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Accumulation of minor alleles and 
risk prediction in schizophrenia
Pei He1, Xiaoyun Lei1, Dejian Yuan1, Zuobin Zhu2 & Shi Huang1

Schizophrenia is a common neuropsychiatric disorder with a lifetime risk of 1%. Accumulation of 
common polygenic variations has been found to be an important risk factor. Recent studies showed a 
role for the enrichment of minor alleles (MAs) of SNPs in complex diseases such as Parkinson’s disease. 
Here we similarly studied the role of genome wide MAs in schizophrenia using public datasets. Relative 
to matched controls, schizophrenia cases showed higher average values in minor allele content (MAC) 
or the average amount of MAs per subject. By risk prediction analysis based on weighted genetic 
risk score (wGRS) of MAs, we identified an optimal MA set consisting of 23 238 variants that could be 
used to predict 3.14% of schizophrenia cases, which is comparable to using 22q11 deletion to detect 
schizophrenia cases. Pathway enrichment analysis of these SNPs identified 30 pathways with false 
discovery rate (FDR) <0.02 and of significant P-value, most of which are known to be linked with 
schizophrenia and other neurological disorders. These results suggest that MAs accumulation may be a 
risk factor to schizophrenia and provide a method to genetically screen for this disease.

Schizophrenia is one of the most frequent neuropsychiatric disorders with a lifetime risk of 1% in the general 
population1, 2. This disease is often chronic and places a great burden on family and society. It is characterized by 
the occurrence of delusions, hallucinations, disorganized speech and behavior, impaired cognition, and mood 
symptoms3. Data from twin, family, and adoption studies provide strong evidence that schizophrenia is a genetic 
disorder with high heritability4.

The precise mode of schizophrenia inheritance is unclear and risk prediction using known genetic compo-
nents is presently unrealistic. Based on investigating familial syndromes with schizophrenia-like phenotypes, two 
rare variants have been identified as associated with schizophrenia: the 22q11 deletion5, 6 and a 1:11 transloca-
tion7. With the advent of copy number variants (CNVs) microarray technology, an increasing number of large 
rare deletions have been detected in schizophrenia patients8–10. However, the effect size associated with common 
CNVs is smaller than initially estimated11. In addition, many candidate genes for schizophrenia have been found 
by genome-wide association studies (GWAS)12–14. However, these SNPs are at frequencies of 20–80% in the gen-
eral population and only account for a minimal increase in risk15. It has been shown that many complex traits or 
diseases including schizophrenia are driven by an accumulation of enormously large numbers of variants of small 
effects14, 16–19.

An allele can belong to either the major or the minor allele according to its frequency in the population and 
the minor allele (MA) has frequency (MAF) <0.5. Most known risk alleles are MAs20. Our previous studies 
have shown that the collective effects of genome wide MAs may play a role in numerous traits and diseases21–23. 
Specifically, enrichment of genome wide common SNPs or MAs is associated with Parkinson’s disease (PD)21 and 
lower reproductive fitness in C.elegans and yeasts22. To further explore these intriguing observations, we here 
studied the role of genome wide MAs as a collective whole in schizophrenia using previously published GWAS 
datasets and performed risk prediction using a selected set of MAs.

Results
Accumulation of minor alleles in schizophrenia. We made use of the published GWAS datasets 
(GAIN and MGS)12, 19, 24, 25. We first cleaned these datasets by removing outliers in Principal component anal-
ysis (PCA) plots (Supplementary Fig. S1). The cleaned datasets contained 1 002 cases and 1 152 controls in 
GAIN cohort, and 827 cases and 1 068 controls in MGS cohort. MA status of each SNP was then obtained by 
using the control cohort with MAF < 0.5 as cutoff. Minor allele content (MAC) of each subject was next cal-
culated (total number of MAs per subject divided by the total number of SNPs analyzed), and the mean MAC 
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values of cases and controls were compared. For the complete set of cleaned SNPs (total SNPs after quality 
control [QC], 696 460 SNPs), the mean MAC of schizophrenia cases was significantly higher than that of con-
trols in both the GAIN data (P = 9.83E-09, z-test, Table 1) and the MGS data (P = 6.46E-04, z-test, Table 1). In 
addition, we pruned SNPs with linkage disequilibrium (LD) analysis using different pairwise r2 threshold (0.8, 
0.7, 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1), and obtained different sets of LD-independent SNPs. We combined subjects 
in the two cohorts for analyzing these LD-independent SNPs out of sample size considerations and recalcu-
lated MAC values accordingly. Again, MAC was found to be significantly different between cases and controls 
for all different sets of LD-independent SNPs examined (z-test, Table 1). These results indicated genome wide 
MAs enrichment in schizophrenia.

We then calculated a risk coefficient score for each SNP by logistic regression analysis and obtained a weighted 
genetic risk score (wGRS) based on the MA status and the risk coefficient score as previously described21. The 
MAC of each individual was then converted into a weighted risk score by summing up the weighted risk scores of 
each SNP. The mean wGRS of cases was found to be far greater than that of controls in both datasets when ana-
lyzed using the total SNPs (Fig. 1, mean wGRS [mean ± SEM] in GAIN cohort, cases [n = 1 002] 425.52 ± 2.23 
vs controls [n = 1 152] −261.22 ± 2.07, P < 0.001; for MGS cohort, cases [n = 827] 392.31 ± 2.69 vs controls 
[n = 1068] −388.37 ± 2.45, P < 0.001, z-test). For LD-independent SNPs, we only compared wGRS between cases 
and controls using SNPs with r2 threshold of 0.3, because the MAC difference between cases and controls in this 
set of SNPs was the smallest (P value was the largest) among all LD-independent SNPs sets (so, if this set showed 
meaningful and positive results, other sets with smaller P-values would be expected to show the same). The 
results showed that the wGRS of LD-independent SNPs with r2 0.3 was higher in cases than in controls (Fig. 1, 
cases [n = 1 002] 68.59 ± 0.32 vs controls [n = 1 152] −47.67 ± 0.30 in GAIN cohort, P < 0.001; cases [n = 827] 
69.36 ± 0.39 vs controls [n = 1068] −63.48 ± 0.34 in MGS cohort, P < 0.001, z-test). This was apparent on a den-
sity plot of the wGRS with clearly separated cases and controls using both total SNPs and LD-independent SNPs 
with r2 threshold of 0.3 in GAIN and MGS cohort (Fig. 1).

Subjects 
(controls:cases) SNPs set

NO. 
SNPs

MAC (mean ± S.E.M.)

P-valuecontrols cases

GAIN (1152:1002) total SNPs 696 460 0.23577 ± 3.20E-05 0.23603 ± 3.29E-05 9.83E-09

MGS (1068:827) total SNPs 696 460 0.23577 ± 3.25E-07 0.23594 ± 3.79E-05 6.46E-04

GAIN + MGS 
(2220:1829)

r2 > 0.8 337 589 0.22213 ± 1.95E-05 0.22224 ± 2.09E-05 2.06E-04

r2 > 0.7 286 497 0.21584 ± 1.92E-05 0.21594 ± 2.07E-05 4.49E-04

r2 > 0.6 240 608 0.20776 ± 1.90E-05 0.20785 ± 2.06E-05 2.21E-03

r2 > 0.5 198 495 0.19771 ± 1.93E-05 0.19782 ± 2.07E-05 9.72E-05

r2 > 0.4 157 339 0.18365 ± 1.95E-05 0.18374 ± 2.09E-05 3.67E-03

r2 > 0.3 119 326 0.16462 ± 2.05E-05 0.16470 ± 2.19E-05 9.80E-03

r2 > 0.2 82 774 0.13919 ± 2.21E-05 0.13930 ± 2.40E-05 6.76E-04

r2 > 0.1 44 459 0.10535 ± 2.53E-05 0.10550 ± 2.80E-05 5.35E-05

Table 1. MAC values in cases and controls calculated from either total SNPs (after QC) or LD-independent 
SNPs of different r2 threshold. S.E.M.: Standard Error of the Mean.

Figure 1. Weighted genetic risk score distribution in cases and controls. Distribution of weighted genetic 
risk score with total SNPs and LD-independent SNPs of case and control subjects in GAIN and MGS cohort. 
Controls 1 and cases 1: calculated with total SNPs; controls 2 and cases 2: calculated with LD-independent SNPs 
with r2 threshold of 0.3.
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Evaluation of wGRS models in risk prediction. We next performed risk prediction using wGRS con-
structed from MAs of both total SNPs and LD-independent SNPs. In order to get an optimal amount of MAs for 
prediction of schizophrenia from an independent case-control blind database, we constructed 338 models using 
total SNPs or LD-independent SNPs for risk prediction. For total SNPs, we made 130 prediction models based 
on 5 different MAF cutoffs and 26 different P-values of logistic regression analysis (Fig. 2a,b and Supplementary 
Table S1). For LD-independent SNPs, we made 208 prediction models based on 8 different r2 thresholds of LD 
analysis (with all SNPs used for model construction having MAF < 0.5) and 26 P-values of logistic regression 
analysis (Fig. 2c,d and Supplementary Table S2). We then performed external cross-validation and internal 
cross-validation analyses to test these models. In external cross-validation, we used the GAIN cohort as the train-
ing dataset and the MGS cohort as the validation dataset. We used the receiver operator characteristic (ROC) 
curve (or area under the curve [AUC] of each model in the validation dataset) and true positive rate (TPR) to 
examine the discriminatory capability. The results showed good discriminatory capability using models con-
structed with both LD-independent SNPs and total SNPs (Fig. 2 and Supplementary Tables S1 and S2).

To further evaluate the accuracy of those models as shown in Fig. 2 that performed well in external cross 
validations (TPR >= 2% and AUC > 0.57 in total SNPS models, or TPR >= 2.78% and AUC > 0.57 in 
LD-independent SNPs models), a 10 fold internal cross-validation analysis26 was performed using the GAIN 
cohort. Each model was analyzed 10 times, and the mean AUC and TPR values were calculated. Based on both 
external and internal cross-validation analyses, the best model using total SNPs was found to have AUC 0.5857 
(95% CI, 0.5599–0.6115) and TPR 2.18% (95% CI, 1.295–3.418%) in external cross-validation analysis, and AUC 
0.6017 (95% CI, 0.5779–0.6254) and TPR 3.78% (95% CI, 1.650–5.907%) in internal cross-validation analysis. 
There were 82 925 SNPs in this model with MAF < 0.5 and each MA with a P < 0.11 (external cross-validation 
analysis results see Fig. 2a,b and Supplementary Table S1, internal cross-validation results see Supplementary 
Table S1). For the LD-independent SNPs, the best model was found by using SNPs with r2 threshold of 0.6 and 
P < 0.09 (MAF < 0.5), which had AUC 0.5928 (95% CI, 0.5672–0.6185) and TPR 3.14% (95% CI, 2.064–4.573%) 
in external cross-validation analysis, and AUC 0.6153 (95% CI, 0.5872–0.6434) and TPR 3.26% (95% CI, 1.263–
5.263%) in internal cross-validation analysis. This model contains 23 238 SNPs (external cross-validation analysis 
results see Fig. 2c,d and Supplementary Table S2, internal cross-validation results see Supplementary Table S2).

We also evaluated the capacity of wGRS to predict case-control status using the Nagelkerke’s method, a 
likelihood-based measure to quantify the goodness-of-fit of models containing genetic predictors of human dis-
ease14, 19, 27. For this analysis, we analyzed the models with good performance in the cross validation analysis 
(Table 2). The variance explained of Nagelkerke’s R2 value (from external cross-validation analysis) was 3.99% for 
the best model from total SNPs and 4.61% for the best model from LD-independent SNPs. Based on the above 
evaluation results, we chose the best model from LD-independent SNPs as the optimal model for subsequent 
analysis, which had higher TPR, AUC and Nagelkerke’s R2 value and with less number of SNPs.

Figure 2. Discriminatory abilities of different wGRS prediction models from external cross-validation analysis. 
Discriminatory abilities of 130 wGRS prediction models constructed by total SNPs (a,b). Discriminatory 
abilities of 208 wGRS prediction models constructed by LD-independent SNPs (c,d). AUC (a,c) and TPR (b,d) 
were calculated using a training dataset (GAIN) and a validation dataset (MGS) to evaluate the discriminatory 
abilities. *The optimal model with the best performance among models constructed by LD-independent SNPs.
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Comparison wGRS models to polygenic risk scores models. Previous studies showed that poly-
genic risk scores (PRS) constructed from common variants of small effects can predict case-control status 
in schizophrenia19. To compare the PRS method with our wGRS approach, we performed external-cross 
validation analysis by constructing PRS models using the GAIN and MGS cohorts. The same as the wGRS 
models, 9 SNPs sets were used including 1 total SNPs sets (after QC) and 8 LD-independent SNPs sets, and 
26 models for each SNPs set were constructed based on P-values of logistic regression analysis, thus result-
ing in a total of 234 PRS models (all SNPs with MAF < 0.5). The GAIN cohort was used as the training data 
and the MGS as the validation data in the external cross-validation analysis. PRS calculation of each subject, 
PRS models construction and cross-validation analyses were performed with PRSice software28. AUC, TPR 
and variance explained of Nagelkerke’s R2 value of each model were calculated to measure the discrimina-
tory abilities (Supplementary Fig. S2 and Supplementary Table S3). The model with the largest TPR value 
contained 31 107 SNPs with r2 threshold of 0.7 and P < 0.12, and had AUC 0.5792 (95% CI, 0.5534–0.6051), 
TPR 3.02% (95% CI, 1.966–4.430%) and variance explained of Nagelkerke’s R2 value 3.46%. The model with 
the largest AUC and Nagelkerke’s R2 value was from the total SNPs set with P < 0.6 (containing 359 089 
SNPs) and had AUC 0.5935 (95% CI, 0.5678–0.6192), TPR 1.45% (95% CI, 0.7519–2.521%) and Nagelkerke’s 
R2 4.33% (Supplementary Fig. S2 and Supplementary Table S3). The prediction capacities of these two PRS 
models were both slightly worse than the optimal wGRS model, which had AUC 0.5928, TPR 3.14%, and 
Nagelkerke’s R2 4.61%.

Prediction performance of different types of SNPs. We next examined the potential functions of the 
23 238 SNPs in the optimal wGRS model by annotating them with the ANNOVAR software29, and compared the 
prediction results of different types of SNPs to that of total SNPs (after QC). Relative to total SNPs, the proportion 
of SNPs in the optimal wGRS model in exonic, upstream-downstream, and UTR regions were increased ([total vs 
optimal] exonic, 0.88% vs 1.14%, P = 4.20E-05; upstream-downstream, 1.09% vs 1.36%, P = 1.33E-04; UTR 1.02% 
vs 1.17%, P = 0.033, chi-square test, Supplementary Table S4), indicating an enrichment in gene coding and gene 
regulatory regions. No significant changes were found in other regions.

More than half of all SNPs in the optimal wGRS model were found located in intergenic regions (53.34%). We 
next divided the SNPs in the optimal model into two groups, one containing only intergenic SNPs and the other 
containing all SNPs except intergenic SNPs, and did external-cross validation analysis of risk prediction with both 
groups and compared them to the optimal model. We found that the intergenic SNPs group produced better AUC 
and TPR than that without the intergenic SNPs and both groups were worse than the optimal model in AUC and 
TPR values (Fig. 3). Thus, MAs in intergenic regions are an important component in the overall collective effect 
of MAs.

SNPs set P threshold R2

Total SNPs

0.15 3.97

0.13 3.97

0.11 3.99

r2 > 0.8

0.12 4.02

0.11 4.05

0.10 4.09

r2 > 0.7

0.12 3.80

0.11 3.82

0.10 3.91

r2 > 0.6

0.12 3.82

0.10 4.24

0.09 4.61

r2 > 0.5

0.12 3.13

0.09 3.68

0.08 3.76

r2 > 0.4

0.17 2.50

0.15 2.46

0.14 2.43

r2 > 0.3

0.20 1.88

0.18 1.85

0.16 1.83

Table 2. The variance explained of Nagelkerke’s - R2 (%) in MGS cohort based on weighted Genetic Risk Scores 
(wGRS). wGRS analyses using MGS samples as validation cohort and GAIN samples as training cohort. Either 
total SNPs or LD-independent SNP sets of different r2 values (threshold of LD analysis) as indicated were used 
for the analysis of R2 values representing variance explained by Nagelkerke’s method. Only the models with 
good performance of AUC and TPR value in cross-validation analyses were analyzed.
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Ontology and pathway analyses. We mapped the 23 238 SNPs in the optimal wGRS model to gene 
loci using WebGestaltR tools, and found 16 135 SNPs unambiguously mapped to 6 255 unique entrez gene IDs 
(entire data see Supplementary Table S5). These genes were characterized using gene ontology in WebGestaltR 
according to biological process, molecular function, and cellular component. As shown in Fig. 4 (more details 
see Supplementary Table S6-1), the top-10 enriched genes modules were related to molecular function regulator, 
channel activity, and transporter activity. In terms of biological process, certain nervous system development, 
neurogenesis, neuron differentiation and neuron projection development genes were present, which have been 
linked with schizophrenia.

Pathway analysis was carried out on these 6 225 unique entrez gene IDs according to the KEGG using 
WebGestaltR tools. A total of 30 pathways were identified with false discovery rate (FDR) < 0.02 and had signif-
icant P values (after Benjamini-Hochberg adjustment) (Table 3 and Supplementary Table S6-2). Among these, 
23 were found to be involved in one or more of the following known to be related to schizophrenia, such as 
axon guidance30, Rap1 signaling pathway31, 32, Glutamatergic synapse33, ECM-receptor interaction34, 35, focal 

Figure 3. Role of intergenic SNPs in prediction performance. (a) AUC values. (b) TPR values. set1: without 
intergenic SNPs in optimal wGRS models; set 2: intergenic SNPs in optimal wGRS models; total: all SNPs 
contains in optimal wGRS models.

Figure 4. Top-10 enriched gene modules of gene ontology analysis with SNPs in optimal weighted Genetic Risk 
Scores model. Significant enrichment of gene modules was analyzed from WebGestaltR based on categories 
of biological process, molecular function, and cellular component respectively, more details can be found in 
Supplementary Table S6-1.
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adhesion36, PI3K-Akt signaling pathway37, retrograde endocannabinoid signaling38, Ras signaling pathway32, cell 
adhesion molecules (CAMs)39, morphine addiction40, GABAergic synapse41, neuroactive ligand-receptor inter-
action42, MAPK signaling pathway43, Hedgehog signaling pathway44, oxytocin signaling pathway45, circadian 
entrainment46, nicotine addiction47, long-term depression48, calcium signaling pathway49, inflammatory mediator 
regulation of TRP channels50, adherin junction51, regulation of actin cytoskeleton52, and cholinergic synapse53. 
The remaining 7 pathways may also play some roles in brain disorders including schizophrenia. Arrhythmogenic 
right ventricular cardiomyopathy (ARVC) pathway is related to cardiovascular disease, and has been found 
abnormal in schizophrenia patients54. Taste receptor expression in the dorsolateral prefrontal cortex in chronic 
schizophrenia is reduced, implicating taste transduction pathway in schizophrenia55. Pathways in cancer and 
Melanoma may be related to both cancer and neurological diseases as there are reports of a reduced risk of cancer 
among individuals with PD56 and Alzheimer’s disease (AD)57 and an increased risk of malignant melanoma asso-
ciated with a PD diagnosis58. AGE-RAGE signaling pathway in diabetic complications has been implicated in the 
pathogenesis of diverse diseases including neurological disorders59, 60. The vascular smooth muscle contraction 
pathway is related to epilepsy61. Phospholipase D is related to metabolic diseases and may be a therapeutic target 
in certain brain disorders62.

Discussion
In this study, we showed enrichment of MAs in schizophrenia cases relative to matched controls, suggesting a 
role for the collective effects of polygenic variation in the risk for schizophrenia. We also calculated wGRS of each 
subject based on MA status of SNPs and did risk prediction using wGRS. We identified a set of MA of common 
SNPs that can specifically predict a fraction of schizophrenia cases. We further showed that SNPs located in the 
gene coding and gene regulatory regions were enriched in the optimal prediction model but SNPs located in the 
intergenic region were also important for the overall collective effect of MAs.

ID Pathways #Gene FDR P-value

hsa04360 Axon guidance 90 2.32E-06 7.65E-09

hsa04015 Rap1 signaling pathway 99 4.58E-06 3.02E-08

hsa04724 Glutamatergic synapse 59 1.56E-05 1.54E-07

hsa04512 ECM-receptor interaction 47 2.41E-05 3.18E-07

hsa04510 Focal adhesion 96 3.74E-05 6.16E-07

hsa05200 Pathways in cancer 163 1.82E-04 3.60E-06

hsa04151 PI3K-Akt signaling pathway 137 1.99E-04 4.65E-06

hsa04723 Retrograde endocannabinoid signaling 52 1.99E-04 5.27E-06

hsa04014 Ras signaling pathway 96 3.41E-04 1.01E-05

hsa05412 Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 41 3.90E-04 1.29E-05

hsa04514 Cell adhesion molecules (CAMs) 67 6.84E-04 2.48E-05

hsa05032 Morphine addiction 46 9.78E-04 3.87E-05

hsa04727 GABAergic synapse 44 1.17E-03 5.04E-05

hsa04080 Neuroactive ligand-receptor interaction 110 1.69E-03 7.81E-05

hsa04010 MAPK signaling pathway 103 3.79E-03 1.88E-04

hsa04933 AGE-RAGE signaling pathway in diabetic 
complications 49 5.64E-03 2.98E-04

hsa04340 Hedgehog signaling pathway 26 8.34E-03 4.90E-04

hsa04921 Oxytocin signaling pathway 67 8.34E-03 4.95E-04

hsa05218 Melanoma 35 8.36E-03 5.34E-04

hsa04270 Vascular smooth muscle contraction 53 8.36E-03 5.52E-04

hsa04713 Circadian entrainment 44 8.60E-03 5.96E-04

hsa05033 Nicotine addiction 23 9.23E-03 6.93E-04

hsa04742 Taste transduction 33 9.23E-03 7.01E-04

hsa04072 Phospholipase D signaling pathway 61 1.03E-02 8.67E-04

hsa04730 Long-term depression 31 1.03E-02 9.20E-04

hsa04020 Calcium signaling pathway 74 1.03E-02 9.45E-04

hsa04750 Inflammatory mediator regulation of TRP 
channels 45 1.03E-02 9.46E-04

hsa04520 Adherens junction 36 1.03E-02 9.48E-04

hsa04810 Regulation of actin cytoskeleton 87 1.38E-02 1.32E-03

hsa04725 Cholinergic synapse 47 1.66E-02 1.65E-03

Table 3. Significantly enriched KEGG pathways from WebGestaltR with SNPs in optimal weighted Genetic 
Risk Scores model. P-values were adjusted with the Benjamini-Hochberg method. Only pathways with 
FDR < 0.2 and of significant p-value were included, more details can be found in Supplementary Table S6-2.
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Polygenic inheritance of complex traits and diseases has long been hypothesized63. The PRS method was first 
applied by the International Schizophrenia Consortium to evaluate the aggregation effect of polygenic variation 
in Schizophrenia19. The method has since been used in other complex traits and diseases. Different from the PRS 
method’s focus on disease-associated SNPs, the wGRS method we developed here considered all minor alleles on 
a genome wide scale. The main difference between the wGRS and PRS model construction was the calculation of 
total risk scores of each individual. The PRS of each individual was obtained by summing up weighted log10(odds 
ratio) of disease-associated alleles (odds ratio obtained from logistic regression tests). These alleles were weighted 
by effect sizes estimated from a genome-wide association study19, 28. The wGRS of each individual was obtained by 
summing up weighted beta regression coefficient of each SNP based on MA status of SNPs with beta regression 
coefficient calculated by logistic regression tests. Different p-value thresholds were used in both PRS and wGRS 
models construction. Our direct comparison of these two methods found the wGRS method to be slightly better.

We found that LD pruning can increase the prediction accuracy in wGRS prediction analysis. Similar to our 
previous method (models based on different MAF and P-value with total SNPs) to predict PD21, we obtained 
a large set of 82 925 MAs of SNPs from a total set of 696 460 SNPs that can predict 2.18% schizophrenia (AUC 
0.5857) or explaining 3.99% of the phenotype variance (Table 2). However, the best model from LD pruned SNPs 
had TPR value increased to 3.14% (AUC 0.5928), the explained variance increased to 4.61%, and SNPs numbers 
decreased to 23 238.

Several measures may be considered to increase prediction accuracy in the future. Increasing sample size has 
been shown to an effectively way. The Nagelkerke’s -R2 value increased from 3.4%19 to 18.4%14 along with data size 
increased from 2 176 cases/1 642 controls to 32 838 cases/44 375 controls. In addition, integrating informations 
such as clinical features64, pleiotropy65 and functional annotations66, joint modeling of correlated traits67 could 
also improve prediction accuracy for complex diseases.

There were reports of male bias in schizophrenia68. The ratio of males to females in cases of GAIN cohort was 
2.27 (696:306) and 2.18 (567:260) in the MGS cohort. We however did not observe significant differences in MAC 
values between male and female cases in both datasets (Supplementary S7).

Recent studies have shown that a much larger than expected portion of the human genome may be func-
tional69, 70. Our study here is consistent with this as more than half of SNPs in the optimal wGRS model we iden-
tified here were located in intergenic regions, which were critical to our prediction model. The enrichment of risk 
SNPs in the gene coding and gene regulatory regions as found here is to be expected given that these regions are 
known to have greater functional effects, which also served to validate our approach here.

Most of the enriched pathways found here were known to relate to schizophrenia and other neurological 
disorders. It should be noted that these pathways and the ontology results were obtained by using SNPs from the 
optimal wGRS model. It is possible that different SNP sets from different models may identify different pathways 
and different genes modules. In addition, all subjects we used in this study were of European ancestry and it 
remains to be seen whether similar findings could be replicated in other racial groups.

Genetic diversities today are clearly at saturation levels as indicated by the observation that higher fractions 
of fast evolving SNPs, relative to slow evolving ones, are shared between different human groups71, 72. This raises 
the question of what selection forces are keeping genetic diversity levels from increasing with time. By linking 
the total amount of SNPs or MAs in an individual to complex diseases and traits, it is clear that complex diseases 
could serve as a negative selection mechanism to prevent abnormal increase in SNP numbers in an individual73. It 
is expected that the overall property of the genome as a whole should be linked with the wellbeing of an organism. 
Our results here on schizophrenia further confirmed the hypothesis we put forward before that a highly complex 
and ordered system such as the human brain must have an optimum limit on the level of randomness or entropy 
in its building parts or DNAs21.

Using LD-independent SNPs, we identified a set of 23 238 MAs that could predict 3.14% cases specifically. 
The value is similar to 22q11.2 deletion, which accounts for approximately 1~2% of all cases of schizophrenia5, 74.  
These SNPs were linked with pathways known to be involved in the disease, thereby validating our method of 
looking for disease specific set of SNPs. This set is larger than any known from previous studies19. Future studies 
using larger sample sizes and integrating additional information may help identify a more specific set of risk SNPs 
that could improve prediction performances.

Materials and Methods
Subjects. We included two GWAS datasets of cases and controls in our analysis, GAIN (phs000021.v3.p2) and 
MGS (phs000167.v1.p1)12, 19, 24, 25. Both datasets were downloaded from database of Genotypes and Phenotypes 
(dbGaP). All subjects we selected for analysis are European ancestry population. There were no any overlap indi-
viduals between two datasets. Whole genome genotyping of subjects was scanned with AFFY_6.0 of Affymetrix. 
PCA using the GCTA tool was performed to analyze the genetic homogeneity of the subjects75. There were three 
principal component (PC) factors generated based on the genotypes of each subject from analysis, subjects with 
similar PC values were kept, outliers were excluded if PC values of individuals has large difference compared with 
other individuals (more details see Supplementary Fig. S1).

SNPs selection. All SNPs for analysis in this study are autosomal SNPs. In addition, genotype data of each 
individual were subjected to rigorous QC measures to exclude poor-quality SNPs21. Therefore, we excluded 
SNPs showing departure from the Hardy-Weinberg equilibrium (P < 0.01), with missing data <5%, and with 
MAF < 0.01. The removal of rare alleles was meant to eliminate any artefactual effects by rare SNPs that might be 
misidentified due to errors. After these filters, there were 696 460 SNPs remaining (Table 1).

For the different sets of LD-independent SNPs, we used Plink to prune SNPs according to different pairwise r2 
threshold (0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1 respectively) within a 200 kb window. The numbers of remaining 
SNPs after pruning were presented in Table 1.

http://S1
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Statistical analysis. The Hardy-Weinberg equilibrium, missing data, MAF, LD and logistic regression anal-
ysis were performed using PLINK Tools76. MAC of each subject was obtained using total number of MAs divided 
by the total number of SNPs scanned (non-informative SNPs were excluded). The script for MAC calculation 
was previously described21. Risk coefficient (beta regression coefficient) of each SNP was calculated with logistic 
regression test (equal to coefficient logistic regression test). The wGRS of a MA was calculated as follows: for 
homozygous MA, the risk coefficient was 1 x the coefficient, for heterozygous MA, it was 0.5 x the coefficient, 
for homozygous major allele, the coefficient was 0. The total wGRS from all MAs in a subject was obtained by 
summing up the weighted risk coefficient of all MAs by the script as described previously21. Before comparison 
of mean MAC and wGRS differences of cases and controls, F-test in excel was used to test homogeneity of var-
iance of two groups. After confirming that all results show homogeneity of variance, z-test (two-tailed) in excel 
was performed to compare the mean MAC and wGRS between cases and controls. Chi-square test was used for 
comparison of two sample proportions with R software. The PRS calculation of each subject was done according 
to a previous study19 by summing up weighted log10(odds ratio) of each disease-associated SNP in a subject with 
odds ratio obtained from logistic regression tests. PRS calculation was performed using the PRSice software28.

Construction and evaluation of genetic risk models. Models construction included wGRS mod-
els from total SNPs (after QC), wGRS models from LD-independent SNPs and PRS models from total and 
LD-independent SNPs. For wGRS models from total SNPs, all SNPs were divided into 5 groups according to MAF 
(MAF < 0.5, 0.4, 0.3, 0.2 and 0.1). Each group was further divided into 26 subgroups based on different p-value 
thresholds of logistic regression analysis (P < 1, 0.6, 0.5, 0.4, 0.3, 0.2, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 
0.11, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01 and 0.005), resulting in a total of 130 models. For wGRS 
models from LD-independent SNPs, the SNPs were divided into 8 groups based on the r2 threshold (r2 > 0.8, 0.7, 
0.6, 0.5, 0.4, 0.3, 0.2, 0.1), with each group further divided into 26 subgroups based on different p-value thresholds 
as above, resulting in a total of 208 models. All SNPs in these models had MAF < 0.5. For PRS models construc-
tion, all SNPs were divided to 9 groups (1 total SNPs group and 8 different r2 threshold groups) with each group 
further divided into 26 subgroups based on different p-value thresholds, resulting in a total of 234 models (all 
SNPs with MAF < 0.5).

To evaluate the wGRS models, external cross-validation and internal cross-validation were performed and 
AUC, TPR and Nagelkerke’s - R2 values of models were calculated to evaluate the ability to differentiate cases 
and controls. For external cross-validation, the GAIN cohort was used as training dataset, and the MGS cohort 
as validation dataset. For the internal cross-validation, a 10 fold cross-validation26 was used to test the models 
with good performance in external cross-validation. Subjects in GAIN cohort were divided into 10 sub-sets ran-
domly. For randomly assigning a subject to a group, all subjects were assigned a value randomly generated using 
the function RAND () in excel, and then sorted according to the value. This list was then equally divided into 10 
sub-sets with ~216 subjects each (4 sub-sets with 216 subjects and 6 with 215 subjects). When a sub-set was used 
as the validation data, the other 9 sub-sets together were used as the training data. The cross-validation process 
was repeated 10 times, and the mean AUC and TPR values were calculated from these 10 results. The model with 
the largest AUC, TPR as well as Nagelkerke’s -R2 value was selected as the best (optimal) model for subsequent 
analysis. If two models have similar values, the model with a smaller number of SNPs was selected as the best.

To evaluate the PRS models, external cross-validation was performed using the PRSice software28. The GAIN 
cohort was used as the training dataset and MGS cohort as the validation dataset. AUC, TPR and Nagelkerke’s - R2 
values of each model were calculated to evaluate the ability to differentiate cases and controls.

AUC values for each model were calculated by R with ‘pROC’ packages77. TPR is the proportion of cases with 
wGRS or PRS higher than all of the controls, with 100% specificity, and was calculated by GraphPad Prism5. 
Nagelkerke’s - R2 values (obtained from logistic regression analysis) were used to estimate the proportion of 
variance explained by wGRS or PRS. The number of SNPs used to calculate the wGRS or PRS per individual was 
recorded as a covariate. Variance explained of Nagelkerke’s - R2 was calculated as the Nagelkerke’s - R2 value of the 
model including wGRS and covariates minus that of the model including only covariates.

SNPs annotation and functional enrichment analyses. ANNOVAR (http://annovar.openbioin-
formatics.org/) was used to annotate SNPs29. For functional enrichment analysis, WebGestaltR (http://bioinfo.
vanderbilt.edu/webgestalt/) tools were used for gene ontology annotation and pathway analysis based on Kyoto 
Encyclopedia of Genes and Genes (KEGG) (http://www.genome.jp/kegg/)78, 79.
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