
1Scientific REPOrTS | 7: 12118  | DOI:10.1038/s41598-017-12411-6

www.nature.com/scientificreports

Negative membrane capacitance of 
outer hair cells: electromechanical 
coupling near resonance
Kuni H. Iwasa   

Outer hair cells in the cochlea have a unique motility in their cell body based on mechanoelectric 
coupling, with which voltage changes generated by stimuli at their hair bundles drive the cell body and, 
in turn, it has been assumed, amplifies the signal. In vitro experiments show that the movement of 
the charges of the motile element significantly increases the membrane capacitance, contributing to 
the attenuation of the driving voltage. That is indeed the case in the absence of mechanical load. Here 
it is predicted, however, that the movement of motile charges creates negative capacitance near the 
condition of mechanical resonance, such as those in the cochlea, enhancing energy output.

The exquisite sensitivity and the frequency bandwidth reaching as high as 100 kHz of mammalian hearing, 
depending on the animal species1, is based on the ability of its ear to function as a frequency analyzer2. The fre-
quency components are then transmitted to the brain in parallel by a bundle of neurons. Thus a key question is 
how a system that is based on biological cells is capable of operating at such high frequencies.

For the mammalian ear to be a sensitive mechanoeletrical analyzer, it is essential to counteract viscous drag3,4 
and outer hair cells (OHCs) play a key role5,6. These cells have a motile mechanism in their cell body based on 
piezoelectricity, called “somatic motility” or “electromotility”, which utilizes electrical energy7–11. The key compo-
nent of this motile element is prestin, a member SLC26A5 of the SLC family of membrane proteins12. The electric 
potential that is used by the motile mechanism is generated by mechanotransducer current of the sensory hair 
bundles of these cells, responding to mechanical stimuli. This process is assisted by the endocochlear potential, 
the unusual positive potential in the K+-rich endolymphatic space, generated by the stria vascularis. Indeed, the 
electrical energy and the ionic environment provided to OHCs are exceptional. However, a question remains as 
to how OHCs can be effective at high frequencies: while viscous drag increases with the frequency, the receptor 
potential, which drives this motile mechanism, decreases with frequency by the capacitive conductance of the 
basolateral membrane13.

This puzzle has been called the “RC time constant” problem, the reason for a dispute regarding the basis for 
the amplifying role of OHCs: active process in the hair bundle alone14, or somatic motility coupled with hair bun-
dle transduction15,16, or a combination of both17. The second point of view was examined by considering various 
mechanisms that could possibly improve the effectiveness of somatic motility18–24.

Despite their differences, all these previous analyses assume that the membrane capacitance, which consists of 
two components, linear and nonlinear, is unaffected by the mechanical load on OHCs. Of the two components, 
the linear component is structural, primarily based on the capacitance of the plasma membrane. The nonlinear 
component is due to the charge movement associated with the motile mechanism in the cell. This component has 
a bell-shaped membrane potential dependence under the load-free condition. Its peak value can be larger than 
the linear capacitance7,8. For this reason, the motor charge appears to enhance “RC attenuation” even further.

A recent analysis, however, showed that mechanical load, particularly viscous drag, decreases nonlinear 
capacitance and increases mechanical energy output of OHCs25. Here it is shown, using a simple model system, 
that the effect of mechanical resonance is even more substantial. It can fully nullify the membrane capacitance 
and increase the energy output of OHCs. The implications of this finding to the cochlea are discussed. The result-
ing inequality describes an upper bound of the effectiveness of OHCs.

The Model System
Consider a simple model system, where an OHC is connected to a spring with stiffness K, a dashpot with friction 
coefficient η, and a mass m (Fig. 1). We assume here that the cell has n motile elements, which has two discrete 
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states, compact and extended, and during a transition from the compact state to the extended state, the cell length 
increases by a and the electric charge q flips across the plasma membrane. The axial stiffness of the cell is k. The 
definitions of the parameters and the variables are given in Table 1 and in the caption to Fig. 1. The set of the 
equations for this system has been derived previously25.

Let P be the fraction of the motile units in the extended state. Its equilibrium value P∞ follows the Boltzmann 
distribution P∞ = 1/(1 + exp[βΔG]), with β = 1/(kBT), where kB is Boltzmann’s constant and T the temperature, 
and Δ = − + −

∼G q V V Ka n P P( ) ( )1/2
2

0 . Here = +
∼K kK k K/( ); V1/2 and P0 are constants. If the system is not in 

equilibrium, P∞ is regarded as the target value, toward which P changes. Because cell displacement can be 
expressed by k/(k + K)⋅anP25, the equation of motion turns into

Figure 1.  Mechanical connectivity (A) and the equivalent electric circuit of the model system (B). Changes 
in hair bundle conductance Ra drives the system. (A) intrinsic cell stiffness k, external elastic load K, mass m, 
drag coefficient η. The motile element changes the cell length by x = k/(k + K)⋅anP, where P represents the 
fraction of the motile elements in the elongated state. The quantities a, q, and n respectively represent unitary 
length change, the unitary charge change, and the number of motile units. The broken line indicates the border 
of the OHC. The connectivity of the cell and the external load are parallel because the magnitudes of their 
displacements are equal. (B) the membrane potential V, the basolateral resistance Rm, the total membrane 
capacitance of the basolateral membrane Cm. The endocochlear potential eec, and the potential due to K+ 
permeability of the basolateral membrane eK. The apical capacitance is ignored.

notation definition unit

α2 γ+
∼a nK1 2 dimensionless

β 1/kBT 1/J

γ β −P P(1 ) 1/J

ζ γnq2/C0 dimensionless

σ 1/ +R R1/a m S

ωr +k K m( )/ 1/s

ωη (k + K)/η 1/s

ω ω/ωr dimensionless

ωη ωη/ωr dimensionless

C0 regular capacitance F

i0 − +e e R R( )/( )ec K a m A
∼K kK/(k + K) N/m

r̂ relative amplitude of Ra dimensionless

Table 1.  List of variables and parameters. For the notations of other parameters, please see Fig. 1.



www.nature.com/scientificreports/

3Scientific REPOrTS | 7: 12118  | DOI:10.1038/s41598-017-12411-6

η+ = + −∞md P
dt

dP
dt

k K P P( )( ),
(1)

2

2

for small difference between P∞ and P. In a special case of m = 0, Eq. 1 turns into a relaxation equation. The 
receptor potential V is determined by

−
=

−
+ − .

e V
R

V e
R

C dV
dt

nqdP
dt (2)

ec

a

K

m
0

Here Ra is the apical membrane resistance, which is dominated by mechanotransducer channels in the hair bun-
dle. The basolateral membrane has the resistance Rm and the linear capacitance C0, which is determined by the 
membrane area.

Response to Small Oscillatory Stimuli.  Let us assume that the hair bundle is stimulated with sinusoidal 
waveform with an angular frequency ω. The apical resistance responds at the same frequency 

ω= + .ˆR t R r i t( ) (1 exp[ ])a a  Other variables of the system respond by small periodic changes from their steady 
state values: ω ω ω= + = + = + .∞ ∞ ∞V t V v i t P t P p i t and P t P p i t( ) exp[ ], ( ) exp[ ], ( ) exp[ ]  Here the variables 
in lower case letters are small and those marked with bars on top are time-independent. Hence 

= + +¯ ¯ ¯V e R e R R R( )/( )ec m K a m a  and = ∞P P .
The equations for the small amplitudes are given as

γ= − +
∼

∞p qv a nKp( ), (3a)
2

ω ω ω ω
− + 

 = −η ∞i p p p( / ) / ( ), (3b)r
2

ω−
−

=





+





+ − ⋅ˆe V
R

r
R R

v i C nq p v1 1 ( ) ,
(3c)

ec

a a m
0

by introducing the resonance frequency ω = +k K m( ( )/ )r , the viscoelastic roll-off frequency ωη(=(k + K)/η) 
and a parameter γ β= −P P(1 ), which depends on the operating point of the motile element.

Eq. 3c can be transformed into

σ ω ω− = + −ˆi r i C v i nqp( ) , (4)0 0

by introducing the steady state current = − +¯i e e R R( )/( )ec K a m0 , and the steady-state conductance 
σ = +R R1/ 1/a m.

The combination of Eqs 3a and 3b leads to,

ω ω ω ω α γ
− + + 

 = −ηi p qv( / ) / , (5)r
2 2

where α γ= +
∼a nK12 2 . For the list of these parameters, see Table 1.

The contribution Cnl of the motor charge to the membrane capacitance Cm is given by Cnl = (nq/v)Re[p]. This 
leads to, Cm = C0 + Cnl with

γ α ω

α ω ω ω
=

−

− + η( )
C nq [ ]

[ ] /
,

(6)
nl

2 2 2

2 2 2 2

where ω ω ω= / r , ω ω ω=η η/ r , and C0 is the regular membrane capacitance, which is proportional to the mem-
brane area of the cell (Fig. 2A). Eq. 6 leads to Cnl = γnq2 in the absence of mechanical load, consistent with earlier 
studies25–27.

Nonlinear capacitance is associated with current noise. Voltage oscillation v exp[iωt] generates current 
iωnqp exp[iωt]. The admittance is given by Y(ω) = iωnqp/v. Since Johnson-Nyquist noise28,29 is related to the 
admittance with the formula SI(ω) = 4kBT Re[Y(ω)], we have

ω
ω ω ω

α ω ω ω
=

− ⋅ ⋅

− +
η

η

S
P P nq

( )
4 (1 ) /

[ ] ( / )
,

(7)
I

2

2 2 2 2

for the power spectral density. It has a peak ω− ηP P nq4 (1 ) 2  at ω α=  (Fig. 2B). This spectral shape is quite dif-
ferent from that without mechanical resonance, which has high-pass characteristics30,31.

Let us examine the power output elicited by hair bundle stimulation. Since the voltage change v is the result of 
a change r in the hair bundle resistance as described by Eq. 4, it is expressed by

ω
σ ω

=
− +

+
.

ˆ
v i r i nqp

i C (8)
0

0

By combining Eqs 5 and 8, we obtain
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Results
Power Output at High Frequencies.  Since we are interested is in high frequency range, we may assume σ 
+ iωC0 → iωC0. Under this condition, the capacitance ratio, ζ = γnq2/C0, becomes a useful parameter. The work 
against drag per half cycle is ηω= | |

∼E K K nap(1/2) ( / )d
2 2. Power output Wd = 2ω/(2π)Ed (Fig. 3A) is maximized at 

ω α ζ ω= + − η1/(2 )2 2 2  and the maximal value is (Fig. 3B),

γζ ω

α ζ ω
η

π
=

+ −
⋅

+
η

η

ˆW
a ni k r

k K C

4

4( ) 1 2 ( )
,

(10)
d

max( )
2

0
2 4

2 2

2 2

2
0

using a reduced frequency ω ω ω= / r, and ω ω ω=η η/ r.
If ωη is sufficiently large to satisfy α ζ ω+ η 4( ) 12 2 , it can be approximated by

γζ ω

α ζ
η

π
≈

+
⋅

+
.η ˆW

a ni k r
k K C2 ( ) (11)

d
max( )

2
0
2 2

2

2 2

2
0

Negative Capacitance.  Eq. 6 indicates that nonlinear capacitance has its minimum at ω α α ω= + η( 1/ ) . 
The minimum value of nonlinear capacitance is approximately γ ω α− ηnq /(2 )2  since ωη 1/ 1. That leads to a 
condition

ζω α>η 2 , (12)

Figure 2.  Nonlinear capacitance Cnl and power spectral density SI(ω) of current noise. (A) Nonlinear 
capacitance plotted against ω ω ω=( / )r . Nonlinear capacitance Cnl is normalized by γnq2. (B) Power spectral 
density of current noise is plotted against ω . ωS ( )I  is normalized by ω= −S P P nq( 4 (1 ) )r0

2 . Traces respectively 
correspond to the values of ωη: 1 (black), 2 (blue), and 5 (red).

Figure 3.  Power output per unit resistance change =r̂( 1). (A) Frequency dependence of power output. The 
reduced frequency ω  is normalized by α2 + ζ. Power output ωW( ) is normalized by 

γζ η π= +W a ni k k K C/[2 ( ) ]0
2

0
2 2 2

0 . Traces correspond to the values of ωη: 1, (black); 2, (blue); and 3 (red). (B) 
Maximum power output plotted against ω ω ω=η η( / )r . The scale of power output is the same as in A. Traces 
correspond to the values of α2 + ζ: 1, (black); 1.5, (blue); and 2 (red).
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under which negative nonlinear capacitance overwhelms the linear capacitance C0 and makes the membrane 
capacitance Cm negative. This condition practically determines the range of the membrane potential that satisfy 
Cm < 0. That is because the ratio ζ(=γnq2/C0) includes a factor −P P(1 ) in γ and because experimental data 
show that the peak nonlinear capacitance (at =P 1/2) under load-free condition is as large as the linear capaci-
tance for OHCs. In other words, as far as prestin motor is sensitive to voltage changes, i.e. −P P(1 ) is not small, 
there is a frequency range where the membrane capacitance is negative (See Fig. 4).

In such cases, the frequency maximizing power output, ω α ζ ω= + − η1/(2 )2 2 2 , is just outside the negative 
membrane capacitance region. Under this condition we have

α ζ
ζ ω

+
≈

+
⋅

η

C C
C

2
2

1 ,
(13)

nl0

0

2

2 2

which means the membrane potential is very small at the frequency of maximum power output (Fig. 4).

Frequency Limit.  The results obtained for our simple model system (Fig. 1) can be examined for impli-
cations to the mammalian cochlea by adding two assumptions[19]: that the output of OHC feeds back to hair 
bundle displacement and that the major source of the drag is the shear in the gap between the tectorial membrane 
and the reticular lamina, which is essential for hair bundle stimulation.

Hair bundle stimulation gives rise to changes r̂  in normalized hair bundle resistance, which leads to cell dis-
placement of the amplitude x(=anp ⋅ k/(k + K)), where p is described by Eq. 9. If the resulting cell displacements 
feed back to hair bundle stimulation, the cell functions as an amplifier that works against drag. Here we assume 
these changes are small and their final amplitudes, which depend on the nonlinearity of the system, are not 
considered.

Let us assume that hair bundle displacement z and OHC displacement x are proportional and described by z 
= λx. The dependence of the change r̂  in hair bundle resistance on hair bundle displacement z has been experi-
mentally studied. Let g be the sensitivity of the hair bundle transducer. Although the relationship between z and 
r̂  is nonlinear, let g be the mechanosensitivity at the operating point. Then a condition for an effective amplifier is 
given by λ| | ≥ ˆg x r ,max( )  where |x| is expressed by using Eq. 9 for high frequencies,

ζ
ω

ω| | =
+

⋅ ˆx ai
q

k
k K

H r( ) ,
(14)r

0

with ω ω α ζ ω λω ω= + − + .ηH( ) 1/{ [( ) ( / ) ]}2 2 2 2 2  Here λ appears in the denominator because it changes the 
a m p l i t u d e  o f  m o v e m e n t  a n d  i n  e f f e c t  c h a n g e s  t h e  d r a g  c o e f f i c i e n t .  U n l e s s 

α ζ ω α ζ− + < < + +η(2 3 )( ) 1/ (2 3 )( )2 2 2 , the function ωH( ) is a monotonically decreasing function of 
ω2.

If the transfer function g(z) is linearized to =r̂ gz in the immediate neighborhood of the operating point, the 
frequency limit ωb is expressed by

ω ζ α ζ λ α ζ ω λ< +



 +






+ ηgi a
q

k
k K

H( ) ( , / ),
(15)

b max
2 2 2

0

2
2

Figure 4.  Membrane capacitance near resonance. The membrane capacitance Cm(=C0 + Cnl) normalized to the 
linear capacitance C0 is plotted against the normalized frequency ω ω ω=( / )r . Here the ratio ζ(=γnq2/C0) of 
nonlinear capacitance at α = 1 (load-free) and =P 1/2 to the linear capacitance C0 is assumed to be unity, i.e. 
βnq2/4 = C0 (Notice γ β= −P P(1 ) is maximized at =P 1/2). Filled red circles indicate frequencies and the 
corresponding values of the membrane capacitance that maximize the power output. Other parameter values 
assumed are, α2 = 1.2 and ωη/ωr = 6, which is smaller than more realistic ratios (See Discussion). Traces 
respectively correspond to the values of −P P(1 ): 0.25 (red), 0.13 (blue), and 0.06 (black), showing the 
dependence on the holding potential. The dotted line indicates the level of C0.
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where the best frequency ωb is related to the mechanical resonance frequency ωr by ω α ζ ω= +( )b r
2 2 2. The local 

maximum of ωH( ) is expressed by α ζ ω λ+ ηH ( , / )max
2 . The dependence of this function on the two parameters 

is plotted as a contour graph (Fig. 5).
This inequality indicates the importance of the ratio k/(k + K). While a larger value of K elevates the mechan-

ical resonance frequency ωr, it reduces ωb, making the effectiveness of higher frequency unfavorable. This issue 
will be discussed later.

Values of the Parameters for a 10 kHz cell.  Reliable parameter values are available for 10 kHz cells, if 
we can assume that the properties of OHCs in the this frequency region of the cochlea in guinea pigs are similar 
to those in rats and gerbils.

First, examine the condition ω ωη / 1r , which was used throughout the derivation and also for optimizing 
ωH( ). Assume that the source of the major drag is shear in the gap between the reticular lamina and the tectorial 

membrane. Then the drag coefficient η is given by η = μS2/d, where μ is the viscosity of the fluid, S the surface 
area, and d the gap. If S = 10 μm × 20 μm, and d = 1 μm[19], η = 1.6 × 10−7 N/m, using the viscosity of water.

Given the axial elastic modulus of 510 nm/unit per strain32, a 20 μm long OHC has stiffness k of 2.6 × 10−2 
N/m. Even without an external elastic load, we obtain ωη ≈ 1.5 × 106, much higher than the auditory frequency. 
Thus the condition ω ωη / 1r  holds. For shorter cells of higher frequency region the cell stiffness k is higher, 
inversely proportional to cell length. The gap drag η is also higher, inversely proportional to the hair bundle 
length.

Now let us examine the frequency limit. For a 20 μm long cell, typical of the 10 kHz cochlear region, the linear 
capacitance is C0 = 8 pF and an = 1 μm, which is 5% of the cell length. Most in vitro experiments show the uni-
tary motile charge of q = 0.8 e, where e is the electronic charge. The membrane potential (V ) is near the optimal 
range ( ≈P 1/2) for the motile element. The resting basolateral resistance is 7 MΩ and the resting membrane 
potential of −50 mV requires the resting apical resistance of 30 MΩ22. These values lead to i0 = 4 nA.

The sensitivity g of hair bundles determined by in vitro experiments tend to be underestimates due to the 
matching of the force probe with hair bundles33. For this reason, g = 1/(25 nm)34 is taken.

If we can assume k/(k + K) = 0.1 together with λ = 1 and Hmax = 20, an underestimate (see Fig. 5A), we obtain 
fb = ωb/2π < 1.1 × 104, consistent with the location of 10 kHz. Power output can be evaluated using this set of 
parameters. With this set of parameter values, a typical value for maximal power output would be 0.1 fW for 
= .r̂ 0 1. An extrapolation to the maximal output is 10 fW. These values are in a reasonable agreement with the 

expected output range of a single 10 kHz cell estimated from cochlear mechanics35,36.

Discussion
For an OHC to be effective at higher frequencies, two conditions should be met. One is that the mechanical reso-
nance frequency ω = +k K m( ( )/ )r  must be compatible with those frequencies. The other is ωb, which is propor-
tional to k/(k + K), must be larger than ωr. For this reason if k/(k + K) = 0.1 for a 10 kHz cell, an OHC cannot be 
effective at 100 kHz, as shown in the following.

The membrane resistance decreases about 3-fold for a 10-fold increase in the frequency of cell location22, 
contributing to a 3-fold increase in the limiting frequency. A 10-fold increase of ωr requires a 100-fold increase in 
the ratio (k + K)/m. Since each OHC is held by Deiters’ cup in at the base around the nucleus, the difference in the 
stiffness k between a 5 μm cell and a 20 μm cell is about 10 fold, much less than a 100-fold difference in basilar 
membrane stiffness37,38. A 10-fold increase in the frequency reduces the thickness of boundary layer by 1/ 10
-fold. This factor may lead to factor up to ∼3 in reducing the mass m, to which the boundary layer of the fluid 

Figure 5.  Contour plots of Hmax and ζ2Hmax for λ = 1. (A) Contour plot of Hmax for λ = 1. Ordinate axis: 
ω ω ω=η η( / )r

2 2; abscissa: α2 + ζ. The values of Hmax are indicated in the plot. Brighter shades indicate higher 
values. (B) Contour plot of (α2 + ζ)ζ2Hmax assuming α2 = 1.1, corresponding to a 10 kHz cell (see text). 
Ordinate axis: ωη

2; abscissa: ζ. The values of (α2 + ζ)ζ2Hmax are indicated in the plot. Brighter shades indicate 
higher values.
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contributes. Thus, the ratio k/m increases ∼30-fold at most, leading to a value 0.03 for k/(k + K), which barely 
supports 10 kHz resonance.

If resonance at 10 kHz is achieved without the external elastic load, a condition K > 2.3k to achieve a 100-fold 
increase in (k + K)/m. This leads to 0.3 for the stiffness ratio k/(k + K), allowing a limiting frequency above 100 
KHz, despite a decrease in Hmax due to a 10-fold increase in k.

Another factor is the ratio ζ(=Cnl/C0) (Fig. 5B). A two-fold increase in ζ may lead to an additional 70% 
increase in the limiting frequency. Guinea pig data indeed shows a 4-fold increase in ζ (at the capacitance 
peak) from low frequency cells (C0 = 35 pF) to high frequency cells (5 pF)39. However, rat data contradict this 
observation40.

Other factors include the amplitude ratio λ, hair bundle sensitivity g, and the molecular characteristic a/q of 
the motile element. If those factors do not significantly differ at higher frequency locations, the ratio k/(k + K) 
must remain relatively large. Since OHCs should be involved in a relative motion between the basilar membrane 
(BM) and the reticular lamina (RL)41,42, the effectiveness of OHC requires that the resonance frequency of this 
relative motion must be close to that of the local BM. Since the cell bodies of OHCs would be much less stiff than 
the BM, the associated mass must be much smaller. Then, transfer of energy between the modes is likely.

An argument against multiple modes of motion could be made by assuming that the origin of the elastic load 
is the BM. Indeed, the analysis of resonance at ~10 kHz may give such an impression. Cochlear mechanics then 
suggests that the main origin of the inertia is fluid mass and that the ratio of the stiffness and the mass is not an 
issue. That is because an examination of energy flow indicates that the impedances due to the stiffness of the BM 
and fluid mass are equal and opposite, canceling each other at all frequencies and locations where the traveling 
wave is present43. Single mode of motion, therefore, would suffice. However, the starting assumption of such a 
counterargument can be questioned because there is no clear justification that the BM is the source of the elastic 
load on OHCs, which connect the BM and the RL,and the RL appears more compliant than the BM.

In the advent of technological innovation, which allows us to observe the displacement of each component in 
the cochlear partition41, the issue of modes of motion in the cochlea is of great interest to understand the detailed 
mechanism of the cochlear amplifier44, in which OHCs play a key role.

Finally, the existence of predicted negative capacitance could be tested by in vitro experiments. Inertial and 
elastic loads can be imposed on an OHC by engaging an elastic probe to the cell. For example, a mechanical reso-
nance at frequency of ~100 Hz has been observed in such a system (Fig. 2 of ref.11).
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