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Location of Cerebral Microbleeds 
And Their Association with 
Carotid Intima-media Thickness: A 
Community-based Study
Chih-Ping Chung  1,6, Kun-Hsien Chou3,5, Wei-Ta Chen1,2,5,6, Li-Kuo Liu4,5,7, Wei-Ju Lee4,8,  
An-Chun Huang4,7, Liang-Kung Chen2,4,7, Ching-Po Lin  3 & Pei-Ning Wang1,4,5,6

To assess whether high cerebral microbleeds (CMBs) are associated with carotid intima-media thickness 
(CIMT), a marker of systemic atherosclerosis, we cross-sectionally evaluated participants from a 
community-based study, the I-Lan Longitudinal Aging Study. The participants’ demographics and 
cardiovascular risk factors were determined by questionnaire and/or laboratory measurements. CIMT 
was measured by ultrasonography. CMBs were assessed by susceptibility-weighted-imaging on 3 T MRI. 
Of the 962 subjects [62.5(8.6) years, 44.2% men] included, CMBs were found in 134(14.0%) subjects. 
Among the subjects with identified CMB’s, 85(63.4%) had deep or infratentorial (DI) and 49(36.6%) 
had strictly lobar(SL) CMBs. After the results were adjusted for age and sex, the analysis revealed that 
hypertension, hyperlipidemia, obesity, and higher triglyceride levels correlated with DI but not SL 
CMBs. The subjects with DI CMBs also had a higher mean CIMT and higher prevalence of top quartile 
CIMT. The multivariate analysis demonstrated that high CIMT (top quartile) significantly predicted the 
presence of DI CMBs (odds ratio = 2.1; 95% confidence interval = 1.3–3.4; P = 0.004), independent of 
age, sex, cardiovascular risk factors, and other cerebral small vessel diseases, lacune, and white matter 
hyperintensity. There was no association between CIMT and SL CMBs. Our results support that there are 
distinct pathogenesis in DI and SL CMBs.

Lacunes, white matter hyperintensity (WMH), and cerebral microbleeds (CMBs) are the three main neuroim-
aging characteristics of Cerebral small vessel diseases (CSVDs)1,2. CMBs are small hemorrhages that appear as 
well-demarcated, hypointense, and rounded lesions on magnetic resonance imaging (MRI) sequences, and are 
sensitive to magnetic susceptibility3. Many studies have found that the presence of CMBs is associated with an 
increased risk of both ischemic and hemorrhagic strokes, mortality, and cognitive impairment4–8. Although their 
clinical significance, the mechanisms behind the formation of CMBs remain an active field of research.

CMBs that occur in different locations have distinct manifestations3,9–11. The prevalence of both types of 
CMBs increases with age. However, deep or infratentorial (DI) and strictly lobar (SL) CMBs are correlated with 
hypertension and APOE ɛ4 genotype, respectively3,9,10. Atherosclerosis is a systemic, chronic disorder that usually 
involves multiple vascular territories including the carotid, coronary, intracranial, and other peripheral arteries11. 
To elucidate the mechanisms of CMBs, previous studies have investigated the relationship of CMBs to markers of 
systemic atherosclerosis, such as the cardio-ankle vascular index, or carotid intima-media thickness (CIMT)12,13. 
However, these studies involved small patient populations and only investigated patients with a history of 
ischemic stroke. The association between CMBs and atherosclerosis might be confounded in stroke patients who 
already have advanced vascular diseases (silent or major infarcts, lacunes, advanced white matter hyperintensity, 
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additional intracranial hematoma, brain atrophy, etc). In addition, the mechanisms and distributions of CMBs in 
stroke patients might be different than those in the general population.

CIMT measured by B-mode ultrasound has been the most widely used noninvasive imaging method to assess 
systemic atherosclerosis11,14. In the present study, we aimed to evaluate the relationship between CMBs and sys-
temic atherosclerosis assessed by CIMT in a community-based, non-stroke population. We hypothesized that in 
the general population (1) CMBs are associated with atherosclerosis reflected by a greater degree of CIMT and (2) 
that the correlations differ according to the location of the CMBs.

Results
Study Population and Demographics. From the initial group of 989 subjects, two subjects with depres-
sion revealed by CES-D and nine subjects with an incidentally found brain tumor on MRI were excluded. There 
were also 16 subjects with imaging artifacts due to head motion. Thus, a total of 962 subjects were included in 
the present study with an age (mean ± SD, range) of 62.5 ± 8.6, 50.0–87.7 years old. Four-hundred and twen-
ty-five (44.2%) of the subjects were men. The prevalence of cardiovascular risk factors in the population was as 
follows: hypertension, 37.0%; DM, 13.5%; hyperlipidemia, 6.0%; cigarette smoking habit, 26.1%; and obesity 
5.5%. There were 50 subjects (5.2%) with a medical history of CAD and 18 subjects (2.9%) with CKD. The mean 
CIMT was 0.69 (SD: 0.13) mm; the CIMT values of the 25th, 50th, and 75th percentile were 0.60, 0.70, and 0.75 mm 
respectively.

Evaluation of CMBs and Other CSVDs (Lacunes and WMH). CMBs were found in 134 (14.0%) sub-
jects; among them, 61% had one CMB, 19% had two CMBs, and 18% had four or more CMBs. The majority of 
CMBs were found in the deep region. Among the subjects with CMB(s), 85 subjects (63.4%) had DI CMBs (with 
or without lobar CMBs) and 49 subjects (36.6%) had SL CMBs. The anatomic distribution of CMBs in our pop-
ulation showed BG 55 subjects (5.7%), thalamus 25 (2.6%), other deep regions 15 (1.6%), brainstem 17 (1.8%), 
cerebellum 13 (1.4%), frontal lobe 28 (2.9%), parietal lobe 19 (2.0%), temporal lobe 18 (1.9%), and occipital lobe 
24 (2.5%). There was no CMB found in the regions of the internal capsule, external capsule, or corpus callosum.

Assessment of other CSVDs revealed that 45 (4.6%) subjects had more than one lacune and 151 (15.7%) sub-
jects had moderate to severe WMH (Fazekas scale score of 2–3).

Risk Factors for the Presence of Overall, DI and SL CMBs. The risk factor evaluation for the presence 
of overall, DI, and SL CMBs are shown in Table 1. The subjects with the presence of overall CMBs (without regard 
to CMBs location) were older. There was no difference in the sex distribution between the subjects with and with-
out CMBs. After the data were adjusted for age and sex, the results revealed that subjects with CMBs had a higher 
prevalence of CAD, a higher number of lacunes, and more severe WMH. There was a trend toward an association 
with the presence of CMBs and a higher mean CIMT. When compared to subjects without CMBs, the prevalence 
of top quartile CIMT was significant higher in subjects with CMBs, after adjusting for age and sex.

Both DI and SL CMBs were associated with increased age, but the correlations with cardiovascular risk factors 
were different between the two types of CMBs. After adjusting for age and sex, we found that DI CMBs were 
associated with hypertension, hyperlipidemia, obesity, CAD and higher circulatory triglyceride. In contrast, SL 
CMBs did not correlate with any cardiovascular risk factors. Notably, almost all subjects with hyperlipidemia had 
taken Stains (55/58, 94.8%). The association between hyperlipidemia and CMBs had been adjusted for Statin use.

The subjects with DI CMBs had a higher number of lacunes and more severe WMH than subjects without DI 
CMBs. SL CMBs were associated with WMH severity but not the number of lacunes. The association with CIMT 
also differed between DI and SL CMBs. When compared with subjects without DI CMBs, subjects with DI CMBs 
had significantly higher CIMT and a higher prevalence of top quartile CIMT. There was no association between 
CIMT and SL CMBs.

There were 38 (4%) subjects taking antiplatelets; 33 aspirin (100 mg per day) and 5 ticlopidine (100 mg twice 
per day). No subject in our population was prescribed anticoagulants. There was no association between CMBs 
and antiplatelet usage in the present study.

Risk Factors for Top Quartile CIMT. Since a higher CIMT was a stronger predictor for vascular events and 
more representative of systemic atherosclerosis15, we used the top quartile CIMT as a marker of atherosclerosis in 
our analyses. The risk factors for high CIMT are presented in Table 2. Subjects with older age and male sex were 
more likely to have a higher CIMT. After adjusting for age and sex, the top quartile of CIMT was associated with 
hypertension and obesity.

Multivariate Analyses of Associations between CIMT and CMBs. Table 3 reveals the results of the 
multivariate logistic regression analyses. A higher CIMT (top quartile) was associated with the presence of CMBs 
independent of age, sex, cardiovascular risk factors, CAD, and CKD (model 1). The association was still signif-
icant after further adjustment for other CSVDs, the presence of lacunes, and the WMH (model 2). When the 
CMBs locations were considered, the results showed that the correlation between CMBs and CIMT was signifi-
cant only in DI but not in SL CMBs. A higher CIMT predicted the presence of DI CMBs with an Odds ratio (OR) 
of 2.5, independent of age, sex, cardiovascular risk factors, CAD, CKD, and other CSVDs. SL CMBs were not 
associated with CIMT.

Discussion
The main finding of this study was that the presence of CMBs correlated with a higher CIMT. We also found that 
the location of the CMBs determined the association between the CMBs and CIMT; DI, but not SL, CMBs were 
significantly associated with a higher CIMT, independent of age, sex, cardiovascular risk factors (hypertension, 
DM, hyperlipidemia, cigarette smoking, obesity, CAD and CKD), and other CSVDs.
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Previous studies with smaller population have investigated the relationship between CMBs and atherosclerosis 
in patients with a history of stroke12,13. The present community-based study evaluated the relationship between 
CMBs and atherosclerosis in the general population. Increased IMT has been deemed to be representative of 
early stages of atherosclerosis, and is widely used as a marker of atherosclerosis11,14. Our results indicate that 
CMBs in the general population were associated with atherosclerosis. This could explain why in several studies, 
the presence of CMBs predicts a higher risk of future not only hemorrhagic but also ischemic stroke independent 
of age, sex, and cardiovascular risk factors16. Since our study population included community-dwelling, subjects 
without a history of stroke, we postulated that atherosclerosis might be involved in the pathophysiology of CMBs 
at an early stage of the disease.

A recent-published paper of the Framingham Offspring Study revealed similar CMBs location-determined 
association with atherosclerosis markers17. Their results showed that carotid stenosis ≥25% was associated with 
DI but not SL CMBs. However, this study did not find a significant correlation between baseline CIMT and 
CMBs. The controversial results may due to the different study population. The other important reason might be 
that this study directly used CIMT value but not stratified ones into analysis. We classified CIMT into top quartile 
and the lower three quartiles since CIMT may be the sequela of other etiology instead of atherosclerosis and a 
higher CIMT was a stronger predictor for vascular events and more representative of systemic atherosclerosis15.

Our results also showed that DI but not SL CMBs were associated with atherosclerosis, independent of age, sex 
and cardiovascular risk factors. DI but not SL CMB, correlated with a history of CAD and lacunes in our study, a 
notion that also supports this postulation. In our population, DI CMBs were correlated with several atherogenic 
risk factors such as hypertension, hyperlipidemia, obesity, and higher triglyceride levels (Table 1), which might 
explain why only DI but not SL CMBs were associated with atherosclerosis.

Endothelial dysfunction, involved in the early stage of atherosclerosis18, might lead to impaired cerebral 
microvascular autoregulation in response to elevated perfusion pressure (such as in elevated BP) and consequent 
microvascular rupture19,20. It is possible that endothelial dysfunction mediates the association between athero-
sclerosis and DI CMBs.

Several studies have reported an association between arterial stiffness and age-related CSVDs, and showed 
that the relation of arterial stiffness to CMBs was different between the patients with stroke and the general 
population21–23. Previous studies in stroke patients have demonstrated an association between CMBs and arterial 
stiffness12,13,24. We did not find a correlation between CMBs, both DI and SL, and pulse pressure, which result was 
consistent with a previous study of subjects without a history of cerebrovascular and cardiovascular diseases23,25. 
Arterial stiffness, the reduced capability of an artery to expand and contract in response to pressure changes, usu-
ally develops in the elderly and people with long-standing hypertension26. The relationship between atheroscle-
rosis and arterial stiffness has been analyzed and discussed in several studies26. Their correlation has been shown 
more consistently in more advanced atherosclerosis26–28. During the early stage of atherosclerosis, a thickened 
IMT may maintain vascular circumferential stress and eliminate vascular injury and prevent subsequent vascular 

Overall Deep/infratentorial CMBs Strictly lobar CMBs

+(n = 134) −(n = 828) p +(n = 85) −(n = 877) p +(n = 49) −(n = 913) p

Age, years, mean (SD) 66.41 (9.66) 61.81 (8.18) <0.001 66.89 (10.02) 62.03 (8.23) <0.001 65.32 (8.62) 62.31 (8.53) 0.015

Sex, men, n (%) 61 (44.9) 364 (44.1) 0.926 40 (47.1) 385 (43.9) 0.648 20 (40.8) 405 (44.4) 0.660

Age and sex-adjusted

 Hypertension, n (%) 63 (46.3) 294 (35.6) 0.270 46 (54.1) 311 (35.5) 0.021 16 (32.7) 341 (37.3) 0.216

 DM, n (%) 21 (15.4) 108 (13.1) 0.891 13 (15.3) 116 (13.2) 0.828 8 (16.3) 121 (13.3) 0.810

 Hyperlipidemia, n (%) 14 (10.3) 44 (5.3) 0.111 11 (12.9) 47 (5.4) 0.032 2 (4.1) 56 (6.1) 0.423

 Cigarette Smoking, n (%) 31 (22.8) 219 (26.5) 0.207 22 (25.8) 228 (26.0) 0.768 9 (18.3) 241 (26.4) 0.156

 Obesity, n (%) 10 (7.4) 43 (5.2) 0.226 9 (10.6) 44 (5.0) 0.019 1 (2.0) 52 (5.7) 0.303

 Coronary artery disease, n (%) 13 (9.6) 37 (4.5) 0.020 11 (12.9) 39 (4.4) 0.003 2 (4.1) 48 (5.3) 1.000

 Chronic kidney disease, n (%) 2 (1.5) 12 (1.5) 0.572 2 (2.4) 12 (1.4) 0.914 0 14 (1.5) 0.999

 Systolic BP*, mmHg, mean (SD) 131.4 (18.3) 127.8 (12.6) 0.224 132.4 (16.9) 127.9 (16.5) 0.206 129.0 (20.6) 128.3 (16.4) 0.993

 Diastolic BP*, mmHg, mean (SD) 79.7 (12.1) 78.6 (12.7) 0.816 81.1 (12.1) 78.5 (12.6) 0.294 76.7 (10.9) 78.9 (10.9) 0.222

 Pulse pressure*, mmHg, mean (SD) 51.8 (12.1) 49.2 (10.3) 0.137 51.3 (11.5) 49.4 (10.5) 0.547 52.3 (13.5) 49.3 (10.4) 0.153

 LDL†, mg/dl, mean (SD) 112.9 (28.0) 117.8 (31.6) 0.506 114.1 (28.7) 117.4 (31.4) 0.893 109.9 (26.6) 117.5 (31.4) 0.149

 TG†, mg/dl, mean (SD) 128.3 (98.9) 119.6 (73.7) 0.125 136.2 (116.2) 119.3 (72.9) 0.037 114.1 (59.4) 121.2 (78.6) 0.655

 HDL†, mg/dl, mean (SD) 54.9 (12.7) 56.1 (14.4) 0.647 53.6 (12.1) 56.1 (14.4) 0.239 57.1 (13.8) 55.8 (14.2) 0.508

 Lacune >1, n (%) 26 (19.1) 19 (2.3) <0.001 24 (28.2) 21 (2.4) <0.001 2 (4.1) 43 (4.7) 0.583

 Moderate to severe WMH, n (%) 65 (47.8) 86 (10.4) <0.001 49 (57.6) 102 (11.6) <0.001 16 (32.7) 135 (14.8) 0.018

Carotid intima-media thickness

  Mean value, mm, mean (SD) 0.73 (0.13) 0.68 (0.12) 0.097 0.74 (0.14) 0.68 (0.12) 0.049 0.71 (0.12) 0.69 (0.13) 0.825

  Top quartile, n (%) 58 (43.0) 211 (26.0) 0.034 43 (51.2) 226 (26.2) 0.002 15 (30.6) 254 (28.3) 0.711

Antiplatelets, n (%) 8 (5.9) 30 (3.6) 0.733 5 (5.9) 33 (3.8) 0.856 3 (6.1) 35 (3.8) 0.685

Table 1. Variables Comparisons between Subjects with and without Cerebral Microbleeds. *p value was further 
adjusted for antihypertensive medicines using. †p value was further adjusted for statins using.
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structural changes. More advanced atherosclerosis or arterial stiffness would develop when the adaptive response 
is surpassed by persisted or profound vascular injury29,30. Our results revealed a relationship between DI CMBs 
with higher CIMT, but not pulse pressure in a community-dwelling, general population without a history of 
stroke, and it might reflect the pathogenesis of DI CMBs at a prodromal or early stage of disease. Arterial stiffness 
might follow atherosclerosis and be involved in the pathophysiology of DI CMBs at a later stage of disease. We 
would need a future longitudinal follow-up study to validate this hypothesis.

There were a few limitations to our study. Carotid plaque area and volume are other atherosclerosis markers31 
which we did not measure in the present study. We were concerned that the frequency and severity of plaque in 
the younger and healthy population in the present study would have been too low to achieve statistical power 
with those carotid measurements. Therefore, we chose CIMT as the marker of atherosclerosis. Notably, increased 
CIMT might not always represent atherosclerosis pathology, therefore, we used a higher level of CIMT (top 
quartile), which is more specific for atherosclerosis15. Since both increased IMT and DI CMBs are correlated 
with hypertension, their relationship might simply be contributed by different hypertensive effects on vessels31,32, 
though we have adjusted with hypertension into our multivariate analyses. A recent study explored the associa-
tion between carotid plaque volume (total and the subcomponents) and CMBs in 72 patients (CMB prevalence 
35.3%); the results showed that an increased volume of the fatty component was associated with the presence 
and number of CMBs. Their method would be considered in the future study with a larger population to validate 
the relationship between DI CMBs and systemic atherosclerosis33. We also lacked information of inflammatory 
biomarkers34 and endothelial function16 in our population which could have provided clues to the mechanisms 
and the associations between atherosclerosis and DI CMBs. Finally, a longitudinal follow-up study is needed to 
see if higher level of CIMT leads to new DI formation. This information would strengthen our postulation that 
atherosclerosis is a causal factor in the pathophysiology of DI CMBs.

In conclusion, the present study has provided further evidence that there are pathogenic differences between 
DI and SL CMBs.

Top Quartile of 
CIMT (n = 240)

Lower Three Quartiles 
of CIMT (n = 722) p

Age, years, mean (SD) 67.1 (8.8) 60.5 (7.7) <0.001

Sex, men, n (%) 153 (63.8) 267 (37.0) <0.001

Age and sex-adjusted

 Hypertension, n (%) 129 (53.8) 220 (30.5) 0.018

 DM, n (%) 46 (19.2) 79 (10.9) 0.562

 Hyperlipidemia, n (%) 21 (8.8) 36 (5.0) 0.545

 Cigarette Smoking, n (%) 97 (40.4) 149 (20.6) 0.188

 Obesity, n (%) 21 (8.8) 30 (4.2) 0.005

 Systolic BP*, mmHg, mean (SD) 131.6 (16.8) 126.8 (16.3) 0.097

 Diastolic BP*, mmHg, mean (SD) 80.5 (14.1) 78.0 (11.9) 0.268

 Pulse pressure*, mmHg, mean (SD) 51.1 (12.9) 48.8 (9.5) 0.251

 LDL†, mg/dl, mean (SD) 116.1 (31.1) 117.4 (31.3) 0.107

 TG†, mg/dl, mean (SD) 121.3 (76.6) 120.0 (75.9) 0.837

 HDL†, mg/dl, mean(SD) 53.6 (13.5) 56.9 (14.4) 0.192

 Lacune >1, n (%) 18 (7.5) 27 (3.7) 0.609

 Moderate to severe WMH, n (%) 59 (24.6) 90 (12.5) 0.887

Table 2. Variables Comparisons between Subjects with the Top and Lower Three Quartiles of Carotid Intima-
thickness. *p value was further adjusted for antihypertensive medicines using. †p value was further adjusted for 
statins using.

Overall Deep/infratentorial CMBs Strictly lobar CMBs

OR 95% CI p OR 95% CI p OR 95% CI p

Top quartile IMT versus lower three quartile 
IMT, model 1* 1.8 1.1–2.8 0.013 2.5 1.4–4.3 0.001 0.9 0.5–1.8 0.765

Top quartile IMT versus lower three quartile 
IMT, model 2† 1.6 1.0–2.3 0.037 2.1 1.3–3.4 0.004 0.9 0.5–1.8 0.921

Table 3. Multivariate Logistic Regression Analyses for the Relationship between Cerebral Microbleeds and 
Carotid Intima-media Thickness. *Adjusted for age, sex, cardiovascular risk factors (hypertension, diabetes 
mellitus, hyperlipidemia, cigarette smoking, and obesity), coronary artery disease, and chronic kidney disease. 
†Adjusted for age, sex, cardiovascular risk factors (hypertension, diabetes mellitus, hyperlipidemia, cigarette 
smoking, and obesity), coronary artery disease, chronic kidney disease, and other cerebral small vessel diseases 
(lacune and white matter hyperintensity).
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Methods
Study population. The I-Lan Longitudinal Aging Study is a community-based aging cohort study in the 
I-Lan County of Taiwan that aimed to evaluate the interrelationship between the geriatric syndromes and brain 
structural abnormalities and explore predictors or associated factors for future disable, dementia or mortality in 
the geriatric population when they are at a prodromal or early stage of disease35. In brief, community-dwelling 
adults aged 50 years or older from Yuanshan Township in I-Lan County were invited to participate in the study. 
Any subject that having any contraindication to an MRI such as metal implants, having been institutionalized for 
any reason or having known neuropsychiatric diseases such as dementia, stroke, brain tumor, or major depression 
was excluded from the study. The whole study was approved by the Institutional Review Board of the National 
Yang Ming University, Taipei, Taiwan. All the participants provided informed consent and we have conducted the 
study in accordance with the relevant ethical guidelines and regulations.

Demographics and Cardiovascular Risk Factors. A questionnaire was used to collect data regarding 
the demographics and medical history of the study subjects. The heights, weights, and resting blood pressures 
(BP) of the subjects were measured. Fasting serum lipid levels (total cholesterol, low density lipoprotein, high 
density lipoprotein and triglyceride), and blood urea nitrogen and creatinine levels were determined by a chem-
ical analyzer (ADVIA 1900, Siemens, Malvern, PA, USA). The presence of cardiovascular risk factors including 
cigarette smoking was determined by patient history or laboratory investigation. Hypertension was defined as a 
self-report of a current antihypertensive medication prescription or as a measurement of SBP ≥140 mmHg or 
DBP ≥90 mmHg36. Diabetes mellitus (DM) was defined as a self-report of current DM treatment or a measure-
ment of HgbA1c ≥6.5%37. Hyperlipidemia was recorded if there was a self-report of the use of a statin agent or a 
total blood cholesterol level ≥240 mg/dL38. Body mass index (BMI) was calculated as weight in kg/height in m2. 
Obesity was defined as BMI ≥30 (World Health Organization, 2014). Chronic kidney disease (CKD) was defined 
as an estimated glomerular filtration rate ≤60 mL/min/1.73m39. A history of coronary artery disease (CAD) was 
determined by the subjects’ self-reports.

Carotid Ultrasonography. All of the subjects underwent ultrasound imaging of the bilateral common 
carotid arteries (CCAs) in longitudinal projections using an instrument (GE LOGIQ 400 PRO; GE, Cleveland, 
OH, USA) equipped with a high-resolution broadband width linear array transducer by one technician. Each 
subject’s neck was extended in a supine position, with his/her head turned 30-degree toward the opposite direc-
tion of measurement. Then, the CIMT was measured on the far wall of subject’s right and left distal CCA by long 
axis view, and an image was automatically taken during R wave in electrocardiography. After taking an image, an 
operator selected 2 cm width region between carotid bifurcation and CCA, and then mean values of each CIMT 
were calculated by automatic methods in ultrasonography machine. The average of the left and right carotid IMTs 
were measured for analyses. All measurements were performed by one technician who was unaware of the clinical 
characteristics of the subjects. Measurements were additionally taken on a separate visit in 20 random-sampled 
subjects, and the intra-rater k = 0.80 (95% confidence interval 0.77–0.89).

Brain MRI Acquisition and CMBs Assessment. All of the participants underwent a brain MRI study at 
National Yang-Ming University, Taipei, Taiwan. Images were acquired on a 3 T Siemens MRI scanner (Siemens 
Magnetom Tim Trio, Erlangen, Germany) with a 12-channel head coil. An axial T2-weighted fluid attenuated 
inversion recovery (FLAIR) multi-shot turbo spin echo sequence with BLADE technique was acquired with 
the following parameters: repetition time (TR) = 9000 ms, echo time (TE) = 143 ms, inversion time = 2500 ms, 
flip angle = 130 degree, number of excitation = 1, echo train length = 35, matrix size = 320 * 320, field of view 
(FOV) = 220 * 220 mm2, 63 slices, bandwidth = 252 Hz/Px, voxel size = 0.69 * 0.69 * 2.0 mm3 without inter-slice 
gap and acquisition time = 7 minutes and 41 seconds. Three dimensional susceptibility-weighted imaging (SWI) 
was used to identify the CMB. A three dimensional SWI sequence was acquired with the following parameters: 
TR = 28 ms, TE = 21 ms, flip angle = 15 degree, matrix size = 256 * 224, FOV = 256 * 224 mm2, 88 slices, band-
width = 120 Hz/Px, voxel size = 1.0 * 1.0 * 2.0 mm3 without inter-slice gap and acquisition time = 9 minutes and 
13 seconds.

CMBs were defined as small, rounded or circular, well-defined hypointense lesions within the brain paren-
chyma with clear margins that were ≦10 mm in size on the SWI image3,40. Microbleed mimics such as vessels, 
calcification, partial volume, air-bone interfaces, and hemorrhages within or adjacent to an infarct were care-
fully excluded. We distinguised calcification by viewing T1-weighted MRI. CMB mimics showing low density on 
T1-weight MRI will be regarded as calcification. We used the Microbleed Anatomical Rating Scale to measure 
the presence, amount, and topographic distribution of the CMBs in each subject, which has been reported a good 
intra-rater and inter-rater reliability40. The microbleeds were classified according to whether they were located in 
the deep, infratentorial, or lobar categories. Lobar topography was determined according to Stark and Bradley41, 
and included the cortical and subcortical regions (including subcortical U fibers). The lobar CMBs were assessed 
in the fontal, parietal, temporal and occipital regions. The deep regions included the basal ganglia (BG), thala-
mus, internal capsule, external capsule, corpus callosum, and deep/periventricular white matter; the infratento-
rial regions included the brainstem and cerebellum. DPWM was defined as white matter adjacent to or within 
approximately 10 mm of the lateral ventricular margin. Images were displayed and viewed using the MRIcro soft-
ware (version 1.40, Chris Rorden’s MRIcro) by one neurologist (Dr. Chung) who was blinded to the clinical data 
during the CMB assessment and analyses. CMBs in 20 random-sampled subjects’ images were evaluated again 
at a separate time, and the intra-rater k = 0.83 (95% confidence interval 0.79–0.90). We also re-assessed CMBs 
in 25 random-sampled subjects’ images by Dr. Chung and her well-trained assistant (Mr. Ching-Sern Yong). The 
inter-rater k was 0.82 (95% confidence interval 0.79–0.88).
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The other manifestations of CSVDs, the numbers of lacunes, and the severity of WMH were also recorded 
in every subject by FLAIR-T2-weighted MRI. Lacunes are small CSF-containing cavities, ≤15 mm in diameter, 
located in the deep grey or white matter with adjacent white matter hyperintensity1. The severity of WMH was 
rated by the modified Fazekas scale42. The Fazekas scale scores are: 0 as no WMH, 1 as mild WMH, 2 as moderate 
WMH, and 3 as severe WMH.

Statistical Analysis. The statistical analyses were performed with SAS software, version 9.1 (SAS Institute, 
Cary, NC, USA). For continuous numeric variables, the nonparametric Mann-Whitney tests were performed 
as appropriate for group comparisons. The χ2 test or Fisher’s exact test was performed for categorical variables. 
Univariate and multivariate logistic regression analyses were performed to investigate the risk factors of (1) the 
presence of overall, DI, and SL CMBs respectively and (2) the top quartile CIMT. The associations between CMBs 
and the top quartile CIMT were also evaluated by multivariate logistic regression analyses. The results were pre-
sented as odds ratios (ORs) with 95% confidence intervals (95% CIs).

Data availability statement. The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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