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Squeezing giant spin states via 
geometric phase control in cavity-
assisted Raman transitions
Keyu Xia  1,2

Squeezing ensemble of spins provides a way to surpass the standard quantum limit in quantum 
metrology and test the fundamental physics as well, and therefore attracts broad interest. Here we 
propose an experimentally accessible protocol to squeeze a giant ensemble of spins via the geometric 
phase control (GPC). Using the cavity-assisted Raman transition (CART) in a double Λ-type system, we 
realize an effective Dicke model. Under the condition of vanishing effective spin transition frequency, 
we find a particular evolution time where the cavity decouples from the spins and the spin ensemble is 
squeezed considerably. Our scheme combines the CART and the GPC, and has the potential to improve 
the sensitivity in quantum metrology with spins by about two orders.

Spins, due to the merit of their long decoherence, have been widely used for ultrasensitive sensing of various signals1–10. H 
owever, the precision of the conventional measurement with spins is bounded by the shot noise or the SQL11,12. 
Quantum spin squeezing and entanglement can surpass the SQL and therefore boost the sensitivity in quantum 
measurements to approach the Heisenberg limit11,13.

To exploit the power of the spin-squeezed state (SSS), various methods have been proposed using quantum 
measurement14–16, quantum bath engineering17, converting entanglement to squeezing18 and cavity feedback19,20, 
typically for atomic ensembles. The state-of-the-art experiment has achieved 20 dB squeezing of half a million 
ultracold Rb atoms in a natural trap14. Recently, Bennett et al. show the potential to squeeze 100 nitrogen-vacancy 
(NV) spins in diamond via the Tavis-Cummings interaction with a nanomechanical resonator, mediated by 
strain21. Their scheme inevitably and sensitively suffers to the large thermal excitation of mechanical resonator. 
Zhang’s and our works show that the NV centers can also couple to a mechanical resonator mediated by a giant 
magnetic gradient22,23. This hybrid system enables to squeeze NV centers by controlling the so-called geomet-
ric phase, which is a global phase accumulated during the evolution of a quantum system. Taking the merit of 
the geometric phase protocol robust again various noises, the squeezing is immune to thermal excitation22,23. 
However, the giant magnetic gradient causes large Zemman splitting in NV centers and is highly localized in 
nanometer region. As a result, the available number of squeezed spins is limited up to 2022,23. Cavity-assisted 
Raman transition (CART) has been proposed and then demonstrated for Dicke model quantum phase transi-
tions24–27. Here we aim to provide an experimentally feasible scheme to squeeze millions or even trillions of spins 
using CART. Our geometric-phase-based scheme has the potential to surpass the achieved squeezing degree of 
other schemes.

In this paper, we propose an unconventional scheme for squeezing, in a transient way, a large ensemble of 
spins via the geometric phase control (GPC). We couple the ensemble of ultracold alkali atoms or a superfluid 
gas formed in Bose-Einstein condensate (BEC) or negatively charged silicon-vacancy (SiV−) color centers in 
diamond to the cavity. Using CART, we create an effective Dicke model for the spin-photon interaction. In a spe-
cial arrangement, the effective resonance frequency, ωc, of the cavity is much larger than the effective transition 
frequency of the spins. At a particular time, t = 2π/ωc, the spin and cavity decouples. At the same time, the ensem-
ble of spins accumulates a geometric phase due to the collective interaction with the cavity and are collectively 
twisted along one axis of the Bloch sphere of spins. As a result, the cavity squeezes the spins considerably. Because 
the spins can be optically initialized to their ground state and the thermal excitation of the optical cavity is van-
ishing small even at room temperature, our scheme has an advantage that the thermal noise can be neglected in 
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squeezing. Importantly, we, for the first time, combine these two powerful quantum technologies, the CART and 
the GPC, for achieving the challenging goal squeezing a large ensemble of spins.

This paper is organized as following: First, we present the general configuration and model for our system. 
After that, we discuss the special properties and the realistic parameters of three specific implementations for 
our numerical simulations. Then we present our numerical results. Finally, we discuss the achievable squeezing 
degrees of three different types of implementations and conclude our work.

Model
We start the discussion of our work by describing the system. We apply the cavity electrodynamics (QED) config-
uration presented by Dimer et al.24, in which an ensemble of Na double Λ-type systems is trapped, to form a Dicke 
model for our purpose of squeezing spin states. The level diagram of the system is depicted in Fig. 1. Each Λ-type 
system has two optical excited states | 〉r  and | 〉s , and two metastable states | 〉g  and | 〉e . The state | 〉j  has energy ωj  
(j = r, s, g, e). We assume that the excited states, | 〉r  (| 〉s ) decay to the two ground states, | 〉g  and | 〉e , with the rates of 
γrg and γre (γsg and γse), respectively. The cavity mode, ĉ, with resonance frequency ωcav and decay rate κ, drives the 
transition | 〉 ↔ | 〉g r  (| 〉 ↔ | 〉e s ) with strength gr (gs). The classical laser field drives the atomic transition | 〉 ↔ | 〉e r  
(| 〉 ↔ | 〉g s ) with Rabi frequency Ωr (Ωs) and detuning ω ω ω∆ = − −( )r r e lr ( ω ω ω∆ = − −( )s s g ls). ωlr and ωls 
are the carrier frequencies of the laser fields Ωr and Ωs. The paired interaction, gr  and Ωr , gs and Ωs, forms two 
CARTs. Each CART drives the transition between two ground states. Combining these two CARTs, we obtain the 
Dicke Hamiltonian24 which is the key of our GPC. The original configuration has been presented for studying the 
quantum phase transition24. Here we apply it for squeezing spin states via the GPC.

We now go to derive the Dicke Hamiltonian governing the evolution of system. In the configuration depicted 
in Fig. 1, the transitions | 〉 ↔ | 〉r g  and | 〉 ↔ | 〉s e  of the jth atom are driven by the cavity mode with rates gr j,  and 
gs j, , respectively. The two classical laser fields, Ωr  and Ωs, drives the transitions | 〉 ↔ | 〉r e  and | 〉 ↔ | 〉s g , respec-
tively. The Hamiltonian describing the atoms and the cavity takes the form,
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where ω=k c/cav , ω=k c/lr lr  and ω=k c/ls ls  with c the light velocity in vacuum are the wave vector of the cavity 
mode and the classical laser fields, rj is the position of the jth spin. We transform the system into the interaction 
p i c t u r e  b y  i n t r o d u c i n g  t h e  u n i t a r y  t r a n s f o r m a t i o n  = −Û t iH t( ) exp( )0  w i t h 

ω ω= ∑ | 〉〈 | + | 〉〈 |H g g e ej g j j e j j0  + ω ω ω ω ω+ | 〉〈 | + + | 〉〈 | + ′ ˆ ˆ†r r s s c c( ) ( )lr e j j ls g j j cav ,  a s  i n 2 4 .  W e  s e t 
ω ω ω ω− = −2( )ls lr e g  that ω′ ω ω ω= + −( )lr e gcav ω ω ω= − −( )ls e g . Thus we obtain the Hamiltonian in the 
interaction picture,

Figure 1. Level diagram for showing two CARTs. In combination with a cavity mode (green lines), two classical 
laser fields, Ωr and Ωs, (red and brown) drives the spins to form CARTs between states | 〉e  and | 〉g .
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We assume ≈ ≈k k klr ls. To a good approximation, we can assume =g gr j r,  and =g gs j s,  when the cavity 
mode is a running wave field24 and the waist of cavity mode is much larger than the transversal dimension of the 
spin sample. Taking γ|∆ | Ω g, ,r s r s r s, , , , we adiabatically eliminate the optical excited states | 〉rj  and | 〉sj , and 
neglect the constant energy terms to arrive at the Dicke model Hamiltonian for the collective coupling of the 
ground states | 〉gj  and | 〉ej

24,

ω ω λ= + + +ˆ ˆ ˆ ˆ† †H c c J N c c J2 ( ) , (3)c q z a xDicke
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detuning in the CARTs is δcav. Here we define the collective operators for the spins, = ∑ | 〉〈 | − | 〉〈 |J e e g g( )/2z j j j j j , 
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 by controlling the detuning and the classical driving. Essentially, these conditions requires 

∆ ∆ = | | | |d d/ /r s rg se
2 2 and Ω Ω = d d/ /r s rg se when the dipole moments drg se, , gr s,  and Ωr s,  are real numbers. As a 

results, ω = 0q  is obtained. We will also investigate the case of ω ≠ 0q  for a general discussion of squeezing BEC. 
We can consider the ensemble of spins as a resonator with annihilation operator â under the Holstein-Primakoff 
(HP) transformation that = −ˆ ˆ†J a a N( /2)z , = −+ ˆ ˆ ˆ† †J a N a a , = −− ˆ ˆ ˆ†J N a a a, and = − +ˆ ˆ ˆ† †J a a a NI( /x a

− ˆ ˆ ˆ†a a N aI / )/2a
28,29, where =N N Ia . In the ideal case of ω = 0q , we rewrite the Hamiltonian in the interaction 

picture of ω ˆ ˆ†c cc  as

λ= + .ω ω−ˆ ˆ†V N e c e c J2 ( ) (4)x a
i t i t

x
c c

Now we go to the GPC of the evolution of the system. By applying the Magnus’s formula30, the dynamics for 
the system is  governed exact ly,  in the absence of  decoherence,  by the unitar y operator 

= θ λ ω α α−ˆ ˆ† ⁎
U t e e( )x

iN t J N t c t c J( ) 2 / ( ( ) ( ) )a x a c x
2

, where α = − ωt e( ) 1 i tc , and θ ω ω= −λ
ω( )t t t( ) ( sin )c c
2

2

c
. θ t( ) is the accu-

mulated geometric phase only dependent on the global geometric features of operators and is robust against 
random operation errors31. Note that the spin-cavity coupling is modulated quickly by the periodic function α t( ). 
At π ω=t m2 /m c for an integer m, α t( )m  vanishes, θ π= λ

ω( )t m( ) 2m
2

2

c
 and the spins decouple from the cavity. As a 

result, the evolution operator for the spin ensemble takes an explicit form,

= .θU t e( ) (5)x m
iN t J( )a m x

2

Typically 〈 〉 ˆ ˆ†a a Na, to a good approximation of ≈ +ˆ ˆ†J a a( )/2x , so we can treat the operator U t( )x m  as a 
squeezing operator with a degree of squeezing of θN t( )/2a m  by negecting the phase rotation due to +ˆ ˆ ˆ ˆ† †a a aa . 
Given the initial state |Ψ 〉(0)  for the spin ensemble, the generated state after one period, i.e. at t1 is 
|Ψ 〉 = |Ψ 〉t U t( ) ( ) (0)x1 1 . It is noticeable that the squeezing degree of the SSS only depends on the accumulated 
geometric phase θ t( )1 , which can be adjusted with the classical driving and the detuning.

The power of our protocol in squeezing spins is limited by the discrepancy of ωq from zero and the decoher-
ence of system. Although we set ω = 0q  for the analysis of ideal GPC, the protocol actually works efficiently when 
ω ωc q. In comparison with the protocol using a mechanical resonator to enable the GPC22,23, the crucially 
detrimental thermal noise is negligible in our scheme because the thermal excitation of the optical cavity is van-
ishing small and the spins can be optically polarized in the ground state | 〉gj . The decay of excited states | 〉rj  and | 〉sj  
can introduce some decoherence to the evolution via CARTs but is suppressed by the large detuning32. Threfore, 
the decay of the cavity is the main decoherence source. Another decoherence source is the pure dephasing, Γφ, of 
the ground state | 〉ej . To taking into account the influence of the imperfection in ωq and the decoherence, we 
numerically solve the quantum Langevin equation in the HP picture32 (also see the appendix),

 ρ ρ ρ κ ρ∂ ∂ = − + Γ +φ ˆt i H J c/ [ , ] ( /2 ) ( ) , (6)z cDicke

where ρ ρ ρ ρ= − − .ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †
A A A A A A A( )c

1
2

1
2


In our systems investigated below, the dark states of spins are rarely excited, thanks to the small inhomogene-

ous broadening of the excited state. Therefore, we focus on the symmetric states with the total spin =J N /2a . The 
state of spin ensemble can be fully described by set of the Dicke state | 〉J m,  with ∈ − − + −m J J J J{ , 1, , 1, } in 
the spin picture, which is equivalent to the Fock state | + 〉J m  in the Bosonic or HP picture. In the later, the 



www.nature.com/scientificreports/

4SCiENtifiC RePoRtS | 7: 12836  | DOI:10.1038/s41598-017-12486-1

squeezing degree of spin states | 〉 | 〉g e{ , } of spin ensemble can be evaluated by the squeezing parameter defined by 

Wineland et al. as ξ ξ=
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 is given by Kitagawa and Ueda13. The squeezing is optimal at 

θ = − −N6 ( /2)opt
1/6 2/3 23. Correspondingly, the phase uncertainty in quantum metrology with such SSS can be 

reduced down to δφ ξ= N/R , improved by a factor of ξR.

Parameters for implementations
Here lets first briefly discuss three possible implementations using ultracold alkali atoms, negatively charged 
Silicon-vacancy (SiV−) centers in diamond or a superfluid gas formed in Bose-Einstein condensate (BEC). All 
three systems for implementations can be effectively treated as an ensemble of spin-1/2 systems in the Dicke 
model. As an example, we consider an ensemble of ultracold 87Rb atoms for the first implementation25,33. We 
cho os e  | 〉 = | = = 〉′

′r P F m5 , 2, 1F
2

3/2 ,  | 〉 = | = = 〉′
′s P F m5 , 2, 2F

2
3/2 ,  | 〉 = | = = 〉g S F m5 , 1, 1F

2
1/2  and 

| 〉 = | = = 〉e S F m5 , 2, 2F
2

1/2  in the D2 line of 87Rb atom. According to atomic data33, the dipole moments are 
= = −d d d1/8rg re  for the transitions | 〉 ↔ | 〉r g  and | 〉 ↔ | 〉r e , =d d1/4sg  for | 〉 ↔ | 〉s g , and =d d1/6se  for 

| 〉 ↔ | 〉s e , with = . × ⋅−d 3 584 10 C m29 . In such configuration, the cavity mode can be a linear-polarized field 
and the cavity-atom interaction is strong due to the large dipole-dipole moments. Other hyperfine levels can be 
effectively decoupled due to the large detuning which can also be adjusted with a constant magnetic field Bc

25. The 
each excited state decays at a rate of γ π∼ ×2 6 MHz 25,33,  yielding γ γ π= = ×2 3 MHzrg re , 
γ π= × .2 3 6 MHzrg , and γ π= × .2 2 4 MHzse  for different branches. Interestingly, we can also squeeze an 
ensemble of SiV− centers in diamond trapped in a cavity6. The SiV− centers in diamond cut with {111} surface 
have shown a double Λ-type configuration34–36. To use SiV centers for our scheme, we take | 〉 = | ↑〉−s eE , ,u

u2 , 
| 〉 = | ↓〉−r eE , ,u

u2 , | 〉 = | ↑〉+e eE , ,g
u2 , | 〉 = | ↓〉+g eE , ,g

u2 , respectively37. The relaxation rate, Γ, of the spin ground 
state is negligible ( . −ms2 4 1), but the pure dephasing, Γφ, is about π × .2 3 5 MHz34,35. While, the relaxation of the 
optical excited states, | 〉r  and | 〉s , is negligible at cryogenic temperature37. We assume = = =d d d drg re sg se. At 

=T 1 , we can take γ γ γ γ π= = = = × .2 3 7 MHzrg re sg se . More remarkably, our protocol can squeeze the 
momentum of a superfluid gas which can also construct the double Λ-type configuration26, taking 
| 〉 = |± 〉′r k, 0 , | 〉 = | ± 〉′s k0, , | 〉 = | 〉g 0, 0  and  | 〉 = |± ± 〉e k k, . The Dicke model driving the effective tran-
sition between | 〉0, 0 , the atomic zero-momentum state, and  |± ± 〉k k, , the symmetric superposition of momen-
tum states can be created via the CART. In this, we can squeeze the macroscopic momentum of a BEC in a 
self-organized supersolid phase, which can only be realized in an ensemble of atoms cooled into a BEC. The 
effective energies of the cavity and the spin are controlled via the optical trapping potential, the photon-spin cou-
pling, the detuning ∆c and the atom-induced dispersive shift of the cavity resonance UB26. The energy of the state 
 |± ± 〉k k,  is lifted relative to the state | 〉0, 0  by twice the recoil energy that ω π= × .2 28 6 kHzq

26. While the 
effective energy,  ω = ∆ − UBc c  is typically much larger than ωq . In the experiment, the single-atom coupling 
η π> × .2 0 9 kHz is achieved.

Results
Next we go to evaluate the squeezing parameter by solving the master equation Eq. (6). The cavity decay and the 
imperfection in ωq dominantly limit the attainable squeezing parameter. We first study the squeezing parameter 
for =N 50a  spins at time π ω=t 2 / c1  for different ratios κ ω/ c and ω ω/q c, as shown in Fig. 2(a). The squeezing is 
maximal around θopt in the case of small ω ω/q c. When κ = 0 and ω = 0q , we obtain ξ = .9 6R

2 dB. The squeezing 
parameter reduces slightly for κ ω≤ .0 01 c (ω = 0q ). Even when κ ω= .0 1 c, ξ = .7 7R

2 dB is still achieved. In 
contrast, the imperfection in ωq has stronger effect on the squeezing. The squeezing parameter for κ = 0 and 

Figure 2. (a) Squeezing parameter ξR
2 for =N 50 spins as a function of the geometric phase, θ, at different 

cavity decay rate, κ (lines without markers, ω = Γ =ϕ 0q ), spin transition frequency, ωq (grouped lines with 
κ = Γ =φ 0), the pure dephasing, Γφ (grouped lines with o markers, ω κ= = 0q ); (b) Squeezing parameter ξR

2 as 
a function of Na at different κ. ωΓ = =φ 0, 0q  in (b).
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ω ω = ./ 0 01q c  is very close to that for κ ω = ./ 0 1c  and ω = 0q , while it is deteriorated considerably when ωq 
increases to ω.0 1 c. In this case, the maximal available squeezing parameter decreases to ξ = .6 1R

2 dB at a reduced 
optimal geometric phase of θ θ= .0 7 opt. In experiments, we can adjust the classical driving and the detuning so 
that ω ω< .0 01q c to guarantee the optimal squeezing at θ θ≈ opt. The pure dephasing has the strongest influence 
on squeezing because it destroys the coherence among spins. A small pure dephasing of ωΓ = .φ/ 0 01c  causes the 
maximal squeezing parameter to decrease from ~10 dB at θ θ= opt to .6 1 dB at θ θ= .0 6 opt. When ωΓ = .ϕ/ 0 05c , 
the maximal squeezing degree reduces by 50%, to 3 dB.

It is always desired to provide a prediction for the attainable squeezing parameter for a large ensemble. To 
provide such prediction, we calculate the squeezing parameter as the number of spins increasing, see Fig. 2(b). 
Considering ω ω / 1q c  available in most cases, we set ω = 0q  for simplicity. The squeezing parameter is well fitted 
by ξ = . −N1 4R

2 2/3 when κ ω ≤ ./ 0 01c . It decreases to . − .N1 4 0 56 with increasing the cavity decay to κ ω = ./ 0 1c . 
Typically, κ ω ≤ ./ 0 01c  is achievable using current available experimental technology for ∼N 10a

6 ultracold 
atoms. It means that our GPC protocol can achieve a phase uncertainty δφ ∝ −N 5/6, approaching the Heisenberg 
limit of δφ ∝ −N 1.

In above investigation, we neglect the small decoherence terms of spins. Next, we investigate the available 
squeezing degree for up to 100 spins by solving the master equation with the spin decoherence and using experi-
mental available numbers for parameters. In doing so, we can provide a rough estimation of the achievable 
squeezing parameter for 106 spins by fitting the numerical data. We first find the geometric phase θmax to achieve 
the maximal squeezing degree for =N 50a  spins. It is found that θ θ=max opt for cold Rb atoms, θ θ= .0 8max opt for 
BEC and θ θ= .0 5max opt for SiV− centers. Then we calculate the squeezing parameter as Na varying but with 
θ θ= max fixed. In all of three implementations, we set Ω ∆ = Ω ∆ < ./ / 0 001r r s s

2 2 2 2  for simplicity.
As seen from Fig. 3, the largest squeezing of ξ = . − .N1 4R

2 0 64 can be expected using an ensemble of cold alkali 
atoms, because the total decoherence of ground states of atoms is small and the effective transition frequency ωq 
can be vanishing small. Due to the large pure dephasing of SiV centers, we can only achieve squeezing of 
. − .N0 36 0 1. According to26, the decoherence of BEC is negligible but ω ω= 2q r is nonzero. Taking ω π= × .2 28 6q  

kHz26, we obtain the squeezing parameter of ξ = . − .N1 4R
2 0 46.

Discussion and Conclusion
Our spin-squeezing protocol via the GPC can be realized in various systems. For example, we can squeeze 

=N 10a
6 cold Rb atoms. Using the experimentally available parameters14,25, we choose ω π= × .2 5 88c  MHz, 

κ π= ×2 70 kHz, ω = 0q ,  π= − = × .g g3/4 2 1 1r s  MHz, π∆ = ∆ = ×2 5s r
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According to the prediction in Fig. 3, the ensemble of atoms can be squeezed by ξ ≈ 37R
2 dB, and the phase uncer-

tainty in measurement with squeezed spins is δφ ∼ − .N1/ 0 82, close to the Heisenberg limit. If we trap billion38 
cold atoms in the cavity, we are potentially able to obtain a squeeze degree of ξ = 56R

2  dB. The superfluid gas has 
the smallest decoherence but nonzero ω π= × .2 28 6q  kHz26. We take, κ π= ×2 70 kHz, π∆ = −/2 4c  MHz, 

π = − .UB/2 3 5 yielding ω π =/2 500c  kHz, and assume λ π= × .2 0 88 kHz. Correspondingly, the superfluid gas 
including 106 ultracold atoms can be squeezed by ξ ≈ 26R

2  dB. It is worth noting that this is the first proposal for 
quantum squeezing momentum of BEC. Our protocol can only squeeze one-million SiV− centers by .10 4 because 
SiV− centers has a pure dephasing of πΓ = .φ/2 3 5 MHz34,35. To achieve it, we take κ π= ×2 1 MHz, 
ω π= ×2 350c  MHz, π∆ = ∆ = ∆ = ×2 10r s  GHz, Ω = Ω = ∆/30r s , and a large single-atom coupling 

π= = ×g g 2 46r s  MHz, leading to = = . ×
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Figure 3. Squeezing parameter at θmax as a function of Na for three implementations using Rb atoms (blue line), 
BEC (yellow line), and SiV centers (Fuchsia). ω π= × .2 5 88c  MHz, κ π= ×2 70 kHz, ω = 0q , θ θ=max opt for 
Rb atoms, ω π= ×2 500c  kHz, κ π= ×2 70 kHz, ω π= × .2 28 6q  kHz, θ θ= .0 8max opt for BEC and 
ω π= ×2 350c  MHz, κ π= ×2 1 MHz, ω = 0q , θ θ= .0 5max opt for SiV centers. The lines are fitted (black 
dashed lines) with ξ = . − .N1 4R

2 0 64 for Rb atoms, ξ = . − .N1 4R
2 0 46 for BEC and ξ = . − .N0 36R

2 0 1 for SiV− centers.
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Using the CARTs in spins, we have proposed a GPC scheme to efficiently squeeze ensemble of spin. The 
available squeezing degree with increasing the number of spins has been numerically studied. Our scheme has 
the potential to surpass the experimental record up to date. The protocol is free of the detrimental thermal noise 
which heavily destroys the squeezing in mechanical resonator-based schemes. Our scheme paves a way to prepare 
the quantum state of a large ensemble of spins for achieving ultrasensitive quantum sensing.

It is worth nothing that the inaccuracy in the timing control may lead to a tiny nonzero α t( )m  and subse-
quently reduces the degree of squeezing. However, this effect of error in timing control is small, in particular, for 
small ωc in our configuration. Moreover, this “one-time” error happens only when the operation is switched off 
but won’t accumulate during the whole geometric phase control.
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