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Real-time Image Processing for 
Microscopy-based Label-free 
Imaging Flow Cytometry in a 
Microfluidic Chip
Young Jin Heo, Donghyeon Lee  , Junsu Kang  , Keondo Lee & Wan Kyun Chung

Imaging flow cytometry (IFC) is an emerging technology that acquires single-cell images at high-
throughput for analysis of a cell population. Rich information that comes from high sensitivity and 
spatial resolution of a single-cell microscopic image is beneficial for single-cell analysis in various 
biological applications. In this paper, we present a fast image-processing pipeline (R-MOD: Real-time 
Moving Object Detector) based on deep learning for high-throughput microscopy-based label-free IFC 
in a microfluidic chip. The R-MOD pipeline acquires all single-cell images of cells in flow, and identifies 
the acquired images as a real-time process with minimum hardware that consists of a microscope and 
a high-speed camera. Experiments show that R-MOD has the fast and reliable accuracy (500 fps and 
93.3% mAP), and is expected to be used as a powerful tool for biomedical and clinical applications.

Flow cytometry (FC) allows high-throughput cellular analysis at single-cell resolution. The method has enabled 
analysis of large cell populations, and has been successfully applied in a variety of applications such as diagnostic 
medicine, immunology, and related areas1. Its extension, imaging flow cytometry (IFC), combines conventional 
FC with microscopy to enable analysis of heterogeneous cell population at both high throughput and high spa-
tial resolution2. IFC acquires high-resolution single-cell images while conducting multiparametric analysis of 
high-volume cell populations, and the acquired rich information is used in various biomedical applications such 
as detection of live cells among dead cells and apoptotic bodies3, of adherent platelets/platelet fragments4, and of 
circulating tumor cells5, 6, An IFC platform with a miniaturized and disposable microfluidic device enables paral-
lelization for high-throughput and high-volume analysis, and broadens applications of FC2, 7.

There are many studies that have considered IFC systems; for convenience we can divide them into two cat-
egories: development of 1) single-cell imaging systems capable of acquiring single-cell images at high speed, 
and of 2) image-processing methods capable of analyzing the acquired microscopic single-cell images. For 
single-cell imaging systems, many studies have tried to achieve both high throughput and high spatial resolution 
of imaging-in-flow systems6, 8, 9. Because acquisition of a high-quality image of a flowing cell is extremely difficult 
due to motion blur, the studies achieved high-throughput IFC by adding a specialized light source and addi-
tional detectors to conventional FC. For example, the commercialized IFC ‘ImageStream’ uses charge-coupled 
device (CCD) cameras and applies a time-delay integration (TDI) technique6. To achieve accurate cell focusing 
and tracking, ImageStream uses precise pumps, an in-line air chamber, and a velocity-detection subsystem for 
closed-loop control of the TDI readout rate. These additional subsystems increase the system’s versatility, but 
greatly increase its complexity and cost.

Many studies of image-processing methods to analyze single-cell images have applied image segmentation 
or machine-learning algorithms to reveal cell phenotypes or to quantify cellular DNA content10–13. One study 
used supervised learning to perform label-free quantification of DNA content and identification of phases in 
the cell cycle11; the authors used ImageStream to collect bright-field and dark-field images of cells in flow, then 
used commercial software packages and tools such as CellProfiler to analyze cell images12. Another study focused 
on integrating imaging technology with deep-learning technology to realize IFC13; a time-stretch quantitative 
phase-imaging system obtained quantitative phase and intensity images in real time, and used integrated feature 
extraction and deep learning algorithm to achieve label-free classification of cells and to detect cancerous cells. 
However, these studies acquired or analyzed cell images off-line as a post-experiment process; the number of 
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images that can be stored for such analysis is limited by memory capacity. The ability to acquire, store, and analyze 
large numbers of cell images in real time is the biggest challenge in development of IFC systems that can analyze 
large-volume samples at high throughput2.

Here we present a real-time image processing pipeline called R-MOD (Real-time Moving Object Detector) 
to acquire and analyze images of single-cells in flow for miniaturized microscopy-based label-free IFC (Fig. 1). 
The designed system can acquire single-cell images and analyze them in real time by applying image process-
ing and machine learning to image sequences obtained by a microscope and a CMOS camera. R-MOD uses a 
multiple-object-tracking algorithm to count cells and to obtain an image of each single cell, then a supervised 
machine-learning algorithm analyzes the single-cell images to achieve label-free classification. Both single-cell 
image acquisition and analysis can be performed in real time (<2 ms) thanks to the pipeline’s low computa-
tional cost, so huge amount of acquired images need not be saved in memory for post processing; therefore, 
high-throughput and high-volume sample analysis is possible. Because counting and identification are both 
accomplished using deep-learning technology, which uses a convolutional neural network (CNN)14, R-MOD can 
detect and classify multiple cells and is insensitive to light and focus conditions of the microscope. As multiple 
cells can be detected simultaneously, the system can maintain high throughput at low flow rate by increasing 
concentration of cells. Thus, the proposed system can realize features of real-time IFC without additional subsys-
tems such as precise pumps and velocity detector, which are required to generate a cell stream and to capture the 
images of cells under high flow rate. We conducted experiments using a suspension of mixed-size micro-particles 
and a sample of real biological cells to evaluate and validate the proposed system.

System Configuration and R-MOD Pipeline
The experiment was conducted using a polydimethylsiloxane (PDMS) microfluidic chip that includes a straight 
micro-channel with 50 µm height and 100-µm width. The microfluidic chip has one inlet and one outlet; a syringe 
pump injects a cell suspension at constant flow rate into the chip. A microscope observes a region-of-interest 
(ROI) of size 100 × 500 pixels at downstream of the channel, and a camera acquires images of cells that pass 
through the ROI. The system uses a basic bright-field microscope and a CMOS-based high-speed camera to 
obtain images of cells flowing in the micro-channel; the obtained images are sent to a computer for the R-MOD 
process in real time. R-MOD is mainly composed of two parts: (1) multiple object tracking (Fig. 1a) and (2) 
single-cell image acquisition and identification (Fig. 1b). The two parts are processed in parallel using multiple 
threads and each part completes a given task within 2 ms to achieve 500 fps process speed.

Multiple-Object Tracking
Main purpose of multiple-object tracking is precise cell counting by preventing re-counting of cells in flow that 
appear several times in the image sequence (depending on the flow rate and frame rate); the tracking result yields 
one single-cell image per cell without duplication. Multiple-object tracking entails (i) image segmentation, (ii) 
detection and localization, and (iii) tracking.

 (i) Image segmentation simplifies the original image to reduce the complexity of image processing. Light and 
focus conditions vary among microscopy experiments, and in addition to the cells that are to be detected, 
the images contain noise and debris. These contents can degrade the precision of naïve image-processing  
algorithms such as blob detection, but a well-trained deep neural network can precisely simplify the origi-
nal images into segmented image, regardless of experimental conditions and image noise (Figs S1 and S3).  
As a segmentation method to detect objects reliably, we used a convolutional neural network. The segmen-
tation performs a real-valued regression that converts a grayscale microscopy image to a probability-den-
sity map, and thereby makes the detection and localization tasks easy and insensitive to noise (Fig. 1a 
‘Image to density map’). Here, the probability density map Y is represented as a two dimensional mixture 
of Gaussians without a mixing coefficient:
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where (i, j) is pixel index of the input grayscale image matrix, and K is the number of Gaussians in the densi-
ty map. This segmentation procedure represents each cell in the original image as a bivariate µ| ΣN i j(( , ) , )k k  
represents bivariate Gaussian distribution with mean μ and isotropic covariance (Σ = σI). The means refer 
to centre position of each cell and the standard deviations refer to a third of the radius of each cell (i.e., 
r = 3σ); i.e., in a density map, each Gaussian distribution represents each cell in the original grayscale image 
as mean (position) and variance (size). To perform this conversion, we used a fully-convolutional regression 
network (FCRN) which was originally developed to count cells on petri dishes15; we modified the original 
FCRN structure to be appropriate for our fast microfluidic-microscope IFC system (Table S1).
After a microscopic image is converted to a density map, its means and variances are extracted for detec-
tion and localization.

 (ii) Detection and localization is the process of finding an arbitrary number of objects in an image (Here, the 
‘detection’), and the determining the exact locations of the objects in the image (‘localization’) (Fig. 1a ‘De-
tection and localization’). Because segmentation has converted the original image to a probability-density 
map, detection and localization tasks become finding the means and variances in the probability density 
map; this task is much easier than detecting and localizing objects in the original microscopic image. We 
therefore developed an algorithm called ‘Flattening’ that can quickly extract means and variances from a 
probability density map; i.e., the input of flattening is a probability density map outputted by the FCRN re-
gression, and the output is the set of means and variances (positions and sizes of arbitrary number of cells) 
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in the map. Flattening first finds the maximum pixel value and its index in the given density map matrix Y; 
this index is a mean μ of the Gaussian distribution that has the smallest variance. The pixel value itself is 
the density pmax of the Gaussian distribution, and its variance σ2 can be obtained as follows (derivation in 
Supplementary Information S2):

σ π= . p0 5 , (2)
2

max

This process obtains μ and σ2 of one Gaussian, then the obtained μ and σ2 is used to guide removal of this 
Gaussian from the density map by converting its pixel values to zeroes; this process is called flattening. 
The flattening process is repeated until all Gaussian distributions in the probability density map have 
been removed. This process yields all means and variances in the map. Detection and localization of an 
arbitrary number of objects in an image is a difficult problem, but Flattening can solve simply and rapidly 

Figure 1. Schematic of the designed system and R-MOD. CMOS camera on microscope observes the 
microfluidic channel through which cell suspension flows. Bright-field microscopic image taken by the CMOS 
camera is represented by a grayscale image. The resolution of the image is 100 by 500 pixels and the CMOS 
camera collects image sequences at 500 frame/s (i.e. every 2 ms). Thus, R-MOD must perform the whole 
process in <2 ms. Two processes are executed in parallel (multi-threads) and each process should perform its 
task <2 ms. (a) Process 1 performs detection/localization and multiple object tracking. For the detection and 
localization tasks, FCRN converts the original grayscale images to probability density maps (<1.5 ms), then the 
Flattening algorithm extracts centre positions and sizes from the maps (<0.1 ms). After obtaining location of 
each cell, the multiple-object tracking algorithm finds correspondences between consecutive frames (<0.2 ms); 
this step eliminates repeated counting of cells in flow. (b) Process 2 performs single-cell image acquisition and 
identification. Using the tracking result, single-cell images can be obtained by cropping them from the original 
ROI image frame without duplications. The cropped single-cell images are evaluated by an image classifier 
based on a supervised learning to identify cell type.
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(Pseudo-code of the flattening algorithm is shown in Algorithm S1).
After the detection and localization tasks are completed, the tracking algorithm is executed (track-
ing-by-detection framework).

 (iii) Tracking begins by finding corresponding detected objects in consecutive images to follow the motions of 
the moving objects (Fig. 1a ‘Multiple object tracking’). The tracking algorithm in the proposed pipeline 
is designed to detect occlusion quickly by considering the characteristics of the fluid flowing through the 
micro-channel.

The tracking algorithm assigns detected objects to a track variable that represents the object during an image 
sequence. The correspondence between detected objects in consecutive frames is found by solving an assignment 
problem based on the motions of flowing objects. An assignment problem is to find an optimal weight matching 
in a bipartite graph; we utilized a standard Hungarian algorithm to associate the detected objects and tracks. If 
a detected object matches one of the tracks, the detection is assigned to the track and the track continues until 
the track exits the ROI (assigned case). Four unassigned cases also occur; in (cell newly enters the ROI), out (cell 
leaves the ROI), occlusion (cell is hidden by another cell), and appear (hidden cell appears by escaping the occlu-
sion). These four states correspond to case in which track and detection do not match one-to-one. If a detected 
object cannot be assigned to a corresponding track, the object is a new one that has entered the ROI (in) or has 
escaped from an occlusion (appear). If a track cannot find a corresponding detection, the track has exited the ROI 
(out) or has disappeared from it (occlusion). These states can be distinguished based on the motion of Poiseuille 
flow: each cell has constant velocity to the axial direction and barely moves to lateral direction. When occlusion 
occurs, most object detection algorithms, including Flattening, fail to detect objects. However, the state informa-
tion (one assigned case; four unassigned cases) of our tracking algorithm gives us information about existence 
and absence of object occlusion; this information is used in next single-cell image acquisition step to filter out 
occluded objects. To achieve this occlusion detection, each track variable should have its associated state history 
during each time step. Poiseuille channel flow has a parabolic velocity profile, so the velocities of two objects are 
different if they are at different positions in the depth direction (occlusion state). Because of these physical laws, 
the overlap of two objects in an image sequence occurs only at a specific moment; this phenomenon is also evi-
dent in the experimental results (Fig. 2a). Thus, the occlusion state does not continue for as long as the time taken 
by the cell to pass through the ROI, and our tracking algorithm can successfully track multiple objects and detect 
occlusion (Fig. 2b). State history of a track variable is used to find a clear image that does not include an occluded 
object.

To count and distinguish all objects, every track has its unique ID, which is assigned when a new track is cre-
ated; i.e., when a new cell enters the ROI. Cell ID numbers are assigned sequentially from 1, so the last ID is the 
number of cells detected. By using the track ID, the tracking algorithm prevents recounting of cells that have been 
captured several times in the image sequence; this process makes the pipeline can acquire one single-cell image 
for each cell. Finally, each track variable contains ID, sequential positions, and state history of the object; these 
data will be used in the next cell-identification step; therefore, when a cell leaves the ROI, the cell’s corresponding 
track variable is stored temporarily in a fixed-size circular buffer.

Figure 2. Occlusion mechanism and detection of the occlusion by tracking algorithm. Occlusion occurs due to 
overlap of several objects in the depth direction. If two objects are located at different depth positions, velocities 
of the two objects are different because Poiseuille flow has a parabolic velocity profile that is fastest at the centre 
and slowest at the wall. Thus, objects are occluded for only short times, then quickly escape the occlusion. (a) 
occurrence of occlusion at 2 ms. (b) the proposed tracking algorithm detected occluded objects (red circles) and 
reassigned objects that had escaped the occlusion (ID 103 and 106).
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Single-Cell Image Acquisition and Identification
This process acquires a single-cell image by cropping a patch of each detected cell with a certain size in the ROI, 
then applies a cell-classification algorithm to identify the cell-type of the single-cell image (Fig. 1b). When a cell 
leaves the ROI (out state occur), the process searches the state history of the leaving cell’s track to find the image 
frame in which the leaving cell is most clearly captured (without occlusion), then crops a single-cell image based 
on the cell’s centre position. We fixed size of cropped single-cell images as 21 × 21 pixels. This cropping process 
to obtain a clearly-captured single-cell image requires two fixed-size circular buffers that store a certain number 
of past ROI images and tracks. The cropped single-cell images are also stored in another buffer to send it to the 
classifier; the identification step applies a cell-classification algorithm to these images to identify cell types in real 
time. Because R-MOD applies the classification algorithm and identifies cells in real time, the images need not be 
stored for post processing, so high-throughput online single-cell analysis is possible. As the classifier, we used an 
image classifier based on convolutional neural network (CNN) which can perform automatic feature extraction14. 
Many classifiers based on CNNs can identify cell types from microscopic cell images15–17 and R-MOD can use any 
image classifier to identify the acquired single-cell image at the end of the pipeline. As the main contribution of 
this study is to obtain single-cell images and to identify them in real time for high-throughput IFC using only an 
imaging process without additional hardware, we used a simple CNN classifier on this study to show the feasibil-
ity of R-MOD as an IFC platform.

Results
To validate the proposed R-MOD pipeline, we performed experiments using two different sample solutions: 1) 
mixed-size micro-particles for accurate control of sample concentration to quantitatively evaluate accuracy, and 
2) real cells to validate its feasibility for practical biological applications. Several experimental conditions includ-
ing flow rate and cell concentration should be considered before performing the experiments. Considering the 
computational speed of R-MOD, the frame rate of the camera is fixed at 500 frames/s, and shutter speed is set to 
1/10000 s. Flow rate has a trade-off relationship with image quality. High flow rate (fast cell velocity) can raise 
throughput but induce motion-blur that can degrade the quality of images, whereas low flow rate (slow cell 
velocity) yields clear images but reduces throughput. This trade-off occurs when the cell flow forms only a single 
stream. However, since R-MOD can trace multiple cell flow regardless of their lateral positions, we do not need to 
generate a single stream. Therefore, we could increase the concentration of cell suspension to generate randomly 
distributed cell flow and decrease the flow rate to obtain high-quality image of cells while preserving throughput; 
i.e., Throughput [count/s] ~ Flow rate [ml/s] × concentration [count/ml].

In the micro-particle experiments (Supplementary Information Multimedia), we used polystyrene 
micro-particles with different diameters of 7, 10, or 15 μm, each at 0.3% w/w in a mixed suspension. Theoretically, 
the number concentration of the mixed suspension is 7,700 beads/μL and number ratio of each bead is 100/34/10 
(7/10/15-μm). A syringe pump injected the suspension with constant flow rate. If flow rate is 10 µL/min, then 
throughput is estimated as 1,283 beads/s.

Using these experimental conditions, three experiments were performed and each experiment recorded 2,000 
consecutive images during the experiment for 4 s at 500 fps (Table 1). For the Exp-1, flow rate was 6 μL/min and 
estimated throughput is 770 cells/s. R-MOD detected 1,540 beads with 7-μm diameter, 549 beads with 10-μm 
diameter, and 257 with 15-μm. The number ratio was 100/36/17, which is similar to the theoretical number ratio 
of 100/34/10 calculated based on the concentrations of particles in the suspension. This statistical analysis is only 
a rough comparison. As a check of tracking accuracy, the counting result was compared with counts obtained by 
six human participants who viewed a recorded image sequence; it took about 30 minutes to 1 hour per person for 
2,000 images. Counting result by R-MOD was 2,346; the mean manual counting result was 2,343 with a standard 
deviation of 6.3; i.e., the difference between R-MOD counts and human counts was 3 (relative error 0.128%). The 
estimated throughput was 770 cells/s, but actual throughput was ~600 cells/s because particles are not uniformly 
distributed in the microfluidic channel and connecting tube. To show more cases, Exp-2 and Exp-3 were also 
performed by changing flow rate (Table 1). Actual throughputs of Exp-2 (10 μL/min) and Exp-3 (15 μL/min) are 
776 beads/s and 1,340 beads/s, respectively.

Experiments Human counting R-MOD counting

Duration
Count 
(mean ± s.d.) Count (7/10/15-μm) Throughput

Number ratio 
(est. 100/34/10)

Exp-1 (6 μL/min) 4 sec 2,343 ± 6.3 2,346 (1,540/549/257) 587 cells/s 100/35/10

Exp-2 (10 μL/min) 4 sec — 3,103 (2,423/462/218) 776 cells/s 100/19/9

Exp-3 (18 μL/min) 4 sec — 5,362 (3,055/1,306/1001) 1,340 cells/s 100/43/33

Exp-Large (18 μL/min) 17 min — 635,844 (396,122/133,891/105,831) 616 cells/s 100/34/27

Table 1. Mixed size micro-particle experiments. From Exp-1 to Exp-3, 2,000 recorded images (during 4 sec) 
were processed by R-MOD. To quantitative evaluation of counting results, six human participants counted 
flowing beads by viewing the recorded image sequence of Exp-1. Error of counting result between human and 
R-MOD is 3. Since beads in the suspension are not uniformly distributed, every experiment shows different 
actual throughput (from 600–1,300 cells/s). Exp-Large analysed a large number of images (>510,000) during 
17 minutes to show the high-throughput and real-time capability of the proposed system. Number ratio is 
calculated based on the number concentration of the mixed bead to roughly compare the actual detected 
counts.
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The cytometric result obtained from the Exp-1 was processed using t-distributed stochastic neighbour embed-
ding (t-SNE)18 for dimensionality reduction to visualize the result as a scatter plot (Fig. 3a). Each point represents 
the classification result of one cropped single-cell image (Fig. 3b). The scatter plot shows that each class is well 
distinguished by the classifier, so its accuracy is sufficient to identify the mixed beads in this experiment. Some 
untargeted cells were included in the cropped single-cell image because two objects were close together (Fig. 3b 
red boxes). In this case (which is called a doublet), the classifier predicts the category of the cell located near the 
centre of the image with a high probability, and excludes the other cell; the excluded cell is located at the centre of 
a different cropped single-cell image. In addition, even though the cell is not in the centre of an image, the clas-
sifier can also predict its class category because the CNN classifier is invariant to small translation (Fig. 3b blue 
box)19. Therefore, doublets and shifted objects are automatically corrected by the CNN classifier due to its strong 
feature-extraction capability.

The three experiments that analyzed 2,000 images were for quantitative evaluation of the proposed pipeline. 
To show the high-throughput and real-time capability of the system, we analyzed large sample of the mixed par-
ticles for long time. The same suspension was used and R-MOD analyzed the sample for 17 minutes with more 
than 510,000 images. Since the experiment analyzed huge data in real time without storing image sequence in a 
memory, the result cannot be evaluated quantitatively. The result shows 396,122 beads with 7-μm, 133,891 beads 
with 10-μm, and 105,831 beads with 15-μm; actual throughput is 616 cells/s and the ratio is 100/34/27 (Table 1. 
Exp-Large). This result shows the large-quantity analysis capability of the proposed system.

In addition, we compared the speed and accuracy of our pipeline with existing famous methods quantita-
tively20–22. The main task of the proposed pipeline is multiple-object detection and tracking to classify flowing 
cells in real time in a microfluidic channel. To do this comparative evaluation, we implemented Faster R-CNN20 
which shows high precision, and Fast YOLO21 which shows fast detection speed on our mixed micro-particle 
experiment dataset (Table 2). Faster R-CNN and Fast YOLO use boxes that are hypotheses for object locations; 
if the number of boxes is large, precision increases but speed decreases. The flattening algorithm that R-MOD 
uses for object detection does not use hypothesis boxes. In the comparison, R-MOD was the fastest and had the 
highest precision. However, R-MOD is designed for fast and accurate detection and tracking of flowing cells, but 
cannot be applied to natural images like the PASCAL VOC dataset. We argue that the proposed pipeline is suita-
ble for flowing cell applications. We also evaluated the pixel accuracy of the flattening algorithm (Supplementary 
Information S4).

We also performed an experiment using live and fixed cells; live human red blood cells (RBCs) (Innovative 
Research Inc., USA) and fixed K562 cells (Femtofab, Korea) were mixed and appropriately diluted. The multiple 
object tracking successfully cropped single-cell images (Fig. 4a) and the classification results were highly accu-
rate (Fig. 4b). RBCs are typically biconcave disks, so they show various shapes as they flow in the microchannel 
(round, ellipse, or rotated ellipse for live cells; distorted circle for dead cells). The training data of the classifier 
includes these differently-shaped RBCs, so the classifier can successfully identify K562 and RBCs with high preci-
sion. Except for the training data, the network structure and the learning method of the classifier were the same as 
in the bead experiment. The scatter plot of the cell experiment showed a wider distribution of data than obtained 

Figure 3. (a) Scatter plot of cytometry result of mixed-size bead suspension. t-SNE embedding was applied 
to reduce the high dimensional feature map to two dimensions for visualization. The output of the last hidden 
layer has originally 300 dimension, and t-SNE embedded its dimension to depict the classification result. Each 
axis represents the latent space (z) variable embedded by t-SNE. Point colors are labelled according to its classes: 
7 μm (red): 1,540 points, 10 μm (green): 549 points, 15 μm (blue): 257 points. (b) Cropped single-bead images 
and their classification results. Some cropped single-cell images include another bead (doublet; red boxes) but 
the classifier predict category of the object near the centre position with high probability. This property can filter 
out doublet. In addition, cyan box shows a case that the object is not located at the centre position but classifier 
can predict its class due to the invariance of convolutional neural networks to small translation.
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in the mixed-size particle experiment due to more complex morphologies (Fig. 4c). If the number of cell types to 
be identified increases or morphologies of cells are complex, the classifier should be replaced with a better model 
to improve the classification accuracy. The cell experiment shows that R-MOD can identify actual cell morpholo-
gies as well as spherical particles, so we expect it to have biomedical and clinical applications.

Discussion
Imaging flow cytometry have enabled single-cell analysis that had both high throughput and high spatial resolu-
tion. IFC can measure rich information at single-cell resolution and identify complex cell phenotypes, but most 
previous research has focused on developing a novel optical system to achieve fast image acquisition2. In this 
study, we realized the single-cell image acquisition feature of imaging flow cytometry by developing a real-time 
image processing pipeline without complicated optical and mechanical subsystems. The R-MOD pipeline traces 
multiple cells in flow and acquires each cell image with high speed, and can therefore identify them in real time. 
In addition, this platform has a simple hardware configuration because the whole system is composed of only a 
common bright-field microscope, a CMOS camera, a microfluidic chip, and a desktop computer. The proposed 
system can determine the number and phenotype of cells in a heterogeneous population of large volume sample. 
Key points of our platform can be summarized as (1) capability for real-time analysis, (2) label-free analysis, (3) 
sheath-less and cell stream-free flow cytometry, and (4) parallel image analysis that enables both high throughput 
and high-quality image acquisition.

The R-MOD pipeline is related to automated microscopy10. Most previous studies related to image analy-
sis of biological cells or tissue have applied image processing and machine-learning algorithms to images of 
cells on petri dishes, but our approach accurately counts and identifies ‘flowing cells’ in a live video stream of a 
large-volume sample, as in conventional flow cytometry. Automatic detection and tracking of multiple cells in 
flow are challenging tasks because most image-segmentation algorithms are very sensitive to parameters such 
as threshold value, and their precision degrades as the signal-to-noise ratio increases23. In addition, light condi-
tion and focal length can easily vary even under the same experimental setup, so conventional image segmenta-
tion processes entail tedious parameter adjustments. In contrast, our method shows consistent image processing 
results under various optical conditions, because of the consistent segmentation capability of deep convolutional 
neural networks. Moreover, R-MOD’s accuracies in detection, localization and tracking tasks are reliable enough 
to be used in many different microfluidic applications such as droplet sorting and multiple cell manipulation as 
well as IFC.

We also performed experiments to verify the speed and precision of the proposed platform. The mixed-size 
micro-particle experiment showed reliable speed (500 fps) and precision (93.3% mAP) of the proposed platform. 
The cytometric result obtained by R-MOD clearly represents each population of subgroup with different colours 
by the visualization method, so it does not require the manual gating process that is usually used in conven-
tional flow cytometry. The live cell experiment showed the possibility of live/dead analysis as well as cell-type 
classification.

In the experiments, we used a simple CNN-based image classifier to identify cell types. The classifier 
accurately identified different size beads, and RBCs and K562 cells. The samples used are trivial and easy, so 
more-compelling classification tasks such as distinction of peripheral blood mononuclear cell from granulocyte 
seems to be required. However, the purpose of this paper is not to improve classification range and accuracy, and 
several studies have already performed image classification for various biological cells15–17. For example17, used a 
CNN classifier to identify types of white blood cells including basophil, eosinophil, lymphocyte, monocyte, and 
neutrophil based on low-resolution microscopic image. From this evidence, we can expect that a CNN classifier 
will be able to classify cells that have similar size but different morphology. Classification accuracy depends on 
several factors, including the dataset, the optimization method, and the structure of the neural network. Research 
into deep learning has provided various classification algorithms that can accurately infer a class category from an 
image, and their accuracy is increasing. The application range of R-MOD can be broadened and its identification 
accuracy can be improved by replacing the classifier at the end of the pipeline with a state-of-the-art classifier 
that has been trained on many relevant cell dataset. The resolution of acquired images also affects the accuracy of 
analysis, so adoption of a superior microscope and superior camera will also improve system’s analysis accuracy. 
We expect that R-MOD will have various applications such as label-free blood diagnosis and circulating tumor 
cell detection. In addition, R-MOD has great potential to be used for high-throughput IFC; we expect that the 
designed system will contribute to progress in IFC and in single-cell biology.

Dataset
PASCAL VOC 2007 test22 
(Natural images)

Flowing micro-spheres (Microscopic image, 
100 × 500 pixels)

Method mAP FPS # boxes mAP (0.4 IoU) FPS # boxes

Faster R-CNN20 62.1% 17 300 69.3% 21 2,048

Fast YOLO21 52.7% 155 98 40.3% 175 98

R-MOD (ours) — — — 93.3% 500 —

Table 2. Comparison of existing object detection methods with the proposed pipeline. Mean average precision 
(mAP) with 0.4 intersection of union (IoU) represents precision of object detection, and frames per second 
(FPS) represents computational speed. Left half of the table shows comparison results by applying object 
detection methods to natural images (PASCAL VOC 2007 dataset). Right half result is obtained by applying 
detection methods to our micro-particle experiment. Our R-MOD was the fastest and most precise.
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Method
Implementation of the system. The proposed platform consists of a CMOS-based high-speed vision 
system to acquire microscopic image at high speed, a computer to process the R-MOD pipeline, and microfluidic 
chip and syringe pump to generate constant flow rate. The imaging system is configured on an inverted micro-
scope (IX73, Olympus Co.), and an objective has a numeric aperture (NA) of 0.3 and magnification of ×10. As a 
light source, halogen lamp is used with illumination filter for Köhler illumination. The high-speed vision system 
(Photron Co. Japan) consists of a high-speed CMOS camera and an FPGA board to send image sequences to the 
computer in real time. The microfluidic chip was fabricated using soft lithography24.

To implement R-MOD, we wrote custom code based on open-source library and toolbox. For the neural 
network implementation including FCRN and CNN, we used MatConvNet (http://www.vlfeat.org/matconvnet/) 
and Caffe (http://caffe.berkeleyvision.org/). We used MatConvNet to train the FCRN and CNN classifiers off-line. 
We used Caffe for feedforward computation during the experiment. Here, Caffe provides a GPU computation 
setting to accelerate the computing, and we used NVIDIA GTX 1080. To implement the flattening and tracking 
algorithms we wrote custom source code based on MATLAB and C++ language.

Training dataset. Both FCRN and CNN classifier were trained using a pre-acquired dataset. The training 
dataset for FCRN is a set of original microscopic images (input) and its probability density map (label). To obtain 
label data of the FCRN training dataset, we manually pointed out the centre position and size of each cell in the 
microscopic image. Based on the centre position and size information, equation (1) can generate the probability 
density map. The training dataset for the CNN classifier is a set of single-cell images (input), each with its class 
number (label). Each single-cell image used in training data was labelled manually because micro-particles of 
different sizes, and K562 and RBC are sufficiently distinguishable by eye; however, for samples that are difficult to 
distinguish by eye, high-purity cell samples should be acquired to produce training data for a classifier.

CNN Classifier. As a classifier, we used a convolutional neural network with a fully connected layer (Table 
S.2). The CNN classifier can automatically extract and recognize image features by training the network on an 
image dataset. The classification accuracy of the classifier depends on several factors, including the classification 
algorithm, training dataset, and optimization method. The CNN classifier that we used identifies the class of a 
21-by-21 pixel single-cell image in <1 ms, and the size of single-cell images can be modified depending on the 
cell size. For the mixed micro-particle experiment, the micro-particles have simple features, so the simple CNN 
structure is used. If single-cell images that have many classes and features should be considered, fancy network 
structures should be employed for increasing the learning capacity.
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