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Green Perovskite Distributed 
Feedback Lasers
J. R. Harwell, G. L. Whitworth   , G. A. Turnbull & I. D. W. Samuel

A visible perovskite distributed feedback laser is fabricated for the first time. Through the use of 
nanocrystal pinning, highly luminescent methylammonium lead bromide films are used to produce 
stable lasers emitting at 550 nm, with a low threshold of 6 µJcm−2. The lasers were able to support 
multiple polarisations, and could be switched between transverse magnetic and transverse electric 
mode operation through simple tuning of the distributed feedback grating period.

Advances in semiconductor laser materials have opened up many applications from data storage to sensing, spec-
troscopy, displays and lighting. In the visible region of the electromagnetic spectrum, commercial indium gallium 
nitride diode lasers now cover discrete wavelengths ranging from 375 nm to 525 nm while aluminium gallium 
indium phosphide lasers generate red light from 635 nm, but there remains a “green gap” in the spectrum of 
available wavelengths. Organic semiconductor lasers can span the whole visible spectrum and so can potentially 
fill this gap. They can readily be pumped by laser diodes and light-emitting diodes, and can be made via solution 
processing on nanoimprinted distributed feedback resonators for simple integration on a variety of substrates. 
However the accumulation of triplet excitons mean that organic lasers are currently limited to short pulses, and 
their photostability needs improvement. While enhancements in material stability and laser performance con-
tinue to make progress, alternative solution processable gain materials such as organometal halide perovskites 
offer a promising new route to overcome these limitations.

Since their discovery as efficient solar cell materials in 20091, methylammonium lead halide perovskites and 
their variants have proven to be a highly disruptive discovery in the field of thin film photovoltaics. Their combi-
nation of high absorption coefficients, excellent charge mobilities2 and diffusion lengths3, as well as low cost solu-
tion processable starting materials make them extremely promising, allowing them to reach power conversion 
efficiencies of 22.1% as of 20164. One of the key features of perovskites which gives them such high performance 
is that perovskite solar cells have particularly high open circuit voltages, which can be attributed to a high electro-
luminescence external quantum efficiency (EQE) of the material5,6. Indeed, much of the work on maximising the 
efficiency of perovskite solar cells now revolves around optimising the EQE of the material, and the best solar cells 
now also double as light-emitting diodes with surprisingly high efficiency6. This high luminescence efficiency 
has made perovskites an attractive prospect as a new class of light-emitting material for thin film light-emitting 
diodes and lasers. Recently a near infrared perovskite light-emitting diode (PerLED) has been reported with an 
EQE of 11.7%7, and several optically pumped perovskite lasers from perovskite nanowires8 and microdisks9 have 
also recently been reported. Distributed feedback (DFB) perovskite lasers, which allow much greater control over 
the laser beam shape and wavelength have also recently been reported in the literature10,11. These exhibit good 
thresholds and stability12, however they have thus far been confined to emission in the infrared.

In this report we demonstrate the first visible perovskite distributed feedback laser. By using nanocrystal pin-
ning to fabricate highly luminescent methylammonium lead bromide perovskite films with low scattering losses, 
we produce green lasers with low threshold. We also perform an in-depth study on the properties of perovskites 
lasers, and we observe that the isotropic nature of the emission process in the perovskite thin films allows strong 
optical gain in both TE and TM optical modes, and allows the polarisation of the surface-emitted output beam 
to be switched between azimuthal and radial polarisations simply by fine tuning the feedback grating period. 
Finally, we show that perovskite lasers can have good stability due to their high resistance to oxidation in atmos-
phere. While perovskites are notorious for being water sensitive, we show that a hydrophobic fluorinated polymer 
cladding layer on top of the lasers allowed them to remain operational for months at a time. With this simple 
encapsulation, we show that the lasers can be operated continuously for long periods of time with no measurable 
degradation even in ambient conditions.
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Results and Discussion
A good thin film gain medium for distributed feedback lasing must simultaneously exhibit a high photolumines-
cence quantum yield (PLQY) in order to get maximal gain, and low scattering so as to minimise waveguide losses. 
Therefore the optimal film for a perovskite laser would have as low roughness as possible, whilst still maintaining 
a high PLQY. A major issue with perovskites is that their properties are extremely sensitive to their fabrication 
conditions, and the same material made by different routes can result in very different properties. For example, a 
minor change in the environment can have a strong adverse effect on film quality. As such it is common to make 
perovskite films which have high PLQY but poor roughness, or vice versa, but simultaneously optimising both 
surface roughness and PLQY is not a straightforward task. In order to find the most suitable fabrication route for 
perovskite lasers, we compared the two main methods of fabricating solution processed perovskites – the simple 
one-step method, and the nanocrystal pinning route. For the one step method, the lead acetate (PbAc) route 
described by W Zhang et al. was used13,14. This route is known to give perovskite films of high optical quality and 
low roughness, however the PLQY of the films we made with this method was lower than the resolution of our 
measuring setup (i.e. less than 1% at 442 nm continuous wave excitation). An SEM image of a typical film from 
this route is shown in figure 1(a). The root mean square (r.m.s) surface roughness was also measured via atomic 
force microscopy (AFM) to be 15 nm over a 5 × 5 µm area (see Figure S7(a)), which is in reasonable agreement 
with the value of 12 nm over a 15 × 15 µm area Zhang demonstrated when the technique was first reported.

Of the various approaches to depositing perovskites via nanocrystal pinning, an adapted version of the 
assisted nanocrystal pinning (A-NCP) technique, described by Tae Woo Lee et al.15 produced the best balance 
between high PLQY and good film quality. This involved nanocrystal pinning of the sample using an antisolvent 
doped with 2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), which was found to improve 
PLQY by forcing the creation of smaller, higher quality crystals. To optimise this procedure for lasing we explored 
a range of antisolvents including toluene, chlorobenzene, chloroform, dichloromethane and diethyl ether at a 
range of TPBi concentrations from 0 to 20 mgml−1 and found that an antisolvent of dichloromethane (DCM) 
with a 5 mgml−1 concentration of TPBi gave the most luminescent and highest quality films. Compared to the 
PbAc route, this method gives a much higher, albeit still modest PLQY of 5% when measured under 442 nm 
continuous wave (CW) laser excitation. However the quality of films produced by this method was found to be 
much more variable, and the films visually appear to have more light scattering than films from the lead acetate 
route. An SEM image of a typical film is shown in figure 1(b). Despite higher scattering and more crystal grain 
boundaries, AFM images of the samples showed a remarkably low surface roughness of 1.3 nm over a 5 × 5 µm 
area (see Figure S7(b)), which we attribute to the films being completely pinhole-free.

Figure 1.  Scanning electron microscopy images of perovskite formed by the PbAc route (a), and the 
nanocrystal pinning route (b). (c) and (d) show the ASE thresholds for the PbAc route and the A-NCP route 
respectively.

http://S7(a)
http://S7(b)
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To investigate which was likely to be the better method for laser fabrication, amplified spontaneous emission 
(ASE) measurements were made for each type of film. The results are shown in figure 1(c) and (d). For the sam-
ple prepared by the PbAc route, the emission output increases steeply and the spectrum line width collapses to 
approximately 2 nm  for pump energy densities greater than 125 µJcm−2, indicating that this is the ASE threshold. 
Films made from the A-NCP method exhibit similar behaviour, but at a lower threshold energy density of 45 
µJcm−2. Therefore films made via the A-NCP route have an ASE threshold which is nearly a factor of three lower 
than films produced from the PbAc route. Given that the PLQY of the films produced from the A-NCP route is 
at least an order of magnitude larger than those from the PbAc route, one might expect the ASE threshold of the 
A-NCP perovskite to be even lower16. We therefore explored whether this discrepancy was due to differences in 
waveguide losses. Comparing scanning electron microscopy images of the films from both routes (see figure 1), 
the PbAc route produces films with a smooth landscape with crystal edges very poorly defined. This is expected 
to give low scattering losses despite the presence of pinholes increasing the r.m.s roughness. The A-NCP route on 
the other hand shows a dense network of ~100–300 nm crystals with clear boundaries between crystals. Given 
that it is made up of an array of particles of the same length scale as the waveguided light, it is indeed remarkable 
that the films made by the A-NCP route support ASE at all, as one would expect scattering off the crystal bound-
aries to introduce large losses to the system. The waveguide loss was measured and found to be 8 cm−1 for films 
from the A-NCP route, and 2 cm−1 for films from the PbAc route. Thus we find that, although the more defined 
crystal boundaries in the A-NCP route do introduce significantly more waveguiding losses due to scattering, the 
increased loss is more than offset by the higher PLQY.

Because of its lower ASE threshold, the A-NCP route was chosen for making a distributed feedback laser. 
The target laser structure is shown in figure 2(a) and consists of a perovskite film spin coated directly onto a 
two-dimensional grating structure. The grating period was tuned to provide second order distributed feedback 
for light at the expected lasing wavelength of 550 nm. A standard spin coating method gave a perovskite film of 
~140 nm thickness (measured by stylus profilometry) which, based on literature measurements of the perovskite 
refractive index17, gives an effective refractive index for the TE waveguide mode of 1.91, so a grating period of 
290 nm was expected to provide second order distributed feedback for the laser. To make the laser, an array of 
two dimensional feedback gratings of periods between 250 and 425 nm in 5 nm steps was made by ultraviolet 
nanoimprint lithography (UV-NIL). Each grating was a 2 mm × 2 mm square, spaced to be 2 mm apart. The 
perovskite layer was deposited on the gratings by the A-NCP method, and transverse SEM images show that the 
perovskite conforms well to the grating structure (see Figure S6). The finished device was then encapsulated by 
spin coating a layer of CYTOPTM, a commercial amorphous fluoropolymer, on top of the perovskite. CYTOPTM 
provides a weak barrier to oxygen but an excellent barrier to water, making it an ideal encapsulant for this system, 
as water is the main degradation catalyst for methylammonium lead bromide18,19. Oxygen on the other hand is 
not known to be detrimental to perovskites, and has even been shown to assist photoluminescence and solar cell 
performance20. We briefly studied the effects of oxygen on the laser action by measuring the laser inside a vacuum 
chamber; however we did not observe any significant shifts in lasing threshold between vacuum and atmosphere.

Figure 2.  (a) The structure of the final laser design. (b) The threshold measurement for the lowest threshold 
laser, showing a marked change in slope at the threshold energy density of 6 μJcm−2. (c) The lasing wavelength 
vs grating period for the TE and TM modes of a particular grating array. (d) The emission spectrum of a 295 nm 
grating for 4 different pump powers between 15 and 30 µJcm−2.

http://S6
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The complete device had a structure as shown in figure 2(a). When the sample was excited with 355 nm, 
1 ns pulsed laser light, laser action was observed with a minimum threshold pump density of 6 µJcm−2 on the 
Λ = 300 nm grating – see figure 2(b). Above threshold the width of the spectrum was less than 1 nm, limited by 
the spectral resolution of the spectrograph. The laser wavelength could be tuned to a small degree by changing 
the grating period as shown in figure 2(c). For grating periods between 305 nm and 295 nm the laser wavelength 
changed linearly from 552 nm to 543 nm, but when the grating period was reduced further the emission wave-
length hopped to 555 nm before continuing the linear trend. In some, but not all devices the Λ = 295 nm period 
grating supported two spectrally separated laser modes - the spectrum of an example laser is shown in figure 2(d). 
The laser initially turned on at 544 nm above a threshold pump density of 15 µJcm−2, with a second mode at 
555 nm appearing with stronger pumping. This mode grew much faster with pump power and at 30 µJcm−2 it 
dominated the spectrum.

A photograph of the laser under normal operation is shown in figure 3(a). The output is dominated by an 
annular transverse mode which is attributed to a 2D Bloch resonance supported by the two orthogonal grating 
vectors of the structure. Other scattered light visible in the picture is caused by waveguided light being outcoupled 
by adjacent gratings on the substrate – the fact that these are visible further indicates the low propagation losses in 
this material. Figure 3(b) and (c) show close ups of the output beams from gratings of 300 nm and 290 nm periods 
respectively. Note that the shape of the output beam is significantly different between the two grating periods due 
to mode hopping between the different periods.

To analyse the properties of the two observed modes further, measurements were taken of the output beams 
using a laser beam profiler (figure 4). As expected, we observe that the beam profile is an annulus for both 
modes (figure 4a,d). When the beams are viewed through a linear polariser a double lobed (TEM10 like) beam is 
observed (figure 4b,c,e,f), with the orientation of the double lobed beam being rotated by 90 degrees between the 
two modes. Using this information, we find that the surface emitted beam from the 290 nm grating is azimuthally 
polarised, as has been previously found for the surface emission from the transverse electric (TE) mode in poly-
mer lasers21. The output from the 300 nm grating on the other hand is radially polarised, indicating that it origi-
nates from a transverse magnetic (TM) mode. The TM mode is not normally visible in polymer lasers because the 
strongly anisotropic nature of organic polymer films(long polymer chains strongly oriented to lie in the plane of 
the film) means that the TM mode experiences a very different effective refractive index22. Therefore, since most 
distributed feedback gratings are optimised for TE modes, the resonance condition for the TM mode is rarely 
met. The CH3NH3PbBr3 films on the other hand have a simple cubic perovskite structure with similar indices in 
the x, y and z directions. This means that the TE and TM modes will see very little difference in effective refractive 
index, and so small changes in grating period or effective refractive index can cause the laser to hop between 
TE and TM polarisations. Tuning the laser such that small changes in the local environment causes a switch in 
polarisation state could have sensing applications, and the ability to produce radially polarised beams are also of 

Figure 3.  (a) Shows a perovskite laser in operation, with the output projected onto a white screen. (b) Is a close 
up photograph of the TM mode from a 300 nm grating, while (c) shows the TE mode from a 290 nm grating.
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interest since it has been hypothesised that a radially polarised beam can be focussed to a spot size smaller than 
the diffraction limit23. Beating the diffraction limit with these particular lasers however is unlikely because the 
M2 beam quality factor was measured for the TE and TM lasers and found to have values of 26 for TE and 36 for 
TM (see Figure S2). The lowest possible M2 value for an annular beam is 2, for a Laguerre-Gaussian LG10 beam. 
The higher M2 observed for these beams is due to the wider minimum in intensity on axis of the surface–emitted 
output beam from the DFB cavity.

The double mode behaviour on the 295 nm grating is caused by competition between the TE and TM modes 
which, due to their small difference in effective refractive index, are both within the perovskite’s gain region at this 
grating period. The TM mode has the lowest threshold so it appears first, but at higher pump density the TE mode 
appears and starts to compete for gain. Of particular interest is that the TE mode grows much faster with pump 
intensity than the TM, eventually dominating the spectrum as shown earlier on Fig. 2(d). This unusual behaviour 
would suggest that the TM mode has a lower surface emission loss than the TE mode. It is worth noting that only 
half of the fabricated laser devices demonstrated this double peak behaviour on the 295 nm grating (instead they 
would lase on just one of the two modes), but all devices would hop between the TE and TM modes when the 
grating period was changed sufficiently. We attribute this to small variations in the thickness of the perovskite 
layer between batches. The double mode will only appear when the thickness is such that one of the gratings has 
the resonance condition for both modes in a strong part of the gain profile. This is likely to be a narrow window, 
and since the grating periods change in 5 nm steps it would be possible for one to miss this point at certain film 
thicknesses.

To confirm further that our assignments of the various modes as TE and TM were accurate, we performed 
finite difference time domain (FDTD) simulations using refractive index data reported by Alias et al.18 to attempt 
to reproduce the observed lasing modes on the dual mode operation in the Λ = 295 nm grating (543.5 and 
556.0 nm). The situation is complicated somewhat by the fact that the refractive index of CH3NH3PbBr3 varies 
strongly with wavelength in this region. Using the refractive index values for CYTOP (1.33), UVCur-21 (1.53), 
and CH3NH3PbBr3 at 556 nm (2.165) gives an effective refractive index for the TE mode of 1.884. This predicts 
a lasing wavelength of 556 nm which is exactly what we observe. Doing the same for the TM mode, whilst being 
careful to account for the dispersion in refractive index, gives a TM mode effective refractive index of 1.832. This 
predicts a lasing wavelength of 540 nm, which is 3 nm blue shifted compared to what we experimentally observe. 
We attribute this small discrepancy to our film having a slightly different refractive index dispersion to that of 
Alias et al. due to us using a different deposition route. However the important point is that the FDTD simulations 
predict that the shorter wavelength modes are TM and the longer modes are TE, which is in direct agreement with 

Figure 4.  Beam profiles of perovskite laser output when viewed through analysers transmitting different 
polarisations – TM mode (a) unpolarised, (b) horizontally polarised, (c) vertically polarised, and TE Mode (d) 
unpolarised, (e) horizontally polarised, (f) vertically polarised.

http://S2
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our conclusions from the polarisation experiments described earlier. The solution curves to the effective refractive 
index are shown in Figure S8.

A key challenge for solution processed distributed feedback lasers is to demonstrate stable lasing under high 
powers, or ultimately continuous wave (CW) operation. With organic semiconductors this is a significant chal-
lenge for two reasons - firstly long lived triplet excitons, which do not emit light, can accumulate in the material 
over long pulses. These introduce additional absorption losses in the cavity and can quench the light-emitting 
singlet excitons, thus terminating the lasing24. Secondly for high average intensities the material can be quickly 
degraded by the pump beam due to photo-oxidation and thermal degradation24. Perovskites are known to have 
weak exciton binding energies25, so triplet states should not significantly accumulate, and they are more resistant 
to degradation from thermal and photo-oxidation effects, making them a very attractive candidate for high aver-
age power operation.

Due to their known high resistance to oxidation, the perovskite lasers proved to be very stable in atmosphere, 
and so long as they were encapsulated with CYTOP they would remain operational even if left in ambient atmos-
phere with 50% humidity for long periods of time. Laser action was achieved from a perovskite sample after more 
than 30 days in ambient conditions, albeit at an increased threshold of 50 µJcm−2, and a perovskite laser could be 
studied continuously over an entire day with no noticeable degradation of the material. To assess this observed 
stability of the perovskite laser quantitatively, a perovskite laser was pumped at ~2x threshold with 20 Hz pulse 
rate and left to operate overnight. The lasing output versus time under these conditions was measured, and it was 
found that the output power remained constant over the entire test duration of more than 15 hours of continuous 
excitation (shown on Figure S5). This result underlines the good stability of perovskites as a laser gain medium 
and also leads to the conclusion that perovskites are an excellent candidate material for thin film continuous wave 
(CW) lasers, as they have the potential to overcome the degradation hurdle which is an important step on the 
road to CW operation.

In conclusion, we have demonstrated an all solution processed, visible emitting distributed feedback laser 
made from methylammonium lead bromide perovskite. We have shown that low thresholds of 6 µJcm−2 can 
be reached by careful selection of the fabrication route. Perovskite samples with significantly higher PLQY than 
those demonstrated in this work have recently been reported26,27, and so higher optical gain should be possible 
in the future. With further improvement in thin film fabrication lower scattering should also be attainable, and if 
both of these parameters could be optimised to their full extent then extremely low thresholds could be achieved 
in these materials. Perovskites as a laser material show good stability, making them good candidates for high 
repetition rates or even CW operation. Finally, we demonstrate that their cubic crystalline nature allows the films 
to support laser action in multiple polarisations for a given grating, including the possibility to generate radially 
polarised beams and the potential to switch polarisations with a small change in the resonator properties. This 
work demonstrates the potential of perovskites as a solution processed laser material, and shows that they could 
prove an excellent alternative to conventional organic compounds in situations where stability and simplicity of 
use is of primary concern.

Materials and Methods
Perovskite Solution Preparation and Deposition.  For the preparation of perovskite thin films two 
deposition routes were used. The lead acetate (PbAc) route, and the assisted nanocrystal pinning (A-NCP) route. 
For the Pbac method, a precursor solution was made by dissolving a 175.6 mg of lead acetate trihydrate (Sigma 
Aldrich) and 155 mg methylammonium bromide (Dyesol) in 1 ml of Dimethyl Formamide to make a 1:3 molar 
ratio solution. The solution was dissolved completely by 5 minutes of shaking without heating, and then 3 µl of 
Hypophosphorous acid was added, and the solution was shaken again for a further 5 minutes. For ASE measure-
ments, glass substrates were cleaned by sonication in acetone and IPA, and then by plasma ashing for 3 minutes. 
The solution was spin coated at 2000 RPM for 60 s, and then left at room temperature for 5 minutes before anneal-
ing at 100 °C for a further 5 minutes.

For the A-NCP method, a precursor solution lead bromide and methylammonium bromide was dis-
solved in dimethyl sulfoxide (DMSO) in a 1:1.05 ratio to make a 0.6 M solution. Total weights were 220.2 mg 
PbBr2 and 70.54 mg methylammonium Bromide in 1 ml DMSO. The solution was dissolved overnight at 
60 °C, and spin cast at 3000 RPM for 90 seconds. To perform the nanocrystal pinning step, a solution of 
2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) dissolved in Dichloromethane to a con-
centration of 5 mg ml−1 was dropped on the sample mid-way through the spinning process. The optimal time for 
dropping the solution was just before the DMSO evaporated. A test sample would always be spin coated first and 
the time when the film could be observed to become rough was noted. On subsequent samples the dichlorometh-
ane solution would be dropped onto the film 5–10 seconds before this point, which resulted in very smooth 
“Glassy” films. The films were then immediately annealed at 90 °C for 10 minutes. All processing for perovskites 
was done in a nitrogen filled glovebox with oxygen and water concentrations of <1 part per million.

Fabrication of Lasers.  Laser gratings were fabricated using an EVG 620 photomask aligner with custom 
nanoimprint lithography tooling. First a perfluoro-polyether daughter stamp was cast from a silicon master struc-
ture (cured by UV exposure) and subsequently used to nanoimprint into a grating structure on a spin-coated 
UVCur06 film under UV exposure. The resultant gratings were then plasma ashed at low power for 30 seconds to 
improve wettability, and the perovskite precursor was spin coated on top of the sample using the above A-NCP 
method. Finally, an encapsulating layer of CYTOPTM was spin coated on top of the film at 2000 RPM for 60 sec-
onds. To confirm that the perovskite was sufficiently penetrating the gaps in the laser grating, a transverse scan-
ning electron microscopy (SEM) image of a laser sample without CYTOP encapsulant was taken using an FEI 
SciosTM DualBeam system. First a focussed ion beam was used to cut a trench in the sample, before an SEM image 
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was taken of the trench at a 52° angle of incidence. It was observed that, barring a small number of defects, the 
perovskite could completely fill the gaps in the grating (see Figure S6).

ASE and Lasing measurements.  In all lasing and amplified spontaneous emission (ASE) measurements, 
the sample was pumped at 355 nm with 1 ns pulses from a CryLaS frequency tripled Nd:YVO4 laser. For ASE, the 
beam was focussed into a stripe on the sample by a cylindrical lens, and the intensity controlled by a variable neu-
tral density (ND) wheel. Waveguided light out of the edge of the film was measured with a fibre coupled Andor 
CCD spectrograph. The pump pulse energy was measured using a beam splitter to reflect a known portion of the 
beam onto a Coherenttm calibrated photodiode. The beam area was measured through the use of a Coherenttm 
Beammaster beam profiler.

To measure waveguide propagation loss, the sample and the coupling fibre were placed on a moving stage, 
and the stage was moved such that the pump stripe moved across the sample, forcing the waveguided ASE light 
to propagate through a varying length of the unpumped film. The measured spectrum at each data point was 
integrated and an exponential curve was fitted to a graph of integrated spectrum vs position.

For lasing measurements, the beam was focussed into a spot of area ~0.5 mm2 with a spherical lens, and the 
laser output was measured with the fibre. The sample was offset slightly from perpendicular to the incoming laser 
beam so that the pumping beam was not coupled into the fibre.

For stability measurements, the laser was left to be pumped overnight, and the output was measured at 60 sec-
ond intervals using a CCD spectrograph. The output power was calculated by integrating the CCD counts across 
the lasing spectrum and then normalising to create a degradation curve.

The beam profile for the polarisation and M2 measurements was measured with a Coherent Beammaster beam 
profiler. M2 measurements were taken by focusing the laser output beam with a lens and measuring the beam 
radius versus displacement using the beam profiler on a moving stage. The M2 value was calculated by fitting the 

data to the beam radius equation = + λ

π( )w w 1 M z
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Other Measurements.  Photoluminescence quantum yield (PLQY) measurements were taken using a 
442 nm continuous wave Helium-Cadmium laser with an output power of ~50 mW. The beam was incident on the 
sample in an integrating sphere. The laser and sample light was measured with a fibre coupled Andor CCD spec-
trograph, and the PLQY was calculated using the method described by Greenham et al.28. The spectral response of 
the CCD and the sphere was calibrated using a tungsten lamp of known spectrum. Thickness measurements were 
carried out using a Veeco Dektak 150 surface profilometer. Absorption measurements were taken using a CARY 
300 UV-Vis Spectrometer. Scanning electron microscopy measurements for Fig. 1(a) and (b) were taken using a 
Hitachi S4800 scanning electron microscope.

Data availability.  All data underpinning this manuscript, as well as the results of preliminary experiments 
can be found at the following doi: http://dx.doi.org/10.17630/fa79eead-de1e-47ad-85d7-649b5e482f22.
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