron density of the high-density plateau, n2 is the electron 
density of the low-density plateau where electrons are accelerated, and |∂n/∂x| is used to characterize the steep-
ness of the gradient of the density down-ramp. The longitudinal plasma gradient is normalized to the upper 
plasma density and the theoretical linear non-relativistic plasma wavelength at that density. The parameters used 
to characterize the longitudinal density profile of the simulation is shown in Fig. 1a along with the longitudinal 
energy distribution of the accelerated electron and the density profile. In order to isolate the effects of the density 
down-ramp, the high density part n1 of the simulation was kept at a constant electron density of 6 ⋅ 1018 cm−3 
throughout all simulations discussed in this paper.

The moving simulation box was kept large enough to simulate at least the first full plasma wave (or “bubble”) 
after the laser pulse in the low density region. The peak intensity of the laser pulse was kept at a distance of 23 μm 
behind the front boundary of the moving window. The cell-size of the simulation grid was set to be 16 nm in the 
longitudinal direction and 190 nm in the radial direction, with 3200 and 400 cells in the respective dimension. 
Each cell contained 48 macro particles. The integration timestep was set to 52 as. A third order spatial interpola-
tion scheme was used. The macro particles were not randomly distributed but placed in a regular pattern evenly 
distributed in x, r, and θ. An anti-numerical Cherenkov Maxwell solver was used27. The fields are decomposed 
into three Fourier modes in the azimuthal direction. Test-particle diagnostics were used to determine the emit-
tance of the accelerated electron bunch.

To be able to independently study the bubble expansion due to the density down-ramp and exclude the contri-
butions invoked by beamloading, simulations were performed where macro particles with a forward momentum 
greater than 10 mec were removed from the current deposition. This was done in order to get the reference values 
in Fig. 4.

The datasets generated during and/or analysed during this study are available from the corresponding author 
on reasonable request.
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