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Adaptation trajectories during 
adhesion and spreading affect 
future cell states
Stéphanie M. C. Bruekers1, Min Bao1, José M. A. Hendriks1, Klaas W. Mulder2 & Wilhelm T. S. Huck1

Cells are complex systems in which dynamic gene expression and protein-interaction networks adapt 
to changes in the environment. Seeding and subsequent spreading of cells on substrates represents 
an example of adaptation to a major perturbation. The formation of adhesive interactions and self-
organisation of the cytoskeleton during initial spreading might prime future cell behaviour. To elucidate 
the role of these events on later cellular behaviour, we mapped the trajectories by which cells respond 
to seeding on substrates with different physical properties. Our experiments on cell spreading dynamics 
on collagen- or fibrin-coated polyacrylamide gels and collagen or fibrin hydrogels show that on each 
substrate, cells follow distinct trajectories of morphological changes, culminating in fundamentally 
different cell states as quantified by RNA-expression levels, YAP/TAZ localisation, proliferation and 
differentiation propensities. The continuous adaptation of the cell to environmental cues leaves traces 
due to differential cellular organisation and gene expression profiles, blurring correlations between a 
particular physical property and cellular phenotype.

Cells are complex systems, where the interplay of many (simple) components leads to the emergence of highly 
sophisticated behaviour1. The cellular state at a particular time can be characterised by the combined abundance 
and organisation of all its components. A key challenge is to understand how cells reach a particular state upon a 
response to changes in their environment2. As a first step, one can study the isolated components, including gene 
expression levels and protein localisation at steady. However, cell development is a dynamic process, following 
trajectories across a metaphorical ‘landscape’ of gene expression profiles that involve multiple so-called attrac-
tors3,4. Changes in the environment will affect this ‘landscape’, as the cell adapts by altering cellular organisation 
and changing gene expression profiles, thus potentially altering cell state and cell fate. An important example of 
such an adaptation process is the spreading of cells on a substrate, the dynamics of which have been studied in 
detail5–10. It is clear that adaptation to the substrate, and the forces experienced during spreading, lead to different 
dynamic changes in cell shape11,12. The balance of forces, the development of focal adhesions, and the build-up 
of tension in the cytoskeleton on substrates with different mechanical characteristics, have all been captured 
in impressive studies11–15. With time, cells reach a steady state, and numerous studies have demonstrated cor-
relations between a wide range of mechanical characteristics and steady state properties such as cell adhesion, 
spreading area, proliferation and differentiation16–23. The question we address here, is whether the adaptation of 
cellular shape and organisation during the spreading of cells on substrates with different mechanical properties, 
impacts on future cellular phenotypes and cell fate. We therefore developed a time-resolved, systems level study, 
which would allow us to follow both invariant and divergent characteristics of cells while they spread on different 
substrates, and provide a direct window on the cellular processes that integrate the multitude of mechanical cues 
over time.

Here, we follow how hMSCs adapt, upon seeding, to different substrates (PAAm hydrogels coated with colla-
gen and fibrin vs. collagen and fibrin hydrogels) over 24 hours. On each substrate, cells follow distinct trajectories 
of morphological changes, culminating in fundamentally different cell states, as reflected in significant differences 
in gene expression profiles and protein localisation characteristics. These results challenge the view that charac-
terisation of cellular phenotypes at apparent steady states without knowledge of the prior events can provide us 
with a complete picture of how cells sense the mechanical properties of their environment.
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Results
Human mesenchymal stem cells (hMSCs) were cultured on polyacrylamide (PAAm) gels of medium (≈3 kPa) 
and high (≈23 kPa) stiffness, coated with either collagen filaments or fibrin monomers and compared to hMSCs 
cultured on collagen type I (<1 kPa) or fibrin (<1 kPa) gels, respectively (see materials and methods for a detailed 
description of the formation of substrates and Figures S1 and S2 for the characterisation). These PAAm vs. protein 
substrates differ in mechanical properties (stiffness, strain stiffening, porosity) but are as similar as possible in the 
biochemical cues they present.

We followed hMSC adhesion and spreading from seeding up to 24 hours (morphology-wise considered a 
‘steady state’ in the field) using live cell imaging techniques. Low cell densities were used in order to observe single 
cells and eliminate cell-cell communication. Figure 1a and Movies S1–S4 show representative cells in different 
stages of spreading and remarkable differences were observed between the spreading on the coated PAAm hydro-
gels of different stiffness compared to the protein hydrogels. The initial spreading of cells on stiff PAAm gels was 
highly isotropic and cells adopted a striking disc-like morphology. The actin cytoskeleton had a radial arrange-
ment as well as multiple transverse fibres which together appeared as circular actin rings (Fig. 1b)24. This radial 
and transverse fibre organisation was transient and eventually small protrusions appeared. The cells then adopted 
more irregular shapes (Fig. 1a) showing parallel actin stress fibres, as commonly observed15,25,26. In contrast, cells 
on protein gels remained small and we observed the formation of protrusions after 30 min up to several hours 
after seeding (Fig. 1a,b). An evident increase in cell area occurred only at a later stage, in which the cells adopted 
a well spread morphology with actin fibres present mainly in the protrusions of the cell body. Finally, cells on 
PAAm gels of medium stiffness (≈3 kPa) exhibited markedly smaller spreading areas over the course of 24 h.

The evolution of cell morphology on all six substrates is shown in Fig. 1c,d. The increases in both cell area and 
cell perimeter show distinct trajectories for cells on each of the different substrates. However, as can already be 
seen from the convergence of some of the trajectories in Fig. 1c and d, the morphology after 24 h can be much 
more similar, especially if one compares the cells on fibrin gels with those on fibrin-coated stiff PAAm (Fig. 2a–d). 
We investigated the morphology of cells on the different substrates at this time point in more detail. For this, we 
extracted 11 quantitative morphological features (eg. area, perimeter, roundness) from hundreds of cells seeded 
on protein hydrogels and coated stiff PAAm substrates (Figure S3). Principal component analysis was used to 
uncover features, or combinations of features, that can separate the cells from the different substrates. We found 
that the top 7 principal components explain >95% of the variation in the data. However, none of these clearly 
separate the different substrates from each other. This highlights the convergence of cell morphologies over time 
to reach a steady state 24 hours after seeding the cells (Fig. 2e).

The combination of distinct spreading trajectories but significant overlap in morphology at 24 h prompted us 
to explore the spreading trajectories on stiff (≈23 kPa) PAAm and protein gels in more detail. We observed that 
cell spreading on protein gels is associated with cellular remodelling of the substrates (shown by live cell imaging 
experiments, Movies S3 and S4, and by imaging fluorescently labelled hydrogels (Figs 3a and S4). Fibre recruit-
ment has been described as a mechanism by which cells probe and respond to mechanics in fibrillar matrices11,26, 
and our findings are in agreement with previous literature reports27–30. We performed bead displacement studies 
to quantitatively compare substrate deformation on PAAm and protein substrates (Movies S5–S7). Figure 3b and 
c shows representative images of the displacement fields on stiff PAAm, collagen and fibrin gels. On PAAm gels of 
different stiffness, very small bead displacements were measured (average 1.5 ± 0.7 µm for stiff PAAm), showing 
that cells barely deform the PAAm gels. As fibre recruitment has been associated with matrix stiffening of protein 
hydrogels28,31, we used AFM indentation measurements to characterise cell-induced stiffening of the gel before 
the onset of spreading. Figure S5 clearly shows regions of increased stiffness in the protein matrix surrounding 
cells. As stiff PAAm gels are providing a rigid substrate, the cells can form pronounced focal complexes. On the 
protein gels, focal complexes were observed only occasionally, and these were less pronounced and smaller than 
on the PAAm substrates which is consistent with previous literature (Figure S6)32. The average onset of bead dis-
placement (quantified from 32 cells) was approx. 30 min on collagen and 4 hours on fibrin. After 8.5 h the motion 
of the fluorescent beads ceased, indicating mechanical equilibrium between the cell traction forces and the elastic 
resistance of the protein gels, possibily in combination with remodelling of the gels26,33,34. Within this time frame, 
most cells remained within the window of recording. Figure 3d shows how the onset of deformation and onset of 
spreading are related for individual cells. All cells on collagen gels deformed the matrix before protrusions were 
observed. On fibrin this process seemed to be more dispersed, with a similar fraction of cells first deforming the 
matrix, or first spreading. We cannot exclude that there are small, short-lived protrusions that we were unable to 
observe causing the deformations. Nevertheless, a difference in cell spreading remains between collagen versus 
fibrin as the onset of deformation is much sooner on collagen and cell area increases earlier on fibrin than on 
collagen.

It is evident that cell spreading follows distinct trajectories associated with different materials properties of the 
substrate. We wished to investigate the intracellular imprints of these trajectories by studying the changes in gene 
expression over time using genome-wide RNA sequencing to obtain more molecular insight into the dynamics of 
cellular processes during the observed dynamic spreading behaviour on the different types of substrates. For this, 
we harvested cells for RNA isolation after 1 h, 5 h, 10 h and 24 h and compared expression levels to the original 
cell suspension at the moment of seeding as a common reference sample in technical duplicates (t0A and t0B). 
We chose to compare RNA expression levels on collagen and fibrin gels vs. stiff PAAm gels coated with collagen 
and fibrin, as these substrates showed different trajectories but closest morphologies after 24 h. See SI for more 
experimental details. Interestingly, the number of differentially expressed genes increases much faster on protein 
gels compared to PAAm gels, even though changes in morphology occur much faster on PAAm, see Figure S7.

We focussed on 948 RNA transcripts that were reliably detected at t0 (fragments per kilobase of exon per 
million reads mapped (FPKM) ≥ 2) and were differentially expressed in at least one time-point compared to 
t0 (p ≤ 10−10 and fold-change ≥5). For a general overview on similarities and differences between samples at 
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identical time points, the top 25 upregulated and downregulated genes were compared. The overlap in the top 
25 upregulated genes between the various substrates decreased over time (Figure 4a,b), indicating divergence in 
cell state in time on the four types of substrates. After 24 h, clear differences between fibrin and collagen gels were 

Figure 1. Cell spreading dynamics is very different for PAAm and protein gels (a) hMSC spreading at time 
points that illustrate the route of spreading on the six gel types. Representative cells were selected for each time 
point. Scale bar 50 µm. (b) Actin structure during the different trajectories of spreading showing the radial and 
transverse fibres after 1 h on the stiff PAAm gels and the onset of spreading with the formation of protrusions 
after 5 h on the protein gels. Scale bar 50 µm. (c) Quantification of cell area and (d) perimeter over time, showing 
the different spreading trajectories on PAAm and protein gels. Mean ± SEM from three replicates (mean from 
two for medium PAAm) with over 50 cells analysed per sample per replicate, ANOVA oneway analysis followed 
by Tukey post hoc correction per timepoint is shown in Tables S1 and S2.
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observed for top 25 upregulated genes, whereas cells on PAAm-col and PAAm-fb gels showed somewhat more 
overlap (Fig. 4a). No clear trend was observed in the top 25 downregulated genes after 24 h. To investigate whether 
the difference between protein and PAAm gels in the number of differentially expressed genes (Figure S7) is a 
delay or an indication for a different response, we also compared the top 25 genes on the protein gels after 1 h to 
the PAAm gels after 5 h. From the top 25 upregulated and downregulated genes, only 8 and 4 genes, respectively, 
were present in this selection on all four gel types (Fig. 4b, central numbers). This clearly indicates that changes in 
gene expression are not simply delayed on the PAAm substrates.

For further and more detailed analysis, K-means clustering (9 clusters) was applied (top-bottom) for all 18 
samples (left-right, Fig. 4c). Several clusters show dynamic gene regulation over time that is consistent among all 
four substrates. For instance, a subsection of Cluster 4 (denoted 4*) includes genes, including FOSB and JUNB, 
that are upregulated one hour after seeding and subsequently downregulated. Similarly, Cluster 1 and Cluster 3 

Figure 2. hMSC spreading on stiff PAAm and protein gels shows only minor differences between the gels after 
24 h (a) Cell outlines of ten representative cells per gel type. Scale bar 50 μm. (b) Cell area, (b) Cell area, (c) Cell 
perimeter, (d) Aspect ratio distribution from triplicate experiments with a minimum of 60 cells per sample and 
(e) Principal component analysis for cells on different substrates. Mean ± SEM, ANOVA oneway analysis shows 
significance levels of p > 0.05.

Figure 3. Gel deformation and cell spreading over time: (a) Round (left) and spread (right) hMSCs stained for 
actin (red) on labelled collagen and fibrin gels (green). Both round and spread cells can deform the matrix. All 
scale bars represent 50 µm. (b) Gel deformation was quantitatively measured by bead displacement. The cells on 
PAAm gels do barely deform the matrix, whereas the cells on collagen and fibrin can deform the gel over long 
distances. (c) Average displacement of beads within 150 µm of cells on PAAm-col, PAAm-fb, collagen or fibrin. 
(d) Comparison between onset of deformation and spreading. On collagen, all cells first deform the matrix 
before they started to spread (top left part). On fibrin, approximately half of the cells first deformed the matrix, 
the others only deformed the matrix after spreading (bottom right part).
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(including FOS and JUN targets) show similar transient upregulation with a slightly delayed onset (Figure S8). 
Genes in these three clusters show essentially identical patterns on all four substrates. The similarity between the 
different substrates indicates that similar networks of immediate early genes35 are active in cells on all substrates 
in the early stages upon seeding.

K-means clustering analysis also identified several clusters that showed differences in gene expression between 
PAAm and protein gels (Cluster 6), as well as substrate specific effects (clusters 2, 5 and 9). We used principal 
component analysis (PCA) to identify common underlying structures in the RNA-seq dataset that could help 
identify the observed differences between the samples (Fig. 4d). Principal component 1 (PC1, explaining 41.7% of 
the variability of the dataset) essentially orders all the samples according to time (Fig. 4d). In contrast, PC4 (5.2%) 
distinguishes the PAAm substrates from the protein gels (Fig. 4b) and with the genes in Cluster 6 being the key 
contributor to this difference (Fig. 4e).

To identify the biological and molecular processes represented in the different clusters, we performed gene 
ontology overrepresentation (GO) analysis. A selection of the biological processes that were found significantly 
overrepresented (p < 0.001) are presented in Fig. 4f, a full overview can be found in Table S3. Analysis indicated 
that Cluster 6, which distinguishes PAAm from protein gels, seems to be enriched in genes involved in extracellu-
lar matrix turnover. Examples are ACAN, FBN1, FBN2, HSPG2, COL11A1, COL12A1, COL14A1, COL25A1 and 
COL4A1. These genes are coding for the proteins aggrecan, fibrillin, heparin sulfate proteoglycan 2 and several 
collagens, which are all components of the ECM. This indicates that the cells on PAAm gels are producing more 
ECM proteins and hence are modifying their environment. These are important differences, although a detailed 
analysis of how these sets of genes alter the ‘internal’ trajectories is beyond the scope of this study.

Figure 4. Differences in dynamic gene expression programs associate with observed cell spreading behaviour 
and highlights underlying mechanisms (a) Venn diagrams summarising the magnitude of the overlap in top 
25 upregulated (left) and downregulated (right) genes per substrate after 24 h showing the divergence in RNA-
expression profiles. (b) Venn diagrams summarising the magnitude of the overlap in top 25 upregulated (left) 
and downregulated (right) genes per substrate after 1 h at the protein gels and 5 h at the PAAm gels indicating 
that the difference in number of differentially expressed genes after 1 h is not simply delayed on PAAm gels 
compared to the protein gels. (c) Heat map representation of the Z-scores of gene expression levels clustered 
by K-means clustering (d) Principal Component 4 can distinguish the PAAm substrates from the protein gels 
(e) Average relative expression levels from genes in cluster 6 show differences in gene expression on PAAm and 
protein gels (f) Selection of significantly overrepresented GO terms (p < 0.001) per cluster.
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Our RNA-seq data also provided information on integrin expression levels on the different substrates. 
Integrins provide the physical linkage between the ECM and the cytoskeleton and play an important role in 
mechanotransduction36–38. Figure 5a provides an overview of all integrin subunits as well as discoidin domain 
receptors that were expressed on all samples and all time points (FPKM > 0). This heat map clearly shows that 
cells express different adhesion molecules on the various substrates. Integrin β1, a principal receptor for collagen, 
is highly expressed on all substrates (FPKM > 103), albeit slightly lower on fibrin gels. Immunostainings showed 
that activated integrin β1 is present on all substrates and aligned with intracellular stress fibres (Fig. 5b). Other 
collagen-binding integrins show more distinct expression levels on the different substrates. The expression of 
Integrin α2, typically associated with collagen binding, increases in time on collagen substrates, but decreases 
after 10 h on the other three gel types. Integrin α10 expression increased on all substrates except fibrin gels. 
Interestingly, we also observed that discoidin domain receptor family member 1 (DDR1), a protein involved in 
the communication of cells with their microenvironment, showed increasing expression levels on collagen gels, 
while slightly decreasing on the other substrates. Fibrin-binding and other integrins show various other differ-
ences between the substrates. Interestingly, there is no clear difference between PAAm-col and collagen gels on 
one hand and PAAm-fb and fibrin gels on the other, the total pattern of integrins that is expressed seems depend-
ent on more factors than only the cell type used and the adhesion molecules present. Furthermore, this subsection 
of genes again shows that cells on each substrate follow distinct trajectories.

As a final set of experiments, we wished to confirm that the differences between substrates we observed in 
morphology or in gene expression levels, are also present at a protein level. In recent studies, cell spreading on stiff 
substrates has been associated with nuclear localisation of two downstream components of the Hippo pathway: 
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). It is thought that 
cells growing on stiff substrates can develop stress fibres and cytoskeletal tension, which are known to prevent 
phosphorylation of YAP/TAZ, resulting in nuclear localisation39. As TEAD1, a transcription factor activated by 
the mechanosensitive YAP139–42, was among the genes in Cluster 6, we tested whether the type of substrate could 
have an effect on YAP/TAZ localisation in hMSCs after 24 h of culture. Fluorescence staining (Fig. 6a) shows 
that YAP and TAZ remain located in the cytosol of the cells on collagen and fibrin. Quantification of triplicate 
experiments show nuclear localisation in 2.3 ± 2.1% of hMSCs on collagen and 4.7 ± 2.1% on fibrin gels (Fig. 6b). 
Control experiments on PAAm gels showed that on stiff gels there was indeed nuclear localisation (75–85% on 
stiff PAAm and 10–20% on medium PAAm) and YAP/TAZ remained in the cytosol on soft PAAm (approximately 
2% nuclear localisation, Fig. 6b). Similar to cells on very soft hyaluronic acid gels43, but in contrast to the majority 
of existing literature, cell spreading and F-actin organisation alone are not sufficient to cause YAP and TAZ to 
localise into the nucleus. It should be noted that YAP/TAZ localisation is not simply delayed in cells cultured 
on protein gels: we found that after culturing the cells for 48 h on the protein gels, still no nuclear localisation 
occurred (Figure S9).

Interestingly, Cluster 2 is enriched in genes involved in cell cycle progression and proliferation, whereas 
Cluster 5 is enriched in muscle cell proliferative genes. Thus, our RNA-sequencing analysis suggests that cells 
seeded on collagen only gels might initiate towards a muscle cell fate and do not follow the same cell proliferation 
program as cells on the other substrates. Subsequent quantification of hMSC proliferation as determined by EdU 
incorporation over 24 h shows significantly lower proliferation on collagen than on stiff PAAm-col whereas cell 
proliferation on fibrin is not significantly different from cells on stiff PAAm-fb (Figs 6c and S10). Additionally, 
cells cultured on collagen and fibrin were found to have nuclear localisation of MyoD after 24 h of culture, indi-
cating their potential differentiation towards muscle (Figs 6d and S11)44.

Finally, we wished to explore how the different trajectories in the first 24 hours (both in terms of morphol-
ogy as in RNA expression levels and protein localisation) impacted on future events, such as the differentiation 
of hMSCs into osteoblasts and adipocytes15,21,45–47. hMSCs were seeded on the four types of gels. After cultur-
ing in mixed adipogenic/osteogenic medium for 10 days, Oil red O staining showed no difference between the 
substrates in the relative presence of adipocytes (Fig. 6e). Differentiation into osteoblasts was examined after 
culturing the hMSCs for 7 days in mixed medium. On PAAm and fibrin gels, approximately 60–70% and 40%, 
respectively, of cells stained positive for Alkaline Phosphatase. Cells on collagen gels, however, did not differenti-
ate towards osteoblasts (Fig. 6f,g). These experiment again illustrate that initial differences in interactions between 
cells and their substrate lead to long-lasting differences in cell behaviour.

Conclusions
We have shown that cellular adaptation to the mechanical environment upon seeding follows distinct trajecto-
ries. Differences in phenotypes arise early, as exemplified by the isotropic spreading on stiff PAAm gels, whereas 
cells on protein gels show matrix deformation, and spreading along deformed regions. However, after strikingly 
different initial morphologies, cellular phenotypes appear to converge over time, and after 24 h cells can look 
remarkably similar. In contrast, the morphological trajectories are accompanied by intracellular ones that do not 
converge: RNA-seq data show on the one hand that cells on all substrates follow a common expression pattern of 
early response genes, but differences appear in for example integrin expression patterns, especially when compar-
ing PAAm and protein gels, but also between collagen and fibrin substrates. At 24 h, the ‘molecular starting points’ 
for further development, i.e. the occupancy of the complex networks that govern cell behaviour and responses, 
are very different among the different substrates. Gene expression profiles do show that the early differences have 
resulted in different molecular trajectories, leading cells to integrate the various mechanical cues in different 
ways. The different trajectories also lead to significant differences in the localisation of YAP/TAZ, proliferation 
rates, and cellular differentiation on different substrates. It is clear that the different adaptation routes cells take on 
different substrates leave an imprint, and affect future events such as lineage selection.

Our studies make clear that the continuously evolving patterns of morphological changes and gene expres-
sion profiles that result from probing the environment, blur the correlations between a particular property of 
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the substrate and cellular phenotype. The impact of different environmental factors such as matrix elasticity or 
topography might thus depend on how they shape the adaptation trajectory that cells take. Our findings highlight 
the importance of studying the response of cells over time, and early spreading trajectories could provide a strong 
indication of future cellular behaviour.

Figure 5. Differences and similarities in cell adhesion to the substrates (a) Heat map representation of gene 
expression levels (normalised scale) of cell adhesion receptors that were present on all samples and time 
points. (b) Integrin β1 adhesions are present on all gels after 24 h. Insets contain enlarged details of Integrin β1 
adhesions. scale bar 50 µm.
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Materials and Methods
Preparation of polyacrylamide hydrogels. This method was based on a previously described proto-
col6. Glass coverslips (13 mm, thickness no 1, borosilicate glass) were oxidised using oxygen plasma and then 
incubated in a 0.3 wt/vol% solution of 3-(trimethoxysilyl)propyl methacrylate (Sigma Aldrich) in dry toluene 
overnight. The slides were washed thoroughly with ethanol and water.

Solutions of acrylamide (AA) at final concentrations of 5, 8 and 20 wt/vol% and bis-acrylamide (BA) at 0.01, 
0.02, 0.15 and 0.375 wt/vol% were prepared. Polymerisation was initiated by the addition of 5 µL of 10 wt/vol% 
ammonium persulfate (Sigma Aldrich) and 1.5 µL TEMED (Sigma Aldrich) to the AA/BA solutions in PBS. 4 µL 
of the gel precursor solution was immediately pipetted onto de methacrylated glass coverslips and a 20 mm glass 
coverslip, washed but untreated, was carefully placed on top of the polymerizing solution. After 1.5–2 h, the sam-
ples were soaked in PBS buffer overnight to remove the remaining monomer and crosslinker. The top coverslips 
were peeled off to obtain the PAAm gels adhering to the coverslides.

Figure 6. Different gene-expression dynamics indicate long-term outcomes of cellular state (a) YAP/TAZ 
localisation in hMSCs on the four gel types after 24 h. Insets contain enlarged details of nuclear YAP/TAZ 
localization. Scale bar 50 µm (b) Quantification of YAP/TAZ nuclear localisation on different PAAm stiffness 
(soft ≈1 kPa, medium ≈3 kPa, stiff ≈23 kPa and very stiff ≈1.1 × 102 kPa) with our standard stiff PAAm gel in 
blue in comparison with the protein gels in green. Collagen and collagen coated gels in homogeneous colours, 
fibrin and fibrin coated gels striped columns. (c) Cell proliferation determined by EdU incorporation over 24 h. 
(d) Quantification of nuclear localisation of MYOD (e) Oil Red O and (f) Alkaline Phosphatase staining on the 
four gel types. Scale bar 100 µm. (g) Quantification of differentiation after 7 d (Alk Phos) and 10 d (Oil Red O). 
Mean ± SEM, ANOVA oneway analysis followed by Tukey post hoc test shows significance levels of *p < 0.05, 
**p < 0.01 and NS: p > 0.05 compared to corresponding collagen or fibrin gel.
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To facilitate cell adhesion, the hydrogel was covered with a covalently bound protein coating using 
N-sulfosuccinimidyl-6-(4′-azido-2′-nitrophenylamino)hexanoate (sulfo-SANPAH, Life Technologies) as a 
crosslinker. 2 × 15 µL of a 1 mg mL−1 solution in milliQ H2O was pipetted onto the gel surfaces, which were then 
placed under a 365 nM UV lamp (ABM, USA) and irradiated for 5 min. The gels were washed twice with PBS and 
the procedure was repeated once. After the second round of washing with PBS, the substrates were coated with 
50 µg mL−1 of rat type I collagen in PBS for 2 h at room temperature or with 0.1 mg mL−1 of bovine fibrinogen in 
PBS for 1.5 h followed by 0.5 h incubation with thrombin 1 U mL−1 in PBS. Samples were again washed two times 
with PBS prior to cell seeding.

Preparation of fibrin hydrogels. Fibrinogen (FBNG, from bovine plasma, Sigma Aldrich) was dissolved 
in PBS (4 mg mL−1) and then put through a 0.22 µm filter to sterilise the solution. Gelation was achieved by mix-
ing the FBNG solution with CO2-independent medium (DMEM-Hepes, 10% FBS) in equal volumes, resulting 
in 2 mg mL−1 fibrin gels after 1 h incubation at 37 °C. For gel deformation studies, fibrin gels were stained directly 
after gelation with FITC prior to cell seeding.

Preparation of collagen hydrogels. Rat tail collagen type I (BD biosciences) gels were prepared similarly 
to the manufacturer’s protocol. High concentration collagen was diluted to 4 mg mL−1 with pre-mixed 1/10 of the 
volume with 10x PBS, 0.023x the collagen volume of 1 M NaOH was added to neutralise the pH. An equal amount 
of DMEM-Hepes was added to dilute the collagen to a 2 mg mL−1 solution. Gelation occurred during 30 min 
incubation at 37 °C. For gel deformation studies, collagen gels were stained directly after gelation with primary 
anti-collagen antibody (Abcam, ab34710) for 1 hour at 37 °C and subsequently with Alexa488-conjugated second-
ary antibody (Thermo Fisher, A-11001), prior to cell seeding.

Characterisation of the substrates. Substrate stiffness was measured by nanoindentation under an 
atomic force microscope (Bruker Nanoscope) using the “point and shoot” procedure (Nanoscope software, 
Bruker). A fluorescent polystyrene bead (ϕ = 10 μm, Invitrogen) was glued to silicon nitride cantilevers with 
nominal spring constants of 0.06 N/m (NP-S type D, Bruker). The system was calibrated in cell-free medium at 
37 °C prior to each experiment by measuring the deflection sensitivity when pressing the cantilever onto a glass 
coverslip, which allowed the cantilever spring constant to be determined using the thermal noise method38. For 
each gel, indentation force curves at 30 different locations on the gels were acquired. Before and during inden-
tation experiments gels were kept in medium in 37 °C. To address local stiffness changes generated by cells on 
protein gels and PAAm gel, we applied spatially resolved AFM nanoindentation in live-cell culture by probing 
the matrix around single cells. To obtain stiffness values from force curves we used the PUNIAS software (http://
punias.free.fr). Specifically, we corrected for baseline tilt, and used the linear fitting option for the Hertz model 
with a Poisson ratio of 0.5 on the indentation curve.

Culturing of hMSCs and seeding onto substrates. hMSCs were obtained from Lonza and cultured up 
to passage 6 before seeding them onto gels at a density of circa 1250 cm−2 for the analysis of spreading, gel defor-
mation and YAP/TAZ expression. Spreading and gel deformation were observed at multiple time points. YAP/
TAZ expression was studied after 24 and 48 h in culture.

All adipo/osteo differentiation experiments were performed in a 1:1 mixture of adipogenic and osteo-
genic induction medium (DMEM + 10% FBS + pen/strep, containing 5 × 10−7 M dexamethasone, 5 mM 
β-glycerolphosphate, 0.1 mM ascorbic acid-2-phosphate, 250 µM 3-isobutyl-1-methylxanthine, 5 µg mL−1 insulin 
(from bovine pancreas) and 5 × 10−8 M rosiglitazone maleate). Cells were seeded at circa 2500 cm−2 for osteo-
genic differentiation and 25000 cm−2 for adipogenic differentiation in MIX medium on the substrates. Medium 
was changed two times per week. Osteogenic differentiation was analysed after 7 days by staining for alkaline 
phosphatase, and adipogenic differentiation after 10 days by staining with Oil red O. ALP/Oil red O positive cells 
were counted manually from at least five different bright field images. The percentage of differentiation towards 
each lineage was quantified by setting a uniform threshold in each experiment and manually counting the num-
ber of positively stained cells in relation to the total number of nuclei (DAPI staining).

Immunofluorescence staining. hMSCs on hydrogels were fixed with 4% PFA for 10 min and permeabilised 
with 0.2% Triton-X100 for 10 min. Following blocking with 10% BSA solution in PBS for 1 h, substrates were incu-
bated with primary antibodies (vinculin (Abcam, ab18058), YAP/TAZ (Cell signalling, D24E4), β1 integrin (BD 
Biosciences, 550531), MyoD (BD Biosciences, 554130) and Alexa633-conjugated phalloidin (Sigma Aldrich) and 
subsequently with Alexa488 or -546-conjugated secondary antibodies (Life Technologies) and DAPI. For prolifera-
tion studies, EdU labelling was performed following the manufacturer’s protocol (Click-iT EdU Alexa Fluor-488 HCS 
Aaasy, Thermo fisher scientific). Quantification of nuclear localisation was performed manually. Cells were consid-
ered to have nuclear localisation when the level of fluorescence in the nucleus was higher than the level in the cytosol.

Live cell imaging. Phase contrast images were acquired at 2 min intervals on an IncuCyte live cell analysis 
system (Essen BioScience). For bead displacement studies, PAAm pre-gels as well as collagen and fibrin solutions 
were mixed with fluorescent beads, which served as fiduciary markers for tracking the deformation of the matrix 
under adherent cells. The bead displacement field around each cell was mapped from a time series of fluorescent 
images that were collected using an inverted time lapse microscope (Nikon Diaphot 300 with Hamamatsu C8484-
05G CCD Camera, Okolab CO2 stage incubator and Okolab 2D time lapse software). The initial bead position 
was determined ~20 min after cell seeding, when cells were attached to the gel surface. A time series of images was 
collected at a frequency of one image every 10 min. Beads displacement analyses were performed with a custom 
script in Fiji software.

http://punias.free.fr
http://punias.free.fr
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RNA isolation and purification. RNAs from 6 subsamples were isolated by an extraction using Trizol rea-
gent (Life Technologies) according to the manufacturer’s protocol. The RNA pellets from these subsamples were 
resuspended in water and pooled to a total volume of exactly 100 µL. The samples were further purified by means 
of a Nucleospin RNA clean-up kit (Machery-Nagel), including an on column treatment with rDNAse. Finally 
the samples were eluted in 60 µL of RNAse-free water. Quality control was performed using an Agilent 6000 
nano kit on an Agilent BioAnalyzer 2100. Subsequent RNA sequencing was performed by ServiceXS Leiden, The 
Netherlands. For the reference samples at t0 a technical duplicate was performed (A and B) by using two separate 
aliquots of the cell suspension prior to seeding on the substrate.

Statistical analysis. Significance of differences throughout this study were tested using one-way analysis of 
variance (ANOVA) with Tukey post hoc correction with *p < 0.05, **p < 0.01 and NS: p > 0.05. Analysis was per-
formed on triplicate independent experiments using cells from the same donor throughout. ANOVA was chosen 
over t-tests due to its more conservative nature.
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