
1SCieNTifiC ReporTS | 7: 11332  | DOI:10.1038/s41598-017-11770-4

www.nature.com/scientificreports

Analysis and comparison of the 
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& Honghai Zhang1

Next Generation Sequencing has been widely used to characterize the prevalence of fecal bacteria 
in many different species. In this study, we attempted to employ a low-cost and high-throughput 
sequencing model to discern information pertaining to the wolf microbiota. It is hoped that this model 
will allow researchers to elucidate potential protective factors in relation to endangered wolf species. 
We propose three high-throughput sequencing models to reveal information pertaining to the micro-
ecology of the wolf. Our analyses advised that, among the three models, more than 100,000 sequences 
are more appropriate to retrieve the communities’ richness and diversity of micro-ecology. In addition, 
the top five wolf microbiome OTUs (99%) were members of the following five phyla: Bacteroidetes, 
Fusobacteria, Firmicutes, Proteobacteria, and Actinobacteria. While Alloprevotella, Clostridium_sensu_
stricto_1, Anaerobiospirillum, Faecalibactreium and Streptococcus were shared by all samples, their 
relative abundances were differentially represented between domestic dogs and other wolves. Our 
findings suggest that altitude, human interference, age, and climate all contribute towards the micro-
ecology of the wolf. Specifically, we observed that genera Succinivibrio and Turicibacter are significantly 
related to altitude and human interference (including hunting practices).

A large number of bacterial species are known to colonize various anatomical sites within the body1–3. For 
instance, the colon is estimated to contain between 1010 and 1014 bacterial cells4. These extremely large microbial 
populations display significant diversity and have evolved novel mechanisms that facilitate their proliferation and 
maintenance5. The associated mechanisms have been the focus of a large number of studies worldwide6. Many 
studies have demonstrated that microbiota play important roles in the biogeochemical cycling of carbon, nitro-
gen, and phosphorus. Furthermore, these microbiological communities are capable of facilitating the decompo-
sition of organic material and the extraction of nutrients from the resultant matter.

The focus of this research involved the microbiota of the native wolf with a particular emphasis on microbial 
diversity. It has been reported that microbial diversity plays an important role in the maintenance of host health7. 
It has also been suggested that factors such as age and gender affect the composition of microbial populations8. 
It is likely that mutualism between -specific characteristics, microbial richness, and diversity is an important 
phenomenon in host health9.

The traditional method that has been used to study microbial diversity in animals involves morphological 
and biochemical examination of colonizing microorganisms following in vitro isolation and purification tech-
niques10. However, this method has many inherent drawbacks and limitations. For instance the vast majority of 
fecal microbes cannot be cultured. Furthermore, only 0.1%–10% of microbial species can be differentiated using 
these methodologies11. Another method that can be used to analyze microbial diversity depends on traditional 
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molecular biology techniques, including denaturing gradient gel electrophoresis (DGGE)12, temperature gra-
dient gel electrophoresis (TGGE)13, restriction fragment length polymorphism (RFLP) analysis14, and terminal 
restriction fragment length polymorphism (T-RFLP) analysis15. These methods do not exhibit many of the draw-
backs associated with morphological and biochemical methods. Each of these approaches has contributed to our 
understanding of the importance of microbial diversity in hosts; however, all of these approaches have limitations 
in relation to both the quantity and quality of the data generated.

In recent years, a cross-disciplinary approach that has utilized both bioinformatics and molecular biological 
techniques is being adopted to study microbial diversity with dedicated academic programs featuring utiliza-
tion of associated techniques. DNA sequencing technologies and applications have evolved extremely rapidly 
and the associated platforms currently facilitate the assimilation of big genome data, which are crucial for many 
research areas and applications16. From Sanger sequencing technologies in the mid-twentieth century to the 
utilization of High-Throughput sequencing platforms at the beginning of the twenty-first century, sequencing 
analyses have helped to develop our understanding of fecal bacterial profiles. Indeed, Sanger sequencing tech-
nologies have helped scientists to overcome several of the limitations pertaining to more traditional approaches 
that permit bacterial identification17. Furthermore, high-throughput sequencing technologies have provided 
quicker turnaround times and increased sequence data assembly rates. The latter technologies also facilitate 
low-cost utilization, higher coverage rates, higher accuracy, increasing read-lengths, and paired-end sequenc-
ing18. Thus, Next Generation Sequencing (NGS) platforms are now more widely applied in the analysis of fecal 
bacteria19–22. These analyses favor low-cost, high-throughput methodologies; however, the associated cost and 
throughput is somewhat dependent on the application requirements. In this article, we analyzed a substantial 
body of High-Throughput sequencing data to determine an appropriate balance that meets high-throughput and 
low-cost requirements.

Previous studies have demonstrated the existence of microbiota diversity and richness in animals including the 
panda and the monkey23–28. These studies investigated the latter parameters in both species and subspecies29, 30.  
Several studies pertaining to both the wolf and the dog have also been conducted in this field. Zhang et al. 
reported data relating to microbiota diversity and richness in the wolf following an analysis that facilitated the 
cloning of bacterial 16S rRNA gene amplicons31. Suchodolski et al. showed microbiota diversity in the intestinal 
segments of dogs32, 33. Additional studies reported data pertaining to microbiomes of ill-conditioned fecal32, 34, 35.  
However, the methods that were used in these analyses and the associated data sizes that were generated are 
outdated. Furthermore, there is no reference to the dog microbiome in these wolf-specific studies. The dog is a 
subspecies of the wolf; thus, to attain a more generic understanding of microbiota diversity and richness in related 
subspecies, samples from both the dog and the wolf should be studied together.

As part of this study, eighteen dogs and wolves were selected to characterize microbiota composition using 
multi-group sequencing analysis. The wolf is now listed on the International Union for Conservation of Nature 
and Natural Resources endangered species list of threatened species36. Over the last number of centuries, the 
wolf has been one of the most widely distributed animal species in the world31, 37. However, the population of 
this species has rapidly declined and is currently threatened by habitat loss and hunting practices. For all this, 
scientists will continue to work hard to explore the protection mechanism38. Wolves are independent and are able 
to adapt to the environment. However, its independent and adaptation mechanisms are unknown. At present 
only semi-artificial, semi-wild, and bowel disease is a significant aspect of health. All of this needs to be solved. 
Intestinal microbes are part of a complex ecosystem. They have a mutual relationship with the host and play an 
essential role in maintaining the host’s health. Following a comprehensive analysis of multi-group sequencing 
data, this report reveals the composition of the wolf fecal microbiota while also describing factors that influence 
this composition. This study will provide valuable basic data that should help in efforts related to the future con-
servation of wolves.

Results
OTUs and Taxonomic composition of the fecal microbiomes.  From the three data sets, we obtained 
>50000, >100000 and >150000 raw sequences, across a total of 18 samples, respectively (Table 1). To avoid ana-
lytical variation, identical protocols, including the mothur MiSeq-SOP, were utilized. Following denoising steps, 
effective and unique sequences were obtained. The average numbers of unique sequences were 1916, 3339, and 
4977 (Table 1). Clustering was performed using Uparse, and a total of 118, 151 and 170 OTUs were generated for 
the three data sets, respectively (Table 1). To explore the dominant bacterial species, the results were annotated 
using GraPhlAn (Fig. 1A)39.

Associated histograms were generated with species annotation to six classification levels. Twenty phyla were 
observed following this analysis. The five most prominent OTUs (99%) were from the following five phyla; 
Bacteroidetes, Fusobacteria, Firmicutes, Proteobacteria, and Actinobacteria. This observation was consist-
ent among the three data sets (Fig. 1E). Upon comparison of the associated phyla, the relative abundance of 
Bacteroidetes was as follows: WJ > WN > WH > DN; the relative abundance of Fusobacteria was as follows: 

Raw Effect Unique OTU Shannon Simpson Chao 1 ACE

SET 1 51450 49534 1916 118 3.8 0.85 120.56 118.67

SET 2 102898 99559 3339 151 4.1 0.90 154.93 154.93

SET 3 150196 141192 4977 170 4.1 0.90 176.45 176.21

Table 1.  Comparison of phylotype coverage and diversity estimation of the 16S rRNA gene libraries at 3% 
dissimilarity from the analysis of the basic statistics information.
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WN > DN > WH > WJ; the relative abundance of Firmicutes was as follows: WH > WN > DN > WJ; the relative 
abundance of Proteobacteria was as follows: DN > WJ > WH > WN; and the relative abundance of Actinobacteria 
was as follows: WJ > WH > DN > WN. Upon analysis of climate-mediated effects in relation to microbiota com-
position, we observed positive and negative correlations with respect to climate for Bacteroidetes and Firmicutes, 
respectively. Proteobacteria and Actinobacteria were observed to positively correlate with wolves exposed to 
human interference practices, while Fusobacteria were observed to be negatively correlated with these interfer-
ence effects. Interestingly, Cyanobacteria were only observed in the WN, and Verrucomicrobia were observed 

Figure 1.  (A) The circle from inside to outside in turn was on behalf of different classification levels, and species 
abundance is proportional to the size of the circle, the different colors represent different phyla, and abundance 
of the top 40 species was showed in solid circle; (B) Rarefaction Curve: rarefaction analysis of V3-V4 16S data 
from three wolf data sets. There are three data set in the figure (SET1, SET2, SET3) and each line represents 
a group. Analysis was performed on a random 33952-, 67261-, 95787 sequence subset from each data sets. 
(C) Species accumulation boxplot: the arisen speed of new species with increasing samples; (D) Principal 
coordinate analysis plots of unweighted UniFrac metrics for wolf miocrobiotas. Each dot represents individual 
microbiota samples obtained from DN, WH, WJ, WN; the figure on the left is a jackknifed clustering of the wolf 
in the weighted uniFrac dataset and unweighted dataset. The figure on the right is phylum assignment of V3-V4 
16S sequences from wolves.
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exclusively in the DN. At the genus level, the most frequently detected genera were Bacteroides, Alloprevotella, 
Sutterella, Clostridium_sensu_stricto_1, Anaerobiospirillum, Prevotellaceae_Ga6A1_group, Helicobacter, 
Faecalibacterium, Phascolarctobacterium, and Lachnoclostridium. In addition, Clostridium_sensu_stricto_1 was 
most prevalent in the WN group and Phascolarctobacterium and Lachnoclostridium were the most prevalent 
genera in the WH group.

Comparison of microbial group diversity.  Following alpha diversity analysis, the indices for bacterial 
richness and the diversity of OTUs at a 3% sequence dissimilarity level are summarized in Table 1. Increased 
community richness was observed following the analysis of increased amounts of data (Table 1). The richness 
index values for SET 2 and SET 3 were almost equal and were greater than the associated value for SET 1 (Table 1). 
In SET 3, there was no significant difference in community richness between the different samples; however, the 
Shannon and Simpson indices for wolves in Inner Mongolia were reduced compared with other areas (Table 1). 
Following analysis of the rarefaction curve (Fig. 1B) and species accumulation boxplot (Fig. 1C) diagram, it is 
noticeable that the curves are on a trajectory towards a constant equilibrium.

We are told from two model OTU diagrams (linear model PCA and nonlinear model NMDS) (Fig. 1D) 
that the samples from one groups are collected together, so the difference and consistency were showed phe-
nomenally. In order to elucidate further the cluster structures for wolves, we attempted to map UPGMA hier-
archical clustering for SET 3 (Fig. 1E). However, the cluster analysis generated following Weighted Unifrac and 
Unweighted Unifrac analyses was more complex (Fig. 1E). The heatmap from the Spearman analysis suggested 
that Succinvibrio richness negatively correlated with altitude and positively correlated with pressures (Fig. 2). 
Conversely, Turicibacter richness positively correlated with altitude and negatively correlated with human inter-
ference (Fig. 2). We also observed that the prevalence of some bacterial phyla correlated both negatively and 
positively with age. Additional details relating to observed correlations are presented in Fig. 2.

Optimization selection of the three models.  Utilizing identical protocols, we get more diversity index 
(ace, chao1, simpson, shonnon) from three models. We realize of visualizing processing to the basic statistics 
data, such as minimum, maximum, median, averages and so on (Fig. 3A). From Fig. 3A, the community richness 
(ace, chao1) increased with the data increases. However, the community diversity is different from the patterns 
of community richness. The community diversity of SET 1 has significantly different from the SET2 and SET3. 

Figure 2.  The ordinate is the environment information and the abscissa is species. The corresponding values 
of heatmap are spearman rank relational coefficient. The * means significant (P < 0.05) and the ** means 
remarkable significant (P < 0.01).
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Among them, the median, average and numeric range is similar in SET2 and SET3 and is higher than the SET1. In 
other words, the development of SET2 and SET3 has a similar stable trend. In particular, the SET3 can reflect the 
outliers. In the Goodness of fit on three data set of analysis, we added the scatter plot and regression curve. Our 
normalization shows the probability distributions. The data of SET 1 is decentralized but the data of SET 2 and 
SET 3 were more centrally. Moreover, the data of SET 2 and SET 3 were almost unanimously and tend to be stable. 
On the other hand, SET 2 and SET 3 reflect the community diversity is largely consistent (Shannon: R2 = 99.5%, 
Simpson: R2 = 99.6%) (Fig. 3B).

Comparison of the gut microbiota of domestic dog and wolf from the SET 3.  We character-
ized the gut microbiota of 14 wolves and 4 domestic dogs. The wolves’ number of OTUs is 167 and the domes-
tic dogs’ number of OTUs is 170. Five phyla including Bacteroidetes, Fusobacteria, Firmicutes, Proteobacteria, 
Actinobacteria were predominant bacterial. In addition, Cyanobacteria (0.1391%) was only detected in wolf and 
Verrucomicrobia (0.2312%) only detected in domestic dog. Particular phyla were at low relative abundances. We 
also use GraPhlAn (Graphical Phylogenetic Analysis), a computational tool that produces high-quality, compact 
visualizations of microbial metagenomes(Fig. 4)39. Exploiting the shared and unique bacterial taxa between the 
gut microbiota of the domestic dog and the wolf is also our aim. It was unexpected that Cyanobacteria exist 
only in the wolf and Verrucomicrobia exists only in the domestic dog. We used linear discriminant analysis 
effect size (LEfSe) to identify genus differentially represented between the wolf and the domestic dog. While 
Alloprevotella, Clostridium_sensu_stricto_1, Anaerobiospirillum, Faecalibactreium and Streptococcus were shared 
by all samples, their relative abundances were differentially represented between the two (Fig. 5). The genus 
Alloprevotella and Clostridium_sensu_stricto_1 is significantly higher in the wolf than in the domestic dog. In 
contrast, Anaerobiospirillum, Faecalibactreium and Streptococcus is more abundant in the domestic dog (Fig. 5). 
Streptococcus only exists in the domestic dog and was absent from the wolf. Whether or not the gut microbiota is 
involved within digestion needs further investigation.

Discussion
The objective of this study was to determine an appropriate balance between sequence data generation and cost 
in relation to an analytical model that could help to protect the valuable wildlife-wolf. The study explored the 
composition of microbiota of wolves following high-throughput sequencing analysis.

With the rapid development of Next Generation Sequencing (NGS) technology, there is an onus on 
micro-ecologists to use high-throughput sequencing platforms to help solve complex biological problems. 
However, high-throughput sequencing can be relatively costly. Nevertheless, high-throughput sequencing 
generates accurate results that facilitate complex sequence analysis. Upon analysis of these results, we advised 
that, >100,000 sequences can restore the information pertaining to community richness and micro-ecological 
diversity.

Traditional paradigms suggest that the generation of greater amounts of sequencing data will facilitate more 
accurate results. Thus, we chose the SET3 data to explore the microbiota of wolves. Previous work in this field 
performed using phylogenetic analysis of 16S rRNA gene sequences revealed distal fecal bacterial diversity in 
wild wolves and dogs40–42. The latter studies on bacterial diversity were predominantly based on cloning bacterial 
16S rRNA gene amplicons. This method was deemed the most advanced for these analysis types; however, there 
are limitations associated with this form of analysis including limitations relating to the amount of data gener-
ated. Moreover, the gray wolf (Canis lupus) encompasses both wolf (Canis lupus linnaeus) and dog (Canis lupus 
familiaris) species. Unfortunately, these studies only revealed information regarding singular dog or wolf species. 
Therefore, we attempted to revisit this area of research using Next Generation Sequencing (NGS) technology and 
the Illumina MiSeq (Illumina MiSeq, USA) platform. Our results demonstrated that Bacteroidetes (46.48%), 
Fusobacteria (30.54%), Firmicutes (13.46%), Proteobacteria (8.83%), Actinobacteria (0.53%), Cyanobacteria 

Figure 3.  (A): Boxplot with whiskers from minimum to maximum; (B): scatter diagram and Goodness of Fit.
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(0.10%), Verrucomicrobia (0.01%), Tenericutes (<0.01%), Saccharibacteria (<0.01%) and Lentisphaerae 
(<0.01%) were the most prevalent phyla in wolf microbiota. However, Chen et al. identified the presence of five 
phyla (Firmicutes (60%), Bacteroidetes (16.9%), Proteobacteria (9.2%), Fusobacteria (9.2%) and Actinobacteria 
(4.6%)) and other reports only detected seven bacterial phyla including the additional phyla Spirochaetes and 
Tenericutes33, 34, 41, 43, 44.

Upon analysis of different variables, we observed that microbiota composition in wolves is dependent upon 
a number of factors including age, altitude, pressure, and climate. Another interesting observation included the 
fact that one of the groups, DN, exhibited several noticeable differences from the other groups. This occurrence 
is most likely because the associated group consisted of dogs, which are a subspecies of wolf. Following on from 
our analysis and contributions from other studies pertaining to affecting factors2, 3, 7, 45–57, it is apparent that the 
micro-ecological environment of wolves is responsible for defense against unfavorable environmental factors. For 
instance, Succinivibrio, Turicibacter, and Prevotellaceae_Ga6A1_group appear to be involved in protection against 
pressures associated with human interference of wolf species (reference Spearman analysis diagram, Fig. 2).

In order to investigate the relationship between bacterial populations and environmental factors, we per-
formed a literature search focusing on specific bacterial genera. The Spearman’s rank correlation for the 
researched bacterial genera was greater than 0.7 and was extremely significant (P < 0.01). Succinivibrio and 
Turicibacter were observed to correlate with altitude and human interference. Members of the genus Succinivibrio 
require carbon dioxide for growth. These bacteria are anaerobic and ferment organic matter produced by the 
Krebs cycle to generate acetic acid and succinic acid. Turicibacter species are facultative. In addition, they produce 

Figure 4.  GraPhlAn visualization of annotated phylogenies and taxonomies. We comprise of microbial 
community abundances between dog and wolf using the phylogenetic tree on all available microbiota. Colors 
and background annotation highlight bacterial phyla.
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acid but not gas. Thus, it is likely that a greater abundance of Succinivibrio and Turicibacter can facilitate Krebs 
Cycle progression, thereby resulting in greater absorption of carbon dioxide. Therefore, as environmental pres-
sure increases, fecal bacteria can help to reduce the amount of energy produced, thereby maintaining homeostasis 
in the body. These findings relating to the prevalence of Succinivibrio and Turicibacter in the microbiota of wolves 
may help to explain how this energy conservation manifests itself under adverse conditions.

Gut microbiota of wolf is negatively associated with the pressure from humans while domestic dogs are just 
the opposite. The wolves are not interested in human social cues and will be a threat. Conversely, the domes-
tic dogs care about the human social cues. After thirty-thousand years of domesticating, the dog has gradually 
understood and adapted to humans while the wolf continued in a state of enmity. In order to satisfy the different 
relations, the organisms may make some changes, which include the gut microbial.

In summary, the three data set determined an appropriate balance between sequence data generation and cost 
for the primary scientific research workers. The findings obtained in our study also provided a special insight 
into the ecology and biodiversity of the wolf gut microbiome. We observed that the microbiota composition 
was dependent on habitat and four different analyzed factors were important in determining the prevalence of 
microbiological genera in the wolf fecal. These microbial communities co-exist with their host and play important 
roles in the long-term evolution of the host3. These findings provided a powerful tool for characterization of the 
micro-ecological environment of threatened wildlife species, thereby allowing us to identify factors that might be 
important in population maintenance and protection.

Our samples in this study were taken from several representative geographical areas in China. We all know 
that wolves are globally distributed and inhabited in different ecological environment. Further research is nec-
essary to test our findings in more wolves, as well as to better understand the trade-off between nutrition and 
health via shifts in gut microbiota composition. The ultimate goal is that all wild animals around us can survive 
and reproduce better.

Methods
Sample collection.  Fecal samples were collected from wolves in China. They were all raised semi-freely in 
the Care Centre with raw meat and water before the fecal samples were collected. None of the wolves received any 
treatment (e.g., antibiotic therapy) that would be expected to have an impact on the composition of the intestinal 
microbial community. All procedures that were performed on animals were conducted in accordance with the 
ethical standards of the Qufu Normal University Animal Care and Use Committee (Permit Number: QFNU2015-
002). None of the animals were harmed during the collection of fecal samples. Most scientists divide the wolves 
in China into five subspecies and forms: Canis lupus desertorum Bogdanow, C. I. filchneri Matschie, C. I. chanco 
Gray, Inner Mongolia (eastern part), C. I. Nei-Mongol form (western and mid part) and C. I. South China form. In 
the economically developed eastern China, the human disturbance is very powerful. The result is that the wolves’ 
population has declined drastically. Especially in the southern provinces, it is not clear whether wolves recorded 
in the southern provinces represent permanent populations, or a steady stream of individuals migrating from the 
northern provinces58–60. However, the extreme conditions would have a serious impact on body function and gut 
microbiome. So, our study collected three subspecies and forms: C. I. chanco Gray (WH), C. I. Nei-Mongol form 
(WN and DN) and C. I. South China form (WJ). These environments are less extreme. Details pertaining to the 
animals chosen are presented in Table 2. Different species-specific territories exhibit different climates and the 
three regions chosen as part of this analysis represented the different climates in China. In China, rainfall is one 
of the most important climate-mediated effects and we used rainfall as an indicator of climate. From previous 
studies, we hypothesized that human interference affects nervous system and sample microbiome composition as 
well61–64. Thus, pressures exerted by human interference were investigated for their effects on the micro-ecology of 
the dog and the wolf. The fecal matter of one sample is collected in triplicate in three days. Fecal collections were 

Figure 5.  Bacteria differentially represented between the domestic dogs and the wolves identified by linear 
discriminant analysis coupled with effect size (LEfSe). Histogram showing Bacteria that are more abundant in 
the domestic dogs (red color) or the wolves (green color) ranked by linear discriminant analysis (LDA) score 
and phylogenetic tree also showing the biomarker with significant difference.
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immediately made after defecation during the early morning. And fecal samples were immediately placed into 
sterile plastic tubes frozen in sample containers and carried to the lab and stored at −80 °C until DNA extraction.

DNA extraction, PCR amplification, and 16S rRNA sequencing.  Total community genomic 
DNA was extracted from all fecal samples using a QIAamp DNA Stool Mini Kit (Qiagen, Germany) as per 
the manufacturer’s instructions. The DNA was amplified using specific primers that targeted the V3-V4 
region of the 16S rRNA bacterial gene. The primers also carried the Illumian MiSeq sequencing adapter 
(16S Amplicon PCR Forward Primer: CTACGGGNGGCWGCAG and 16S Amplicon PCR Reverse Primer: 
GACTACHVGGGTATCTAATCC)7. The PCR mix was prepared using the KAPA HiFi Hot Start Ready Mix (2×) 
(TaKaRa Bio Inc., Japan). PCR conditions for MiSeq are described in Wu et al. (2016). Amplicons of 16S rDNA 
were purified using AMPure XP beads (Beckman, USA). The final DNA samples that were extracted from the 
fecal samples were pooled in equal concentrations prior to sequencing on the Illumina MiSeq platform (Illumina 
MiSeq sequencing system, USA) in our laboratory.

Data selection and arrangement.  Greater than 150,000 reads per sample were generated using the 
Illumina MiSeq platform. In order to assess an optimal balance between throughput and cost, we varied the 
numbers of reads per sample. The variations, which were randomly selected, included 50,000 reads per sample, 
100,000 reads per sample, and 150,000 reads per sample, respectively. During sequencing, single DNA molecules 
are randomly bound to the surface of the flow cell and bridge-amplified to form clusters. Reads in the fastq file 
are subsequently randomly generated. The head command line subsequently permits selection of the number of 
sequences using the Linux operation system. The three data sets represent three different data sizes (30%, 60%, 
and 100%). The different sequencing data sizes represent differing sequencing depths. Researchers in the area of 
intestinal micro-ecology predominantly use between 20,000 and 100,000 sequencing reads3, 7, 16, 31, 51, 65. Thus, our 
three data sets expand the upper range and encompass much of the conventional range of use.

OTUs and fecal bacteria.  First, operational taxonomical units (OTUs) were analyzed for each sample with 
a 97% sequence similarity cutoff value. Secondly, a summary of all taxonomic information was generated using 
RDP Classifier version 2.266. The phylogenetic relationship was elucidated using GraPhlAn. Finally, to standard-
ize results, the lowest number of sequences from each sample was randomly selected and different data sets were 
observed to contain different homogeneous sequences.

Diversity analysis.  Alpha diversity analysis facilitated the construction of a rarefaction curve and species 
accumulation boxplot. These were used to describe the number of OTUs and species as a function of sampling 
effort7. Next, richness of the associated communities was compared based on the ACE estimator and the Chao1 
estimator. Community diversity was subsequently analyzed using both the Simpson index and the Shannon 
index.

Beta diversity analysis was used to determine microbiota composition diversity between the individuals 
using the linear Principal Component Analysis (PCA) model and the nonlinear Non-Metric Multi-Dimensional 
Scaling (NMDS) model. Wolf microbiota phylogenetic analysis was performed using an Unweighted Pair-group 

Age local SET1 SET2 SET3
Altitude 
(m)

Climate-
value (mm)

Pressure-
value

Wolf

WJ

4 Jiangxi W11 W12 W13 200 2015 3

12 Jiangxi W21 W22 W23 200 2015 3

5 Jiangxi W31 W32 W33 200 2015 3

12 Jiangxi W41 W42 W43 200 2015 3

WN

4 Inner Mongolia W51 W52 W53 1000 328 1

4 Inner Mongolia W61 W62 W63 1000 328 1

2 Inner Mongolia W71 W72 W73 1000 328 1

1 Inner Mongolia W81 W82 W83 1000 328 1

WH

1.5 Henan W91 W92 W93 75 145 2

1.5 Henan W101 W102 W103 75 145 2

1.5 Henan W111 W112 W113 75 145 2

1.5 Henan W121 W122 W123 75 145 2

1.5 Henan W131 W132 W133 75 145 2

1.5 Henan W141 W142 W143 75 145 2

Dog

DN

Inner Mongolia D11 D12 D13 1000 328 1

Inner Mongolia D21 D22 D23 1000 328 1

Inner Mongolia D31 D32 D33 1000 328 1

Inner Mongolia D41 D42 D43 1000 328 1

Table 2.  Details of the animal information.
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Method with Arithmetic Mean (UPGMA) and the associated phylogenetic trees were based on the Weighted 
Unifrac and Unweighted Unifrac values.

To understand the correlation between parameters including attitude, pressure, climate and age, the Spearman 
correlation and the Mantel test correlation were calculated. LDA Effect Size (LEfSe) can search for a Metagenomic 
biomarker between the two groups and the biomarker is statistically significant (P < 0.05).

We analyzed the three data sets using the Mothur (Version 1.36.1)67, Qiime (Version 1.7.0)68, Uparse (Uparse 
v7.0.1001)69, PyNAST (Version 1.2)70 and the following disgrams were made by R (R version 3.3.1)71.

Statistical analysis of three models.  For statistical analysis of the three models, we use identical proto-
cols to calculate four kinds of diversity indices. Using the boxplot, we performed the preliminary observation on 
some basic statistics. The goodness of fit describes how well it fits a set of observations. A scatter plot can suggest 
various kinds of correlations between variables and analyzing join level for regression model. At last, we make an 
optimization selection. All analysis was carried out using R (R version 3.3.1).

Availability of data and materials.  We upload our raw sequences about this research on the Sequence 
Read Archive (accession number SRP089855).
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