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. The electronic cigarette solvents propylene glycol and glycerol are known to produce toxic byproducts

. such as formaldehyde, acetaldehyde and acrolein. However, the aerosol toxin yield depends upon a

: variety of chemical and physical variables. The formaldehyde hemiacetals derived from these solvents

. were reported as major electronic cigarette aerosol components by us in 2015. In the study described

. herein, the formaldehyde hemiacetals were found at higher levels than those of free formaldehyde

. via an orthogonal sample collection protocol. In addition, the common aldehyde collection methods

. for electronic cigarettes, such as impingers and sorbent tubes containing DNPH, significantly

. underestimate the levels of formaldehyde. The reason for this is that formaldehyde hemiacetals follow
other reaction pathways, such as the formation of a less reactive full cyclic acetal catalyzed by the

. acidity of the DNPH solution and the silica. We found that formaldehyde hemiacetals are a considerable

. fraction of the total formaldehyde produced in electronic cigarette that cannot be determined
accurately by DNPH derivatization methods. Although the health effects of the hemiacetals are not yet
known, they warrant further investigation.

Tobacco smoking is the leading cause of preventable death in the US'. Electronic cigarettes have been promoted
as a healthier alternative to smoking, however little is known about their long-term health effects. A concerning
current trend is the manufacture of customizable electronic cigarettes with increasingly lower resistance heating
. coils and higher operating temperatures that can enhance the likelihood of exposure to higher aerosol toxin
. levels>*. One means of understanding the toxicity of e-cigarettes while long-term epidemiological studies are
. underway is the elucidation of the chemical profiles of e-cigarette aerosols>~'*. However, a major challenge is
. the lack of standardized analytical protocols. This issue has led to wide variations in interlaboratory results and
- has contributed to the dichotomy in the literature about electronic cigarettes and their potential health effects.
. For example, a comparison of five studies published the same year (2014) of formaldehyde (HCHO; and other
: carbonyl) analyses using DNPH sorbent tubes and/or DNPH impingers, showed that levels of detected HCHO
. ranged from a low of 3.2-3.9 ng/pufT to a high of 660-3400 ng/puff?. Since e-cigarette aerosols consist of both
gaseous and particulate matter (PM), one cause of the discrepancies in these results is that sorbent tubes were
not designed for the analysis of PM. This should not affect gaseous HCHO analysis. However, HCHO can exist in
equilibrium with several common adducts. Some of these, such as hemiacetals 1a-d and methane diol (HCHO
monohydrate), will partition into the PM phase of e-cigarette aerosols'>. Moreover, unless each of the equilibrium
forms of HCHO is converted to the carbonyl form, they cannot be detected using DNPH (both sorbent tube or
impinger methods).
: We previously reported the formaldehyde hemiacetal isomers (1a-d, Fig. 1) in the aerosols derived from a
* variable voltage electronic cigarette above a threshold power setting®. The levels of 1a-d were higher than those
- of gaseous HCHO found in traditional cigarettes. There was a response to the report via a published study that
attempted to reassure e-cigarette users that there is relatively little danger of inhaling any more than “minute” lev-
els of toxins, as long as they are unable to taste them!®. However, the primary focus of the report was the finding
of hemiacetals (1a—d) as major aerosol products. In a more recent investigation, we showed that 1a-d can form
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Figure 1. The formation of hemiacetal isomers 1b and 1d from PG and the isomers 1¢ and 1d from GLY. PG
and GLY are the most common e-cigarette solvents. HCHO is well-known to be formed via the partial thermal
degradation of PG and GLY during the vaping process. Hemiacetals are stable enough to be detected by NMR
spectroscopy after aerosol generation, but are hydrolyzed to the component alcohols and HCHO when diluted
in H,0.

under relatively benign, single puff conditions®. During the preparation of this manuscript, another significant
report appeared showing that 1a—d levels were indeed a potentially concerning proportion of the total HCHO (in
the 22-45% range) found in e-cigarette aerosols, specifically when using newer devices possessing increasingly
higher power output capabilities®. However, as is shown herein, the relative levels of 1a-d to HCHO produced
by e-cigarettes can be even higher, because they are dependent on many key variables such as sampling and ana-
Iytical techniques. Monitoring the levels of 1a-d is significant not only to account for various possible routes of
HCHO exposure, but also because 1a-d will be inhaled as aerosol droplets'® more deeply into the respiratory tract
compared to gaseous HCHO®.

The hypothesis driving this investigation is that 1a-d can be formed at higher levels than gaseous HCHO in
e-cigarette aerosols, based on well-established fundamental chemistry of alcohols and HCHO. This has been stud-
ied in detail by Balashov and co-workers!’, who demonstrated that formaldehyde hemiacetals are by far the major
components in equilibria involving carbonyl HCHO and excess levels of alcohols, as is the case in e-cigarettes.
During the course of this investigation, we employed a new sampling and analytical method that enables the col-
lection and determination of HCHO and its hemiacetals within the same experiment. Major findings include the
facts that e-cigarette aerosol analyses that are based solely on DNPH cartridges or DNPH impingers significantly
underestimate levels of 1a—d by ca. 35-45%, and that hemiacetals can be produced in e-cigarette acrosols at levels
that are up to ~14 times higher than those of gas-phase carbonyl HCHO.

Methods

E-Cigarette Device and E-liquid Composition. The e-cigarette used in this study was comprised of a
Vaporfi Vox TC battery unit and a KangerTech ProTank II “glassomizer” (also referred to as a glass clearomizer)
with a 2.2 Q resistance CC clear cartomizer coil units. Wattage settings of the battery unit used were 10 W and
15 W. These conditions were chosen to produce amounts total HCHO that could enable them to be conven-
iently distinguished, with the intent to produce a comparison between various sampling and analytical methods.
E-liquid was composed of a 2mL solution of a 1:1 mixture of food grade PG/GLY purchased from Sigma-Aldrich.
The 50/50 ratio of PG/GLY is a benchmark median that has been used in our preceding studies®® as well as in the
related prior work of others'® employing a 50:50 PG/GLY commercial e-liquid.

Smoking machine. An SCSM-STEP single cigarette-smoking machine (CH Technologies, Westwood, NJ)
was used.

DNPH Solution. DNPH solution was prepared in accordance with the CORESTA standardized method for
DNPH stock solutions. DNPH was purified via recrystallization'®. Approximately 1 g DNPH hydrate was weighed
and added to 21.4 mL EtOH and warmed with magnetic stirring agitation. 28.57 mL EtOAc was added slowly with
heat and stirring until all of the DNPH was dissolved. The warm solution was vacuum filtered and transferred to
an Erlenmeyer flask and cooled overnight. Recrystallized DNPH was isolated using vacuum filtration. The crys-
tals were placed in a desiccator to protect from moisture. Recrystallized DNPH (0.849 g) was added to 175mL
MeCN and 175 mL of H,O containing 3.5 mL phosphoric acid (85%). Fresh 250 mL DNPH stock solution was
prepared weekly and stored in an amber flask at room temperature.

Collection using DNPH sorbent tubes. The tubes used were DNPH-treated silica gel sorbent tubes con-
taining bisectional 150/300 mg high-purity silica gel sorbent 6 mm x 110 mm (SKC Inc. Eighty Four, PA). A
Phenex GF/CA 28 mm filter 0.45 um (Phenomenex, Torrance, CA) was attached between the apparatus and
the smoking machine. Two sorbent tubes were connected in series. 3 puffs were collected using a puff dura-
tion=3.0s, a puff interval =30s and a puff volume =50 mL.
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Collection using impingers. Two impingers containing DNPH solution were connected in series and the
puff collection performed the same way as with the sorbent tubes. The use of 2 impingers at room temperature
is from the EPA, CORESTA methods for carbonyl quanitification. Using colder conditions DNPH crystallizes.
Additional impingers were not necessary because we observed no products in a third impinger connected in
series.

Combined qNMR-DNPH collection and quantification. The electronic cigarette was connected to two
cold-finger collection tubes in series at —78 °C (dry ice-acetone cooling mixture) followed by two impingers in
series containing 20 mL each of DNPH solution. A Phenex GF/CA 28 mm filter 0.45 um was attached between the
apparatus and the smoking machine. 20 puffs were collected using a puff duration =3.0s, a puff interval =180's
and a puff volume =50 mL.

After every set of three puffs, there was a 3 minute interval to allow the aerosol to condense in the cold-trap.
Particulate matter was extracted from the cold-trap collection tubes via rinsing with 1.2 mL DMSO-d,. The aero-
sol material from the cold-trap collection tubes was analyzed directly by '"H NMR. DNPH adducts in the DNPH
impingers were collected and analyzed via HPLC. Each experiment was repeated 3 times at 10, and 15 W.

HPLC analysis of DNPH impinger components. Before each run the syringe and the injection port
loop were rinsed 3 times with MeOH and 3 times with MeCN. DNPH samples were analyzed and quantified
using a Waters 1525 Binary HPLC Pump and a Waters 2996 Photodiode Array Detector. Analysis conditions:
two SUPELCOSIL C-18, 25cm X 4.6 mm, 5 um particle size columns connected in series with a column heater at
40°C. The mobile phase comprised of MeCN/H,O with a gradient system as follows: 0 min. 60/40; 7 min. 60/40;
25min. 100/0, at a combined flow rate of 1 mL/min, with a 360 nm detection setting. The sample injection volume
was 20 L.

gNMR spectroscopic analysis of cold trap components. 'H NMR spectra were acquired using a 30°
observation pulse, a relaxation delay of 60.0s, and 64 scans, using a Bruker Avance 1T+ 400 MHz or Avance III
600 MHz spectrometer. The main signal corresponding to the isomer mixture 1 resonating at 6.2 ppm (t) was
integrated and compared to the internal standard 1,2,4,5-tetrachloro-3-nitrobenzene (TCNB) signal at 8.5 ppm
(s). The purity (P), molar mass (M), number of nuclei (N) and weight (W) of the internal standard and 1 signals
were calculated with their respective integral areas (I) in the equation'®:

p—_x . sd “"x  '’std p

Synthesis of la—-d. Compounds 1a-d were synthesized to serve as analytical standards. They are in equilib-
rium with PG, GLY, H,0, HCHO, methanediol and each other. Their limited stability in solution at rt has been
described previously®. The synthesis is derived from the procedure of Balashov'’, but with either PG or GLY
used as the reactant with HCHO instead of ethylene glycol. Conditions that Balashov used for mono-addition of
HCHO were used. 20.5mL PG or GLY and 1.15mL H,O were added to a graduated cylinder. 2.10 g of paraform-
aldehyde was added to a round-bottom flask and attached to a serrated gas impinger submerged in the PG (or
GLY): H,0 mixture. Using a slow argon flow through the round bottom flask and impinging into the solution,
paraformaldehyde was heated via a heat gun for 15min, leaving a dark residue. The solution in the gradated cyl-
inder was covered and stirred 24 h at rt. A 2.0 mL aliquot of the solution was diluted with 20 mL MeCN for HPLC
purification as follows.

Enrichment of 1a and 1b via HPLC. Crude samples of 1a and 1b were purified by HPLC using a
Phenomenex Luna® CN 250 mm x 10 mm HPLC-column (particle size 5 um, pore size 100 A) jacketed with a
column heater at 40 °C. The mobile phase used was MeCN at a flow rate of 6.0 mL/min. The detection wavelength
was set to 196 nm. The sample injection volume was 200 pL. A peak eluting at 2.78-2.94 min was collected over
two purification cycles. After solvent removal, the product contained 59% of 1a and 1b (calculated from 'H NMR
integration).

Conversion of 1a-d to the DNPH-HCHO adduct via (a) DNPH sorbent tubes and (b) DNPH
impinger solutions. (a) Sorbent tubes: Sorbent tubes were opened and the glass wool inside was removed.
27.0ug of 1a and 1b were injected directly into the sorbent bed of the tubes. Residence times in the tubes were
up to 2h. The tubes were eluted with 5mL MeCN. Solutions were filtered prior to HPLC analysis. (b) DNPH
impinger solutions: In parallel experiments, 27.0 ug of enriched 1a and 1b was added to 5mL of standard DNPH
solution and filtered (after up to a 2h sample residence time) for HPLC analysis.

In order to monitor the efficiency of the conversion of 1a and 1b to HCHO as the HCHO-DNPH adduct,
20 uL samples from the impinger or the sorbent tubes were analyzed and quantified by HPLC. The recovery of
la and 1b was assessed in 100% PG or GLY (i.e., using the analytical standards). Other PG:GLY proportions do
not affect recoveries in either the impingers or on the columns due to the very large excess of MeCN/H,0 or
MeCN present in each, respectively. Moreover, both the PG-hemiacetal and the GLY-hemiacetal have overlapping
'H NMR signals®.

Results

PM and gas collection from a vaping device. Collection using DNPH sorbent tubes. ~After collection,
the sorbent tubes were eluted with 5mL MeCN, the solution filtered and subjected to HPLC analysis. The amount
of HCHO (ug/mg e-liquid) present was 4.15 at 10 W and 2.80 at 15 W.
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Figure 3. A representative 'H NMR spectrum of e-cigarette aerosol components captured in the —78 °C

cold traps. No processing except for dilution with DMSO-d, was performed on this sample. The inset on the
right shows an expansion of the region containing the triplet peak at 6.19 ppm that corresponds to the major
hemiacetal peaks. In the inset at left, an expansion of doublet centered at 9.55 ppm corresponds to acrolein. We
have reported the "H NMR spectra and chemical shifts of these and over a dozen aerosol components recently,
noting that acrolein levels may be also be underestimated by DNPH methods, based on the relative prominence
of its aldehyde proton resonance®.

Collection using impingers. ~ After collection, the solution from each impinger was filtered and subjected to HPLC
analysis. The amount of HCHO (ug/mg e-liquid) present was 8.83 at 10 W and 13.34 at 15W.

A sampling method for simultaneous capture of DNPH-reactive and DNPH-unreactive aerosol components. In
order to capture and analyze both DNPH-reactive and DNPH-unreactive HCHO and hemiacetal respectively an
orthogonal trapping setup was employed. The e-cigarette aerosol was first exposed to a pair of cold traps (—78°C)
connected in series, followed by a series of two impingers containing standard DNPH solution. The second of the
two impingers was attached to the smoking machine (Fig. 2). The cold traps enabled hemiacetals 1a-d capture for
direct analysis by '"H NMR after sample dilution with DMSO-d,. The DNPH impingers enabled DNPH-HCHO
adduct formation and collection, followed by HPLC analysis.

The amount of 1a-d present in the e-cigarette aerosols, based on gNMR analysis of the cold trap fractions
from triplicate experiments (Fig. 3), was 16.75 jig/mg e-liquid consumed at 10 W and 65.70 pg/mg e-liquid con-
sumed at 15 W. The level of gaseous carbonyl HCHO, determined by HPLC analysis of the DNPH adduct, was
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Figure 4. Comparison of total HCHO pg per mg e-liquid consumed in e-cigarette aerosol via DNPH
derivatization methods (DNPH sorbent tubes or bubbling into impingers containing DNPH solution) versus a
combined QNMR-DNPH derivatization method. The gNMR-DNPH hybrid method enabled the quantification
of 1a-d and HCHO in the same experiment. DNPH sorbent tubes produce the least amount of HCHO
detectable, whereas the combined gNMR-DNPH method enabled the detection of a greater amount of HCHO
than that of both DNPH solution and sorbent tubes. DNPH does not react with hemiacetals since they do not
contain free carbonyls. The increase in yield at 15W vs. 10 W is due to higher power: note that there is ~4x the
HCHO detected at 15W vs. at 10 W (1.20 pg at 10 W vs. 4.43 pg at 15W) as well as ~4x (1a-d+HCHO) (16.75
ug at 10 W vs. 65.70 pg at 15 W). Both wattages have ~14x the proportion of 1a-d to HCHO.
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Figure 5. Hemiacetal and acetal formation, as described by Nef in 1904, between aldehydes that formed
via GLY decomposition and GLY. Acetals that Nef identified included adducts of HCHO, acetaldehyde, and
acrolein.

1.20 pg/mg e-liquid consumed at 10 watts and 4.43 pg/mg e-liquid consumed at 15 W. The ~14:1 ratio of excess
hemiacetals 1a-b: HCHO was thus consistent between the two wattages (Fig. 4). DNPH sorbent tubes enabled
detection of the least amount of HCHO, whereas the combined gNMR-DNPH method enabled the detection of
a greater amount of total HCHO (1a-d + carbonyl HCHO) compared to both DNPH impinger and sorbent tube
methods.

Efficiency of the detection of 1a-d by DNPH impingers and SKC sorbent tubes. In order to determine how effec-
tively the hemiacetals were converted to HCHO and detected by the DNPH methods, an analytical standard
enriched (from PG) in 1a and 1b was applied to sorbent tubes and placed in DNPH solutions. The reaction
with DNPH to form the HCHO adduct was rapid (<1min), as evidenced by HPLC monitoring for up to 2 h.
However, recovery of the hemiacetal standards from the impingers and the sorbent tubes was only 67% and 54%,
respectively.

Discussion
Formaldehyde hemiacetal chemistry is unique. HCHO was identified as a decomposition product
of electronic cigarette liquids in 2007, when Paine et al. described its evolution from the a-carbons of glycerol®.
HCHO was identified as a degradation product of GLY by Nef in 1904'. Nef additionally observed the formation
of glycerindthers, cyclic acetals that formed via the reaction of various aldehyde decomposition products and GLY.
The acetals formed via the reaction of aldehydes and polyols via hemiacetal intermediates (Fig. 5). Specific GLY
acetals of HCHO and acetaldehyde had been observed prior to Nef’s study*>%*. In addition, the product of HCHO
and PG is also well-known?*. The mechanism of formation of HCHO, along with 1a-d and 15 related products
derived from PG and GLY oxidation and dehydration in e-cigarette aerosols was investigated and reported by us
recently®.

In addition to acetals and hemiacetals, HCHO reversibly forms a linear polymer, a cyclic trimer, and aqueous
hydrate (Fig. 6) %°. Unless the reaction between DNPH and HCHO effectively promotes the other species present
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Figure 7. A prior investigation by Balashov determined that under neutral conditions hemiacetals are the
predominant product in equilibria that involve HCHO and alcohols. Under acidic conditions, conversion of
the hemiacetals to acetals is favorable. Acetals do not afford any detectable products after subjection to DNPH
impinger and sorbent tube conditions, and thus embody a likely source of undetected 1a-d and HCHO.

in the equilibrium to convert cleanly to HCHO via LeChatelier’s principle, the total level of an individual’s poten-
tial HCHO exposure will be underestimated.

A higher yield of hemiacetals compared to carbonyl HCHO was observed in the e-cigarette
aerosols, and is well-precedented in related HCHO reactions. The yield of hemiacetals in aerosols
was ca. 14 times higher than that of carbonyl HCHO at each of the 10 and 15 watt e-cigarette settings using our
combined method. It is important to mention that there are inherent sensitivity differences for DNPH and gNMR
analysis and the sampling size must be adjusted. In 2000, Balashov'” reported a detailed study of the equilibrium
characteristics of neutral HCHO-H,O-alcohol (MeOH, EtOH and ethylene glycol) systems. He found that, irre-
spective of the proportion of HCHO: alcohol, HCHO was “almost completely bound into hemiacetals”. He stated
that the hemiacetals (Fig. 7) converted to acetals in acidic media. Increasing the H,O concentration only led to an
increase in the methane diol (Fig. 6) concentration, which was consistently over an order of magnitude less than
that of the hemiacetals, regardless of the proportions of added reagents. Thus, the observation of hemiacetals at
relatively higher abundance than carbonyl HCHO in e-cigarette aerosols is not surprising.

Incomplete conversion of hemiacetals 1a-d to HCHO under acidic DNPH conditions is
observed, leading to underestimation of their levels as HCHO equivalents. When solutions
enriched in 1a-d were applied to standard DNPH solutions or DNPH sorbent tubes, 33% of the hemiacetals were
not detected (i.e., not converted to HCHO) using the DNPH impinger method, and 46% were not detected via
the DNPH sorbent tube method. This suggests that equilibration of the hemiacetals to HCHO was not complete
using these methods.

The formation of hydrates as the predominant product between most organic carbonyl compounds and H,O is
relatively rare. However, methane diol (Fig. 6) is a well-known form of HCHO, and was formed by Balashov sim-
ply upon addition of H,O to enrich the equilibrium concentration of methane diol. It is also well known that acy-
clic hemiacetals of organic compounds are relatively unstable. However, as described above, in the case of HCHO,
hemiacetals have been shown to predominate over acetals under neutral conditions. These examples highlight the
unique properties of HCHO. It is thus not surprising that 1a-d are not cleanly converted to HCHO and PG plus
GLY when HCHO reacts with DNPH under the inherently acidic conditions in the cartridge and impinger. In
fact, it has been clearly shown that acid catalyzes the conversion of hemiacetals to acetals (Fig. 7)!”. We examined
the conversion of commercial PG/GLY acetal standards to HCHO-DNPH adducts under the standard DNPH
impinger and cartridge conditions by HPLC. No HCHO-DNPH adduct was detectable by HPLC as arising from
the PG or GLY acetals. Taken together, these observations embody evidence prompting us to conclude that PG
and GLY hemiacetal conversion to detectable HCHO and HCHO-DNPH is hindered acid-promoted formation
of the corresponding inert acetals.
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Conclusion

In this study, HCHO hemiacetals were detected in e-cigarette aerosols at levels higher than those of carbonyl
HCHO. This is in agreement with a prior study of the solution-phase equilibria formed between HCHO, hemiac-
etals, acetals and methane diol'. Although the prior study!” establishes precedence for high proportions of 1a-d
to HCHO based on fundamental chemical principles, precise levels of products generated in e-cigarette aerosols
are subject to intrinsic variability®. The potential toxicity of the hemiacetals is not yet conclusively known. Their
ability to convert to HCHO after inhalation by humans has also not been investigated. The standard aldehyde
measurement protocols that have been used for HCHO detection in e-cigarettes, namely DNPH impingers and
DNPH sorbent tubes, underestimated significant levels of HCHO exposure in the form of 1a-d. The nominal
levels of 1a-d and HCHO reported herein are reflective of relatively high power levels chosen to facilitate the
investigation of analytical methods. However, the values are in range of those determined for HCHO without
accounting for la-d in recent related investigations comparing e-cigarette devices'’. During the course of this
investigation, a hybrid cold trap/impinger method was used that enabled the detection of both DNPH-reactive
and DNPH-unreactive aerosol components to be quantified. In addition to sampling and analysis, many chemical
(e.g., acidity) and physical factors can influence the levels and identities of PG and GLY degradation products,
including the proportion of hemiacetal to free HCHO. Finally, the finding that there is a significant relative abun-
dance of 1a-d to HCHO in e-cigarette aerosols, in general agreement with another recent report®, coupled with
the fact that 1a-d are not well-accounted for as HCHO equivalents via widely used analytical methods, neces-
sitates broader investigation. The further study of 1a-d as well as other challenging e-cigarette aerosol toxins,
including acrolein and acetaldehyde, will be reported in due course.
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