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Exploring genetic influences 
underlying acute aerobic exercise 
effects on motor learning
Cameron S. Mang1, Lisa M. McEwen2, Julia L. MacIsaac2, Nicholas J. Snow3, Kristin L. 
Campbell4, Michael S. Kobor2, Colin J. D. Ross2,5 & Lara A. Boyd4,6

The objective of the current work was to evaluate whether the effects of acute aerobic exercise on 
motor learning were dependent on genetic variants impacting brain-derived neurotrophic factor (BDNF 
val66met polymorphism) and the dopamine D2 receptor (DRD2/ANKK1 glu713lys polymorphism) in 
humans. A retrospective analysis was performed to determine whether these polymorphisms influence 
data from our two previous studies, which both demonstrated that a single bout of aerobic exercise 
prior to motor practice enhanced implicit motor learning. Here, our main finding was that the effect of 
acute aerobic exercise on motor learning was dependent on DRD2/ANKK1 genotype. Motor learning 
was enhanced when aerobic exercise was performed prior to skill practice in glu/glu homozygotes, but 
not lys allele carriers. In contrast, the BDNF val66met polymorphism did not impact the exercise effect. 
The results suggest that the dopamine D2 receptor may be involved in acute aerobic exercise effects 
on motor learning. Such genetic information could inform the development of individualized aerobic 
exercise strategies to promote motor learning.

Recent work demonstrated that performance of a single bout of aerobic exercise performed in close temporal 
proximity to motor practice can facilitate motor skill acquisition1–5 and motor skill learning3,5–7. These behav-
ioural findings are complemented by work demonstrating acute aerobic exercise-induced alterations in intra-
cortical8–10 and interhemispheric excitability10, as well as increased plasticity in response to non-invasive brain 
stimulation protocols3,11,12. While the behavioural findings have potential implications for sport and rehabilita-
tion, it is notable that there was substantial inter-individual variability in the magnitude of motor performance 
and learning benefits elicited by exercise in our prior work2,3,5. Uncovering the sources of this variability may 
provide insights into the mechanisms underpinning these effects and potentially inform the individualization of 
exercise strategies.

Past studies suggest that genetic variation contributes to inter-individual variability in neuroplasticity and 
motor learning in humans13. Considerable work has focused on a single nucleotide polymorphism (SNP) on 
the brain-derived neurotrophic factor (BDNF) gene14–18. This SNP (rs6265) causes a valine-to-methionine sub-
stitution at codon 66 (val66met) and is associated with impaired activity-dependent secretion of BDNF19, a 
crucial characteristic for the involvement of BDNF in long-term potentiation (LTP) mechanisms that underpin 
memory formation20. As BDNF met allele homozygotes (met/met) are relatively rare (<7% globally) (The 1000 
Genomes Project Consortium, 2015), homozygous and heterozygous carriers are commonly grouped together 
as met allele carriers in a dominant genetic model. Previous candidate gene studies demonstrated significant 
associations between the presence of the BDNF met allele and reduced LTP-like plasticity in the primary motor 
cortex (M1)14,15,21–23. BDNF val66met genotype effects on motor behaviour have also been studied, but with some-
what more equivocal results. While one study suggested reduced motor performance and learning in met allele 
carriers16, others found no difference between BDNF val66met genotype on behavioural outcomes15,22,23. These 
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discrepant findings have led to speculation that the effects of this SNP may interact with specific types of neuro-
plasticity21 and depend on the complexity of the skill being learned22. Taken together, these results also suggest 
that there may be other genetic factors at play in determining certain individuals’ susceptibility to beneficial 
effects of exercise on the motor system.

Dopamine is another key orchestrator of neuroplasticity and memory24,25. A dopamine-related genetic vari-
ant that may be particularly important for motor learning is located near the DRD2 gene and within the ANKK1 
gene26. This SNP (rs1800497) causes a glutamic acid to lysine substitution at position 713 (glu713lys) of the 
ANKK1 gene, with lys allele homozygotes (lys/lys) and heterozygotes (glu/lys) often grouped as lys allele carriers, 
due to a low frequency of lys/lys homozygotes in most populations (<12% globally) (The 1000 Genomes Project 
Consortium, 2015). Although the underlying mechanism is not well understood, human lys allele carriers exhibit 
reduced dopamine D2 receptor (D2R) availability and binding in the brain27. Consistent with previous work 
demonstrating the importance of dopaminergic signaling for motor learning25, a candidate gene study demon-
strated that motor learning benefits elicited by administration of levo-dopa (L-dopa), a dopamine precursor, were 
attenuated in carriers of the DRD2/ANKK1 lys allele compared to glu/glu homozygotes26.

Interestingly, animal studies demonstrated direct roles for BDNF28 and dopaminergic pathways29 in medi-
ating aerobic exercise effects on brain function. Although neither molecule readily crosses the blood-brain bar-
rier30,31, human studies reported positive relationships between increased systemic BDNF and motor learning32, 
and increased systemic BDNF and dopamine with declarative memory33 following acute aerobic exercise. Thus, it 
seems plausible that genetic variation impacting these molecules may influence acute aerobic exercise effects on 
motor learning. A small human study (n = 12) found that a 4-week aerobic exercise program enhanced declara-
tive memory in BDNF val/val homozygotes and not met allele carriers, but did not consider dopaminergic gene 
variants34. Additionally, with reference to exercise effects on the motor system, past work showed that met carriers 
showed no significant difference in intracortical excitability after acute moderate-intensity aerobic exercise, com-
pared to those possessing the dominant allele9. No prior work has considered genetic influences on acute aerobic 
exercise effects specifically on motor learning.

Presently, we conducted a retrospective analysis of the influence of the BDNF gene val66met (rs6265) and 
DRD2/ANKK1 glu713lys (rs1800497) gene variants on data from our prior studies examining the effect of acute 
high-intensity interval cycling on motor learning3,5. We hypothesized that the positive effects of acute aero-
bic exercise on motor learning would be reduced in both BDNF gene met allele carriers, compared to val/val 
homozygotes, and DRD2/ANKK1 glu/glu homozygotes, compared to lys allele carriers.

Methods
Participants.  Our retrospective analysis combined data from two past studies (n = 16 in each)3,5 for a current 
study sample of 32 young, healthy participants with no known neurological disorders (Table 1). All participants 
gave written informed consent. The Clinical Research Ethics Board at the University of British Columbia approved 
all procedures and procedures were performed in accordance with the relevant guidelines and regulations.

Experimental overview.  The general experimental design was consistent between the combined studies3,5. 
The main difference between studies was the type of motor learning task employed, which is described fur-
ther in the Motor Learning Tasks section. On a separate day from other procedures, venous blood samples were 
obtained from participants’ antecubital vein. Upon study completion, DNA was purified from the stored blood 
and the BDNF val66met and DRD2/ANKK1 glu713lys polymorphisms were genotyped (custom Illumina panel, 

All BDNF val/val
BDNF met carrier 
(met/met alone)

DRD2/ANKK1 
glu/glu

DRD2/ANKK1 lys 
carrier (lys/lys alone)

Population frequency — 62% 38% (10%) 42% 58% (12%)

N 32 14 18 (1) 17 15 (2)

CT task 16 8 8 (1) 6 10 (2)

ST task 16 6 10 (0) 11 5

Age 24.8 ± 4.2 25.9 ± 5.0 23.9 ± 3.3 (19) 24.9 ± 4.3 24.7 ± 4.3 (23 ± 2.8)

Sex 18F 8F 10F (1F) 10F 8F (1F)

Handedness 30R 14R 16R (0R) 17R 13R (2R)

VO2peak 44.3 ± 8.9 46.7 ± 11.9 42.5 ± 5.2 (40.2) 46.0 ± 8.1 42.4 ± 9.6 (48.6 ± 16.3)

Ethnicity

White 22 11 11 (0) 11 11 (1)

East Asian 4 2 2 (1) 1 3 (1)

South Asian 4 1 3 (0) 4 0 (0)

Hispanic 2 0 2 (0) 1 1 (0)

Table 1.  Summary of participant characteristics. Values presented are mean ± standard deviation. CT task 
and ST task refer to the continuous tracking and serial targeting tasks. Age units are in years and peak oxygen 
uptake (V̇O2peak) units are in ml/kg/min. Values in the BDNF met carrier and DRD2/ANKK1 lys carrier columns 
represent data combining the heterozygote and homozygote carriers of the minor alleles, with values in 
parentheses representing only the characteristics of the met/met or lys/lys homozygotes within the larger carrier 
group.
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VC0013722-OPA) (Table 1 provides genotype distributions). Participants also completed a graded maximal exer-
cise test on a separate day as described in the prior work3,5 to inform exercise prescription for subsequent sessions. 
For the experiment, a within-subjects design was employed where each participant practiced a motor task on two 
occasions under differing conditions. In the control condition, participants practiced the motor task immediately 
after resting for 20 minutes in a seated position. In the experimental condition, participants practiced the motor 
task immediately after completing a 20-minute bout of high-intensity interval cycling. Motor practice sessions 
were followed by a no-exercise delayed retention test (24 ± 2 hours) (Fig. 1). There was a minimum of two weeks 
between motor task practice sessions under each condition (rest or exercise)3,5.

Standardized acute aerobic exercise bout.  The high-intensity interval cycling bout was comprised 
of a 5-minute warm up at 50 W and a self-selected cadence, followed by three sets of three minutes of intense 
cycling at 90% of the participants’ maximal power output (in watts). These high intensity intervals were inter-
spersed with three sets of two-minute active rest periods, in which participants maintained a cadence of at least 
70 rpm and a power output of 50 W. High-intensity exercise was employed based on prior work suggesting a 
dose-response relationship between aerobic exercise intensity and increases in neurochemicals thought to play 
a role in learning processes33. The interval format of the exercise was chosen in an effort to minimize fatigue and 
dehydration, which other authors have posited could have potentially detrimental effects on cognition35 and 
motor learning36,37.

Motor learning tasks.  Both studies used variations of the Pew task38, with one task involving continuous 
movements and termed the continuous tracking (CT) task3,39, and the other requiring discrete movements and 
termed the serial targeting (ST) task5,40. Both tasks are described in more detail elsewhere3,5.

Briefly, the CT task involved manipulating a small joystick with the non-dominant thumb to move a cursor to 
track the vertical path of a target moving at constant horizontal velocity across a screen (Fig. 2A)3. Participants 
completed a 30 s trial for task familiarization prior to the rest period or exercise bout. Motor practice consisted 
of two blocks of 10 × 30 s trials, for a total of 10 minutes. The following day (24 ± 2 hours after motor practice), 
participants completed another block of the CT task (retention test)3. CT task performance was quantified by the 
root mean square error of the participants’ cursor relative to the target movements.

The ST task involved manipulation of a computer mouse with the non-dominant hand to move a cursor 
between a series of targets appearing one at a time on a computer screen (Fig. 2B). At the beginning of a session, 
participants performed the task for 30 s for familiarization. Participants were then exposed to the rest period or 
the aerobic exercise bout, followed by performance of three blocks of 110 target movements, for a total of approx-
imately 9–12 minutes of practice. The following day (24 ± 2 hours after motor practice) participants completed 
a single task block (retention test)5. ST task performance was quantified by the participants’ total response time 
(sum of reaction time and movement times) to complete a sequence of target movements.

Unknown to participants, in both tasks a repeated sequence of movements was practiced; this sequence was 
also present at the retention tests. The inclusion of the repeated sequences allows evaluation of sequence-specific 
implicit learning38–41. In the CT task, the repeated movement sequence was presented to the participant 20 times 
throughout the practice period (10 times per block, 2 blocks of practice). The repeated sequence in the CT task 
lasted 10 s in duration and was flanked by 10 s of random target movements in each 30 s trial. In the ST task, the 
repeated movement sequence was presented to the participant 24 times throughout the practice period (8 times 
per block, 3 blocks of practice). The repeated sequence was six target elements long and flanked by a random 
set of seven targets. For both tasks, the movement sequences were reversed between conditions, such that the 
sequences differed but were of equivalent difficulty for the exercise versus rest conditions. Also, the order of pres-
entation of conditions (rest and exercise) and movement sequences (regular or reversed) were pseudorandomized 
and balanced across the sample for both tasks. Recognition testing following experimental sessions indicated that 
participants did not gain explicit knowledge of the repeated sequence, as it could not be identified at a rate higher 
than chance for either task (55.4 ± 16.5% and 50.0 ± 38.0% of repeated sequences correctly identified for the CT 
and ST task, respectively)3,5.

Figure 1.  Overview of experimental procedures to test the effects of an acute bout of aerobic exercise on 
motor learning. A venous blood draw was collected on a separate day from all other experimental sessions. All 
participants completed a graded maximal exercise test prior to the experimental sessions. Order of experimental 
conditions (rest, exercise) was pseudorandomized and balanced across the sample.
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As our previous work suggested preferential effects of exercise on learning of the repeated sequence3,5, only 
data from this condition were considered in our present analyses. Measures of motor performance (root mean 
squared error for the CT task and response time [sum of reaction and movement times] for the ST task) were 
calculated for each sequence. Analyses reported in our prior work indicated no significant order effects or dif-
ferences in initial performance between rest and exercise conditions3,5. For the CT task, performance on the first 
three trials of the first practice block (early practice), the last three trials of the last practice block (late practice), 
and the first three trials of the retention block was determined. The changes in performance from early to late 
practice (ACQ-∆) and from early practice to retention (RET-∆) were then calculated3. For the ST task, the same 
approach was used but with groups of four repeated sequences at each time point5. The slight difference in the 
number of trials used in the analyses for each task provided a similar proportion between tasks for the number 
of sequences comprising a time point to the number of sequences practiced (CT task, 3 sequences relative to 20 
sequences in practice = 0.150; ST task, 4 sequences relative to 24 sequences in practice = 0.166). The datasets were 
combined by converting the raw change scores for each task to percent changes in performance3,5, where higher 
percent change scores indicated greater improvements. Difference scores between the exercise and rest condition 
were then calculated for each individual for both the ACQ-∆ and the RET-∆ variables, such that a higher differ-
ence indicated a benefit of exercise relative to rest.

Statistical Analyses.  Statistical testing used analyses of covariance (ANCOVAs). The fixed factor in all 
ANCOVAs was genotype (levels: SNP carrier and non-carrier), and a separate ANCOVA was run for each combi-
nation of dependent variable (difference in ACQ-∆ or RET-∆ between rest and exercise conditions) and assayed 
genotypes (BDNF val66met, DRD2/ANKK1 glu713lys) (four ANCOVAs total). In all tests, the covariates included 
were participant age, sex, ethnicity, cardiorespiratory fitness (V ̇O2peak), and the motor task used (i.e. CT and ST 
tasks), due to our prior work suggesting a larger effect of exercise on CT, compared to ST task, change score3,5. 
Statistical significance was set at p < 0.05. Parameter estimates with bootstrapped 95% confidence intervals (1000 
samples) and effect sizes (η2

partial) for the effects of Genotype and each covariate are reported. Effect size magni-
tudes were interpreted based on previously developed guidelines, such that η2

partial values below 0.06, between 
0.06 and 0.14, and above 0.14 were considered small, moderate and large, respectively42. All statistical tests were 
performed using the ‘lme4’ package from R statistical software (R Development Core Team, 2008) and SPSS soft-
ware (SPSS 23.0; IBM Corporation, Armonk, NY).

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Figure 2.  Motor tasks utilized in the two studies analyzed in the present work. Panel A depicts the continuous 
tracking (CT) task. The target is depicted by the black filled circle, and the cursor by the black unfilled circle. 
The dashed line shows an example of a target path. Panel B depicts the serial targeting (ST) task that involved 
performing a series of discrete movements. Targets are depicted by the black unfilled circles and the cursor by 
the crosshair. The arrows between targets show an example of a sequence of target movements.
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Results
Results of all statistical findings are presented in Table 2.

Motor skill acquisition.  ANCOVAs yielded no significant main effect of either BDNF or DRD2/ANKK1 
genotype on ACQ-∆ (p ≥ 0.21, η2

partial ≤ 0.06) (Fig. 3A and B). All covariates (p ≥ 0.25, η2
partial ≤ 0.05) and boot-

strapped parameter estimates were also non-significant (p ≥ 0.27).

Motor skill retention.  The BDNF val66met SNP did not significantly influence the effect of exercise on 
RET-∆ (F(1,25) = 0.83, p = 0.37) and the calculated effect size was small (η2

partial = 0.03) (Fig. 3C). Results from this 
ANCOVA also indicated that all covariates (p ≥ 0.13, η2

partial ≤ 0.09) and bootstrapped parameter estimates were 
also non-significant (p ≥ 0.13).

The main finding was a significant genotype effect for the DRD2/ANKK1 glu713lys SNP on the difference in 
RET-∆ between rest and exercise conditions (F(1,25) = 7.99, p = 0.01) (Fig. 3D). The DRD2/ANKK1 genotype effect 
size was large, with the ANCOVA model attributing 24% of variance in the RET-Δ difference to the absence or 
presence of the lys allele (η2

partial = 0.24). Moreover, the bootstrapped parameter estimate for the presence of the 
lys allele was also statistically significant (β = 12.90, p = 0.01), suggesting that the observed finding was valid for 
a population-level estimate. Figure 4 shows raw data (Panel A) and raw data adjusted for all covariates (Panel B) 
for all participants, separated by DRD2/ANKK1 genotype. Considering raw data for each participant, 14 of the 
17 (82%) glu/glu homozygotes demonstrated higher RET-Δ values under the exercise relative to the rest condi-
tion. In contrast, RET-Δ values were higher under the exercise relative to the rest condition in only 7 of the 15 
(47%) lys allele carriers. Considering the covariates in the model, the Ethnicity (p = 0.06, η2

partial = 0.14) and Task 
(p = 0.07, η2

partial = 0.13) covariates demonstrated trends for significance with moderate effect size magnitudes.

Discussion
Our results show that the DRD2/ANKK1 glu713lys SNP was associated with the extent to which acute aerobic 
exercise facilitated motor learning, but not skill acquisition. Given that prior animal work suggests a role of 
dopamine in neuroplasticity and motor learning24 and its upregulation by aerobic exercise43,44, there has been 
prior speculation that dopaminergic signaling plays a role in acute aerobic exercise effects on memory32,33,37. 
Nevertheless, results from human studies have been inconsistent. A human positron emission tomography (PET) 
study indicated no change in raclopride binding to dopamine in the basal ganglia following acute aerobic exercise, 
with the caveat that the PET scan has low sensitivity relative to in vivo microdialysis studies in animals45. Another 

DV: ACQ-∆ difference

Between-subjects effects Bootstrapped parameter estimates

F p η2
partial β 95% CI p

BDNF val66met 1.67 0.21 0.06 7.21 −5.09, 22.57 0.28

Age 1.39 0.25 0.05 0.86 −0.92, 2.56 0.34

Sex 0.00 0.95 0.00 −0.349 −12.51, 10.78 0.95

Ethnicity 1.06 0.31 0.04 3.48 −3.75, 13.24 0.41

VȮ2peak 0.64 0.43 0.03 0.35 −0.38, 1.48 0.47

Task 0.33 0.57 0.01 −3.17 −16.93, 10.02 0.65

DRD2 glu713lys 1.62 0.21 0.06 −7.34 −20.79, 5.08 0.27

Age 1.27 0.27 0.05 0.81 −0.69, 2.23 0.28

Sex 0.11 0.74 0.01 −1.94 −14.29, 9.61 0.77

Ethnicity 0.94 0.34 0.04 3.23 −3.73, 12.03 0.39

VȮ2peak 0.07 0.79 0.00 0.12 −0.71, 0.93 0.78

Task 0.68 0.42 0.03 −4.82 −17.32, 7.93 0.47

DV: RET-∆ difference F p η2
partial β 95% CI p

BDNF val66met 0.83 0.37 0.03 4.56 −6.40, 16.91 0.40

Age 0.39 0.54 0.02 0.41 −0.67, 2.11 0.57

Sex 2.14 0.16 0.08 7.60 −5.79, 18.61 0.20

Ethnicity 2.49 0.13 0.09 4.77 −2.71, 11.10 0.13

VȮ2peak 1.73 0.20 0.07 0.51 −0.20, 1.43 0.17

Task 0.92 0.35 0.04 −4.75 −15.73, 7.11 0.40

DRD2 glu713lys 7.99 0.01* 0.24 −12.90 −22.47, −4.63 0.01*
Age 1.04 0.32 0.04 0.58 −0.74, 1.66 0.28

Sex 1.79 0.17 0.07 6.08 −3.24, 15.94 0.23

Ethnicity 3.92 0.06 0.14 5.25 −0.061, 10.46 0.05

VȮ2peak 0.52 0.48 0.02 0.25 −0.46, 0.88 0.44

Task 3.58 0.07 0.13 −8.77 −18.52, 1.51 0.10

Table 2.  Summary of statistical results. DV, dependent variable; asterisks indicate statistically significant 
(p < 0.05) results.
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study found no correlation between exercise-induced increases in systemic dopamine and improvements in 
motor learning32, but acknowledged that dopamine does not cross the blood-brain barrier in appreciable amounts 
and that systemic levels do not necessarily reflect cortical levels31. However, dopamine signaling pathways in the 
brain involve multiple receptor subtypes (D1-D5) that each yield specific outcomes46. As such, exercise effects on 
brain function may depend on changes in specific dopamine receptors, rather than changes in levels of dopamine 
itself47. Our current findings point to a specific role for the D2R.

Animal and human studies of Parkinson’s disease using PET imaging suggest that changes in dopamine D2R 
expression in the basal ganglia may contribute to long-term aerobic exercise training effects on neuroplasticity 
and motor rehabilitation47. By examining a SNP known to impact expression of the D2R, the present study pro-
vides evidence that the D2R may also interact with acute aerobic exercise effects on motor learning. Notably, 
the DRD2/ANKK1 genotype effect was specific to the retention change score, rather than that associated with 
acquisition. Previous work suggested preferential interplay between acute high-intensity aerobic exercise and 
consolidation of motor memory5,36. Likewise, dopaminergic circuits involving the D2R are thought to be involved 
in the retention phase of motor skill learning47,48. Taken together, these results may suggest a specific role for the 
DRD2/ANKK1 SNP in moderating acute aerobic exercise effects on motor memory consolidation.

Figure 3.  The influence of genotype on acute aerobic exercise effects on motor learning. The y-axis of all panels 
plots the difference between exercise and rest conditions, where a positive difference value favours the exercise 
condition. Panels A and B demonstrate a lack of significant difference in acquisition change score (ACQ-Δ) 
between genotypes for both genes of interest. Panel C demonstrates a lack of significant difference in retention 
change score (RET-Δ) between BDNF val66met genotypes. In contrast, Panel D shows a significantly different 
influence of exercise on DRD2/ANKK1 glu/glu homozygotes and lys allele carriers. The means and standard 
error bars presented account for all covariates included in the analysis (age, sex, ethnicity, VO2peak and task). 
Asterisks indicate a statistically significant main effect of Genotype (p < 0.05). Values above zero indicate a 
benefit of exercise on motor learning.
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Besides work investigating acute aerobic exercise effects on motor learning, other recent studies have also 
examined the impact of a single bout of acute aerobic exercise on M1 intracortical excitability8–10. Paired-pulse 
TMS studies demonstrated decreased short-interval intracortical inhibition (SICI)8,9 and increased short-interval 
intracortical facilitation (SICF)10 immediately following acute aerobic exercise, leading to speculation that 
decreased γ-aminobutyric acid (GABA)-ergic inhibition post-exercise may contribute to facilitation of motor 
learning. A possible link between these studies and our current work lies in a human pharmacological study indi-
cating that modulation of D2R binding influenced GABAergic inhibition in motor cortex; however, in this work a 
D2R agonist enhanced SICI and a D2R antagonist decreased SICI49. An alternative explanation emphasizes a role 
of glutamatergic neurotransmission. Acute aerobic exercise has also been shown to enhance intracortical facili-
tation (ICF)9, a paired-pulse TMS measure thought to rely on glutamatergic interneurons and possibly NMDA 
receptors50,51. Antagonism of the D2R receptor impairs glutamatergic-dependent synaptic potentiation and motor 
learning in an animal model52. Thus, if aerobic exercise positively impacts D2R expression and binding47, then 
it is plausible that the motor learning benefits observed here and in prior work are at least partly mediated by 
enhanced glutamatergic neurotransmission.

Interestingly, we found that motor learning was benefited by acute aerobic exercise for glu/glu homozygotes 
(i.e., individuals predisposed for high D2R expression) but not for lys allele carriers, while the opposite effect was 
observed for L-dopa administration26. Although speculative, these disparate findings may suggest differences 
in motor learning benefits realized from the endogenous physiological events elicited by acute aerobic exercise 
versus an exogenous stimulus such as administration of L-dopa. There is prior evidence to suggest that improved 
behavioural and neurophysiological outcomes with increased dopamine transmission follow an inverted U, such 
that an excess of dopamine transmission can be detrimental to behaviour and plasticity53–57. Indeed, the endoge-
nous release and uptake of dopamine in response to exercise is potentially at a more inherently optimal level for 
the individual, as opposed to imposed, prescribed amounts. Alternatively, given differences in D2R expression and 
binding, it might be expected that glu/glu homozygotes are relatively closer to the optimal point of the inverted 
U than lys allele carriers when in a baseline state. The exogenous delivery of 100 mg of L-dopa in the prior work26 
could have been an ideal stimulus for the lys allele carriers to promote motor learning, but too great of a stimu-
lus for the glu/glu homozygotes, pushing them beyond the peak of the inverted U. In contrast, the endogenous 
stimulus of aerobic exercise may provide a smaller increase in the dopamine transmission that is ideal for glu/
glu homozygotes, but too weak to benefit learning in lys allele carriers. If this is the case, then perhaps lys allele 
carriers could benefit from a greater volume of exercise than what was currently prescribed, such as an incre-
mental exercise bout to exhaustion, which has been shown to facilitate increases in corticospinal excitability for 
non-exercise upper-limb muscle representations58. Another possibility that should also be considered is that the 
specific neural pathways involved in distinct memory subtypes may be influenced by the exogenous and endoge-
nous stimuli differently and impact behaviour accordingly.

We did not detect an influence of BDNF genotype within our results. Given prior reports of null effects of the 
BDNF genotype on motor behavior15,17,22,23, this finding was not entirely surprising. Although BDNF facilitates 
LTP mechanisms underlying motor learning20 and a number of studies have shown an effect of the BDNF val-
66met SNP on M1 plasticity, motor behavior is dependent on multiple factors that may obscure detection of a 
genotype effect. Additionally, prior work found no impact of the BDNF val66met SNP on change in SICI and ICF 
following a bout of aerobic exercise9. Overall, our results suggest that, under the present experimental conditions, 

Figure 4.  Single participant data for the significant DRD2/ANKK1 glu713lys genotype effect on the impact 
of exercise on RET-Δ. Panel A demonstrates raw data from participants. Panel B demonstrates individual 
data corrected for the covariates included in the analysis (age, sex, ethnicity, VO2peak, task). Solid markers 
represents means and standard error bars for each genotype group. Values above zero indicate a benefit of 
exercise on motor learning.
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the DRD2/ANKK1 glu713lys SNP may be more functionally relevant to acute aerobic exercise effects on motor 
learning than the BDNF val66met variant.

It is important to note that the genes studied in the current work are expressed across many different cell types 
involved in numerous biological processes. As such, inferences related to the mechanisms by which genetic var-
iation influence the current results are speculative. Moreover, the effects of the genetic variants studied are likely 
dependent on complex interactions across the genome. The relatively small sample size (n = 32) is a limitation 
of our study, but notably, is similar to related work (Antal et al.21, n = 29; Cheeran et al.14, n = 18; Cirillo et al.22, 
n = 29; Li Voti et al.23, n = 21; McHughen et al.16, n = 29; McHughen et al.17, n = 24; Pearson-Fuhrhop et al.26, 
n = 50). The small sample sizes in these studies and the current work are balanced by in-depth phenotyping of 
neurophysiological and behavioural traits. We also included a comprehensive analysis, including bootstrapping 
of parameter estimates and estimation of effect sizes (η2

partial) to communicate the strength of our main finding as 
clearly as possible. Finally, the inclusion of data from two different motor tasks is another limitation of our study; 
however, we controlled for the type of task in our statistical analyses by including it as a covariate.

Conclusion
In the present study, acute aerobic exercise enhanced motor learning in DRD2/ANKK1 glu/glu homozygotes, 
but not lys allele carriers. The results suggest that the dopamine D2R may be involved in acute aerobic exercise 
effects on motor learning and could have implications for individualized prescription of acute aerobic exercise 
to promote motor learning. These findings provide an important preliminary step in elucidating the complex 
relationships between acute aerobic exercise, motor learning and the human genome.
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