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Regional genetic diversity for NNV 
grouper viruses across the Indo-
Asian region – implications for 
selecting virus resistance in farmed 
groupers
Wayne Knibb1, Giang Luu1,2, H. K. A. Premachandra1, Ming-Wei Lu3 & Nguyen Hong Nguyen   1

Grouper aquaculture around Asia is impacted by the nervous necrosis virus (NNV) and, in response, host 
resistance to this infection is being considered as a trait for selection. However efficient selection may 
be confounded if there are different genetic strains of NNV within and between regions and over years. 
This study uses statistical approaches and assessment of “characteristic attributes” (i.e. nucleotide 
positions that discriminate among strains) to assess whether published and new NNV RNA2 cds 
sequences show genetic differentiation over geography, host species and years. Rather clear evidence 
was found for regional strains of NNV. Interestingly, most of the geographic defining “characteristic 
attributes” were in codon position three, and not translated into differences for the protein capsid (i.e. 
they were synonymous variations), suggesting that while NNV strains were geographically isolated 
and had diverged in different regions for RNA sequences, selection had largely conserved the protein 
sequences among regions. The apparent selection constraint on the capsid protein may mitigate the 
risk that despite geographic subdivision, NNV strain variability will confound genetic selection for host 
resistance. The existence of regional Asian NNV strains may suggest that hatcheries are at risk from 
NNV not only from imported material but also from endemic reservoirs.

Recently new genetic selection and domestication programs have commenced for large marine fish1. Various 
groupers (subfamily Epinephelinae of the family Serranidae) including giant groupers (Epinephelus lanceolatus), 
tiger groupers (E. fuscoguttatus) and humpback groupers (Cromileptes altivelis), compose one important new 
group of large marine species for domestication and selection. However, a viral disease, “viral nervous necrosis 
(VNN)” has been reported across grouper production centers in Taiwan, Malaysia, Indonesia and elsewhere 
around Asia2, 3. The causative agent of VNN in groupers and other marine fish is the nervous necrosis virus 
(NNV) of the genus Betanodavirus, within the family Nodaviridae (International Committee on Taxonomy of 
Viruses) (Harikrishnan et al.4 for review).

Many authors believe NNV is a serious threat to future marine fish aquaculture (including groupers). 
Pakingking et al.5 concluded “Catastrophic mortalities inflicted by piscine betanodaviruses remain as a major 
deterrent in the sustainable aquaculture of several species of groupers reared in ponds and floating net-cages in 
the open sea”. In a similar vein, Harikrishnan et al.4 concluded “viral nervous necrosis (VNN) caused by nerv-
ous necrosis virus (NNV) is one of the most important viral diseases that cause mass mortality in more than 39 
marine fish species in 10 families”. Likewise Munday et al.6 concluded “In the last decade betanodavirus infections 
have emerged as major constraints on the culture of marine fish in all parts of the world”. Several recent reviews 
recognize betanodavirus as a significant problem for marine fish farming almost world wide7–9.

Fish host NNV resistance could be a key trait for future selection and the estimated heritability for NNV 
resistance in Atlantic cod appears to be high10–12. Moreover QTLs for resistance to NNV in Asian Sea Bass were 
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reported13. However, notwithstanding such promising genetic selection opportunities, there are substantial 
knowledge gaps about the genetic diversity of NNV among Asian grouper hosts: are there many strains within 
and between regions, perhaps with different virulence so that each region or NNV strain may then require differ-
ent selection programs, or not? Moreover, is there evidence that NNV strains vary over time? Genetic programs 
are long term and expensive undertakings so selecting for resistance to the appropriate strain/s is an important 
consideration, but one with a relative absence of knowledge for Asian grouper NNV. Without some clarity, we 
may select for inappropriate NNV strains, or see new NNVs transported from a different region for which the 
grouper have no resistance.

On a global scale, and considering many fish host species, previous phylogenetic analyses have resolved cer-
tain geographic and other patterns for NNV. For example there appears to be clustering of VNN genotypes into 
four main groups that include the so called barfin flounder nervous necrosis virus (BFNNV), the tiger puffer 
nervous necrosis virus (TPNNV), the striped jack nervous necrosis virus (SJNNV) and the red spotted grouper 
nervous necrosis virus (RGNNV) based on molecular phylogenetic analysis and percent nucleotide identity14. 
These four clusters are somewhat associated with water temperatures (and also hosts), for example there is a ten-
dency for BFNNV and TPNNV genotypes to occur in temperatures up to 20 °C, for SJNNV to occur from 20 to 
25 °C and for RGNNV for occur from 25 up to 30 °C15.

Within the red spotted grouper nervous necrosis virus (RGNNV) strain, to which all Asian grouper NNV 
belong, however, no one so far has reported evidence of genetic subgrouping by region, species or year in a formal 
statistical manner, especially when we restrict hosts just to Asian grouper. Available Genbank data show all Asian 
grouper NNV RNA2 RNA sequences, from Japan to Indonesia, are very closely related, varying by just one or 
two percent; this closeness means there are challenges to determine phylogenetic relationships especially when 
using traditional DNA or RNA distance based methods. However, Lowenstein et al.16 have found for tuna that 
particular polymorphic nucleotide positions (characteristic attributes) may categorically discriminate groups/ 
species previous not previous distinguished using traditional analyses based on percent RNA or DNA similarity. 
Ruan et al.17 reported certain polymorphic nucleotide positions could discriminate among strains of the SARS 
virus while Zou et al.18 reported that “character based” bar coding methods outperformed other approaches in 
discriminating closely related sea snails. Within aquaculture, these approaches of identifying nucleotides that are 
present in one group but not others have yet to be considered to a large degree, although our group have applied 
these ideas of characteristic attributes to recently resolve a very long standing taxonomic issue in oysters, whether 
the very closely related Crassostrea gigas and C. angulata are one or two species, as a prelude to conducting selec-
tion on the now identified C. angulata in Vietnam19.

The goal of this report was to collate the most comprehensive data set to date on NNV RNA2 sequences for 
warm water Asian marine finfish, whether published and/or lodged in Genbank over the last 20 years, including 
some sequence data produced by our group for Vietnamese and Taiwanese grouper, to statistically test the data 
for evidence of NNV strain variation that associates with geography, host species and year and also to determine 
whether there are “characteristic attributes” that indicate regional (or host, year) specific differences among the 
strains. This knowledge will help guide future selection criteria/NNV strains to consider in future genetic selec-
tion programs.

Materials and Methods
New samples from Vietnam and Taiwan.  As a prelude to sequencing, a large number of grouper samples 
(nearly 200) were collected as part of routine Veterinary surveillance, from different species and hybrids from 
the National Broodstock Centre for Mariculture Species, NBCFMS in Cat Ba, Haiphong, Northern Vietnam in 
September 2015 and from Qieding, Kaohsiung, Taiwan in July 2015 (Supplementary Fig. S1) and tested for the 
presence of NNV using primers from Nishizawa et al.20. Samples were taken, typically, at a time there were general 
mortalities of larvae, but other than being alive or dead, no other distinctive behaviours were noted; i.e. larval fish 
in this study looked normal. Note: the lack of symptoms for larval fish infected with NNV was also reported21.

RNA extraction and sequencing.  Total RNA was isolated from the tissue samples using Trisure reagent 
according to the manufacturer’s instructions (Bioline, AUS). cDNA synthesis was conducted from the total 
genomic RNA using the QuantiTect Reverse Transcription kit (Qiagen) following manufacturer’s instructions. 
Briefly, a genomic DNA elimination reaction was performed by mixing a solution of 2 µL of dissolved template 
RNA (500 ng/µl) with 2 µL g DNA Wipeout Buffer 7x and 10 µL RNase-free Water with an incubation at 42 °C 
for 2 minutes, then placed immediately on ice. The reverse transcription reaction was carried out for 30 minutes 
at 42 °C and then incubated at 95 °C for 3 minutes with the reaction mixture with final volume of 20 µL: 4 µL 
Quantiscript RT Buffer, 1 µL Quantiscript Reverse Transcriptase, 1 µL RT Primer Mix and 14 µL genomic DNA 
elimination.

The RNA2 segment of nervous necrosis virus was amplified using the set of primers described in Ransangan 
and Manin3. The forward and reverse PCR reactions were conducted separately in a 50 μL total volume con-
sisting of 25 μL MyTaq™ Red Mix (Bioline, AUS), 19 μL Rnase-free water, 2 μL each primer (10 µM) (forward 
and reverse) and 2 μL cDNA. The amplifications were performed using an Eppendorf Mastercycler Pro Thermal 
Cycler with an initial denaturation at 94 °C for 3 minutes, followed by 30 cycles of denaturation at 94 °C for 
30 seconds, annealing at 58 °C for 30 seconds and extension at 72 °C for 30 seconds and final extension of 72 °C 
for 5 minutes. PCR products from these amplifications were subsequently sent to Macrogen Inc. (Seoul, Korea) 
for sequencing. Sequencing reactions were conducted using the ABI PRISM Big Dye TM Terminator Cycle 
Sequencing Ready Reaction Kit (PE Biosystems, Foster City, CA, USA) and electrophoresis by the ABI PRISM 
3730xl DNA Sequencer. Nucleotide sequences were analysed and edited using BioEdit v 7.0.5.
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Collation of published sequences.  Genbank (the National Centre for Biotechnology Information (NCBI) 
(http://www.ncbi.nlm.nih.gov/)) was searched in various ways for NNV sequences. First, the complete coding 
RNA sequences for the NNV RNA2 gene from a giant grouper host (GB accession number AY721615) was blasted 
against all sequences in Genbank, and over 500 sequences recovered with at least 25% similarity. All complete 
coding RNA sequences from all groupers in the Indo-Asian region were retained along with those from any other 
species that had similarity (to AY721615) at least equal to the most distant NNV from a grouper host, these non 
grouper species included mostly barramundi (Lates calcarifer). Second, Genbank was searched for “Grouper” and 
“NNV” and “RNA2”, and all NNV complete coding RNA sequences from the Indo-Asian region collated. A total 
of 75 sequences were collated. To this we added (details following) a further four unpublished sequences reported 
for the first time here from Vietnamese humpback grouper (C. altivelis) and three from Taiwanese Giant x Tiger 
hybrids (E. lanceolatus ♂ x E. fuscoguttatus ♀) (Supplementary Table S2). Only the protein encoding region of the 
sequences was used for analyses. Full protein capsid encoding sequences of all 82 sequences, published and new, 
is given in Supplementary Table S2.

Analyses of sequences.  Alignment of nucleotide sequences was performed using CLUSTAL W22. In the 
1017 bp ORF encoding the coat protein there were 230 variable nucleotide sites which were considered, and 
referred to, as “loci” for the following tests. Analysis of molecular variance (GenAlEx23) assessed the probabilities 
for differences among regions over all loci, and for each locus separately. Each region group needed at least two 
cases for statistical testing, so for example, the testing for region differences would have had 13 regions consid-
ering the 82 samples (Fig. 1). A region typically corresponds to a country, such as Japan or Taiwan, but for large 
countries where sites were separated by significant geography, such as North vs South China and East (Borneo) vs 
West (Peninsular) Malaysia, regions within countries were considered.

To address the possibility of lack of independence of some samples arising from a short term spread and prop-
agation of a new infection of one viral genotype in a given hatchery, the data were also analysed at each of various 
culling steps that attempt to remove potentially non independent samples within hatcheries. First, 15 samples 
that had the exact same sequence (genotype) as another case from the same location, same year and same species 
were removed; 67 samples were available after this culling. The second culling included given samples that came 
from the same location, year and host species as another sample (leaving only one sample per species in a given 
place and time); 55 samples were available after this round of culling. The intention was to remove cases that may 
represent propagation in a hatchery, so an exception to the rule is that wild fish samples even if from the same 
species and location were not culled at this stage. Last, the third culling was for samples that came from the same 
site and same year as other samples; 40 samples remained after this round of culling. At this stage, even different 
wild fish were culled if they came from the same site at the same year. Similar culling procedures applied when 
testing for “species” grouping, and for “year” grouping. When a group contained only one case after culling, the 
single case was pooled with a neighbouring group (for region and year) or included in a group termed “other” for 
the species analyses.

Construction of phylogenetic trees based on RNA2 nucleotide and amino acid sequences were conducted by 
MEGA 724 using the maximum likelihood method.

Statistical ANOVA model.  The analysis of variance (ANOVA) model assessing jointly effects of location, 
species and year on “percent RNA sequence relatedness” to a consensus sequence take the following form:

yijkl = µ + Ri + Sj + Yk + eijkl

Where

yijklmn = observations, i.e. “percent RNA sequence relatedness” to a consensus sequence
µ = mean
Ri = region type
Sj = species
Yk = year
eijkl = error/residual

Analyses were conducted using SPSS software.

Relative synonymous codon usage analysis.  Relative synonymous codon counts were calculated for 
each of the main host fish species groups, namely, grouper and barramundi, using MEGA 724 and counts were 
compared for differences between groups using a Chi Square test.

Bayesian Tip-association Significance testing (BaTS).  Phylogeny-trait (geographic location) asso-
ciations were tested including 80 sequences (2 Australian samples were removed since they were appeared to 
be outliers) using Bayesian Tip-association Significance testing (BaTS) software25. Posterior sample of trees 
(PST) were obtained through Bayesian Markov-Chain Monte Carlo (MCMC) analysis using BEAST software26. 
BEAST was run for 10 million MCMC chain lengths (sampled every 1000 generations; burn-in 10%) with the 
Hasegawa-Kishino-Yano + Gamma (HKY + G) model, assuming coalescent constant population priors with 
relaxed lognormal clock27. The convergence for all parameters (effective sample size >200) was assessed using 
TRACER v1.6 (http://beast.bio.ed.ac.uk/Tracer). The resulting trees were used to test whether each region was a 
monophyletic clade (i.e. assessed for phylogeny-trait statistics considering 10 geographic regions - India, Malaysia 
1, Malaysia 2, Singapore, Vietnam, Taiwan, China South, China North, Korea and Japan) using BaTS software25.

http://www.ncbi.nlm.nih.gov/
http://S2
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Figure 1.  “Characteristic attributes” for RNA2 NNV gene. Abbreviations for column 1: Aus N = North 
Australia, Aus E = East Australia, Indon = Indonesia, Mal 1a = Kota Kinabalu, Sabah, Malaysia, Mal 
1b = Tuaran, Sabah; Malaysia, Mal 1c = Sandakan, Sabah, Malaysia, Mal 1d = UMS hatchery, Sabah, Malaysia, 
Langkawi; Mal 2 = West Malaysia, Singap = Singapore, Vietna = Vietnam, Taiwan = Taiwan, China S = South 
China, China C = Central China, China N = North China, Korea = Korea, Japan = Japan.† Different groups that 
were culled to reduce impact of pseudo-replication, see details in following text. Abbreviations for column 4: 
F = fish, FW = fish wild, FY = fish wild yearling, C = cell culture. Additional tests for regional differences were 
conducted using Bayesian Tip-association Significance (BaTS) tests; the association index and the parsimony 
score statistic assessing regional differences among all samples were both statistically significant (P < 0.05) as 
were tests of monophyletic clade (MC) sizes for each region, except for Japan and South China.
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Data availability.  All data used in this report are available in the Supplementary Figures and Tables.

Results
New RNA2 sequenced from Vietnam and Taiwan in this study.  Four C. altivelis Vietnamese larvae 
and three E. lanceolatus ♂ × E. fuscoguttatus ♀ larvae from Taiwan were sequenced for the RNA2 gene.

The 1338 bp RNA2 sequence from all four Vietnamese and three Taiwanese samples had a single 1017 bp ORF 
encoding the coat protein. The coding region of the coat protein is predicted to include 338 amino acids (protein 
molecular mass of 37.07 kilodaltons), starting at ATG codon (nucleotide 4) and terminating with stop codon TAA 
(nucleotide 1017). The NNV sequences obtained from Vietnamese Humpback grouper (C. altivelis) in this study 
are submitted to GenBank with the accession number KU705815.

VNN sequences from Asian grouper used in the statistical analyses.  The protein capsid encoding 
RNA sequences from the 82 collated NNV RNA2 sequences had high similarity considering the 1017 bp protein 
encoding regions (all sequences in Supplementary Table S2, similarity matrix in Supplementary Fig. S3), with an 
average similarity between pairs of 98.1%, and the most distant pair had 91.5% identity. This maximum distance 
involved Australia bass which has a rather atypical sequence from all other sequences. Removal of this one outlier 
showed the average similarity between pairs was 98.3%, and the most distant pair had 96.0% identity; comparable 
similarity percentages restricting the data set just to groupers (n = 39) were 98.5% and 96.5% respectively. There 
were 230 nucleotide positions of the 1017 that varied over the cds, and most analyses focused on these variable 
nucleotide positions (Supplementary Table S4).

Characteristic attributes.  Regional grouping.  Regional differences were evident for a large number of 
nucleotides positions. Analysis of molecular variance tests (AMOVA23) recorded, out of 230 polymorphic sites, 
38 nucleotide positions statistically significantly from zero considering region at P ≤ 0.05; an additional 36 at 
P ≤ 0.01; and the probability when testing all loci together was ≤0.01 (data showing significance levels for each 
nucleotide position of Fig. 1 are in Supplementary Fig. S5). While there were 1017 nucleotides in the complete 
coding sequences in each of the 82 samples considered, only 230 contained two or more nucleotide variants at 
a given nucleotide position and would qualify as candidates for statistical testing. However, of the 230, just, 102 
contained three or more different alleles; every case of P ≤ 0.01 was restricted to nucleotide positions where 
there were three or more different bases at a given nucleotide position; this probably reflected the power of the 
statistical test and relationship with level of polymorphism. Thus we can say that of 102 moderately polymorphic 
nucleotide sites (with at least three variable nucleotides), more than half recorded statistically significant differ-
ences among regions.

Every Indonesian and East Malaysian (Borneo) sample invariably had the same (less common) nucleotides at 
positions 100, 581, 596 and 942 (although a smattering of samples from other regions also had the same nucleo-
tides as some of these positions). These characteristic attributes, hereafter referred to as “CATS”, were present in 
two different grouper species as well as barramundi, were present in multiple sites within Borneo and evident in 
all (and different) years and collection times (2007 to 2009). Considered separately, each of the “CATS” in highly 
statistically significant (Fig. 1 and Supplementary Fig. S5), and together, with a single exception (AY721615), they 
comprise a diagnostic genotype unique for Borneo and Indonesia irrespective of host fish species.

“CATS” were also evident for Vietnam, and all samples share the same nucleotides at positions 136, 223, 235, 
407, 494, 749, 917, 963. Together they comprise a diagnostic genotype almost unique to Vietnam but interestingly 
all samples from Norther China share, with one exception (596), the same genotype for these “CATS”, and the 
Chinese samples come from three different species (flounder, sole, grouper) and from three different years (2006, 
2012, 2013). While four of the five Vietnamese samples came from the same species, same location and same 
year (Humpback grouper, North Vietnam, 2015), the fifth, with the same “CAT” genotype, came from a different 
species and different year (Orange Spotted Grouper, 2007). Together with the data from Northern China, this 
described genotype would indicate these samples are not randomly drawn from a general population, nor are 
they solely outcomes of propagation in a given hatchery (although the four Humpback Grouper samples may be).

Other “CATS”, where only one nucleotide is found in all samples in a given region, are highlighted in darker 
grey in Fig. 1; “CATS” where a given country mostly has one nucleotide at a given position is highlighted in 
medium grey, and signature genotypes, that characterise a region, composed of a number of “CATS” are given in 
light grey (see accession numbers HQ859930, HQ859935, HQ859938, HQ859939).

Culling to reduce impact of “pseudo-replication”.  Removing all 15 samples that had identical sequences to other 
same species samples from the same site and year (cases designated by a “3”, column 5, Fig. 1) left 67 remaining 
sequences for analysis (cases designated by a “0”, “1” or “2”, column 5, Fig. 1); this made little change to the prob-
abilities for regional differences recorded using all 82 samples (Supplementary Fig. S5).

Likewise, removing a further 12 hatchery samples which came from the same location, year and host spe-
cies as other samples (cases designated by a “2”, column 5, Fig. 1), left 55 samples for analysis (cases designated 
by a “0” or “1”, column 5, Fig. 1), but did not substantially alter the pattern of significant cases among regions 
(Supplementary Fig. S5). Wild fish were except from culling at this step as the intention was to remove cases of 
pseudo-replication in the hatcheries.

The last culling was for a further 15 samples that came from the same site and same year as other samples (cases 
designated by a “1”, column 5, Fig. 1), leaving 40 samples for analysis (cases designated by a “0”, Fig. 1). Even wild 
fish meeting these criteria were culled at this point. With these 40 samples, the incidence of significant cases was 
reduced somewhat, but even in this most extreme vetting, AMOVA analyses showed there were still a total of 
eight cases (nucleotide positions) with statistically significant differences among regions at P ≤ 0.05, a total of eight 
cases (nucleotide positions) with statistically significant differences among regions at P ≤ 0.01 and the test over all 
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loci (all nucleotide positions) was significant (P ≤ 0.01) (Supplementary Fig. S5). After culling, there were only 65 
nucleotide (allele) positions with three or more different nucleotides (the rest of the 230 were now monomorphic 
or had one to two nucleotide differences among the 40 samples). So we can say that of 65 moderately polymor-
phic nucleotide sites (with at least three variable nucleotides of the 40 NNV samples), more than 10% (i.e. eight) 
recorded highly statistically significant nucleotide differences among regions even under extreme culling (which is 
about a ten fold higher rate of highly significant cases than that expected by chance alone).

Species grouping.  Species differences at given nucleotide positions were also detected considering all samples, 
albeit at about half the incidence as that detected above for regional differences (AMOVA recorded 16 nucleotide 
positions statistically significantly from zero, P ≤ 0.05; 21 with P ≤ 0.01 and the overall probability when testing 
all loci together was P ≤ 0.01 (Supplementary Fig. S5). There appeared to be a high degree of coincidence in the 
probability levels for nucleotides considering regions and considering species (r = 0.637, P < 0.001, considering 
all 230 nucleotide positions). “CATS” that were predominately restricted for one fish host species were not typical, 
with some rare exceptions (e.g. nucleotide 193); within countries, “CATS” are shared across species, e.g. barra-
mundi and grouper share common “CATS” in East Malaysia and Indonesia (Fig. 1). On the other hand, with one 
exception (Column 6, Fig. 1), different species did not have completely identical RNA2 sequences.

The various culling steps to reduce “pseudo-replication” culminated in the most extreme culling with 40 sam-
ples remaining (cases designated by a “0”, Fig. 1) and relative few cases of statistically significant differences 
among species, namely five cases of statistically significant nucleotide differences among species, only one at 
P < 0.01 from among 65 moderately polymorphic nucleotide sites (i.e. those with at least three variable nucleo-
tides). Such an incidence of statistically significant results could be accounted for by chance or Type I error. The 
test over all loci was not statistically significant (P > 0.05).

Year grouping.  Yearly differences were also detected considering all samples, again at about half the incidence as 
that detected above for regional differences (AMOVA recorded 14 statistically significantly from zero, P ≤ 0.05; 
26 with P ≤ 0.01 and the overall probability when testing all loci together was P ≤ 0.01; Supplementary Fig. S5). 
Again, there appeared to be a high degree of coincidence in the probability levels for nucleotides considering 
regions and considering years (r = 0.642, P < 0.001, considering all 230 nucleotide positions).

The various culling steps to reduce “pseudo-replication” culminated in the most extreme culling with 40 sam-
ples remaining (cases designated by a “0”, Fig. 1) and then there was only one case of a statistically significant 
difference among species, namely one at P < 0.01 from among 65 moderately polymorphic nucleotide sites (i.e. 
those with at least three variable nucleotides). The test over all loci was not statistically significant (P > 0.05).

For some regions, the same “CATS” were recorded over years, for example, the “CATS” at nucleotides position 
144 for Singapore were evident from 1991 through to 2000, and several “CATS” for North China (nucleotide posi-
tions 135, 222, 234, 405, etc.) were evident from 2006 to 2012. Analogous results were evident for Vietnam and 
Western Malaysia (Borneo) but not for India. On the other hand, with one exception (Column 6, Fig. 1), different 
years did not have completely identical RNA2 sequences.

Analysis of variance using RNA percent similarity as the dependent variate.  A consensus 
sequence for all the polymorphic nucleotide sequences was generated (Supplementary Table S4), then “percent 
RNA similarity” to the consensus was calculated for each sample (Supplementary Fig. S6); this variate ranged 
from 67.3% identity (for Australian bass) to 98.6% for Orange Spot grouper. The bass seemed to be an outlier as 
the next most divergent sample was Malaysian barramundi at 87.3% similarity, noting all these percentages refer 
to just the polymorphic nucleotide data, and not the whole coding region sequences. On one hand, the metric 
of “percent RNA similarity” contains less information than the preceding data on variable nucleotide positions, 
but on the other hand, “percent RNA similarity”, as a continuous variate, permits simultaneous partitioning of 
variance among the predictor variates (location, species, and year).

An ANOVA (Section 6.3.1 Materials and Methods), using all the samples and the three predictor variates 
(region, species, year), showed that all predictor factors accounted for a significant part of the variation in “per-
cent RNA similarity” (for region, ANOVA F11,47 = 12.135, P < 0.001; for species, ANOVA F11,47 = 2.840, P < 0.01; 
for year, ANOVA F12,47 = 4.056, P < 0.001). Repeating these analyses, but after the most extreme culling (remov-
ing all samples that come from the same year and site as another) still indicated highly statistically significant dif-
ferences only for region (for region, ANOVA F10,6 = 14.288, P < 0.01; for species, ANOVA F10,6 = 4.589, P < 0.05; 
for year, ANOVA F11,6 = 0.794, P > 0.05).

Maximum Likelihood tree.  The maximum likelihood tree (Fig. 2) shows some concordance with the 
regionality of NNV strains detected by “CATS” (Fig. 1), however the tree analysis revealed far fewer groupings 
that were statistically significantly different (branch numbers 95 or greater) than previous revealed using individ-
ual nucleotides. Confidence of the tree branches (Fig. 2) can be inferred from the number labelled on branches 
which indicate the proportion of times out of 1000 trials the same node was formed (using Mega 724).

Potentially confounding factors.  Effect of cells lines on the data.  Considering all samples (Fig. 1) there 
were 51 samples taken from fish tissue that were sequenced, and 16 samples from cell lines with viruses originally 
derived from fish, and 15 samples of unknown origin. Because propagation in cell tissue culture may represent 
new selective environment/s and/or foster the retention of new mutations and cause greater genetic variance, 
samples from fish were compared with those from cell lines. Analyses of molecular variance showed there was 
only four percent variation among groups which was not statistically significant. Moreover, similar results were 
evident in the preceding analyses whether data from cell cultures was included or not.

http://S5
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The average pair wise RNA sequence percent similarity among all the 15 cell culture lines was 97.5% and 
the most dissimilar pair had 91.5% identity; respective values after removing the anomalous single Australian 
bass sample were 98.4% and 97.5%; respective values for the grouper only samples were 98.3% and 96.0% (see 
Supplementary Fig. S3), i.e. after discounting the anomalous Australian bass sample, there was a greater range 
in sequence variation among the fish samples than among the tissue culture samples considering the whole 
data set.

Figure 2.  Maximum Likelihood tree for NNV RNA2 RNA sequences. Numbers at tree branches indicate the 
percentage of replicate trees in which the same clusters are found in the bootstrap tests of 1000 replicates. Letters 
in brackets after years refer to months of the year. (W) refers to wild fish; (Y) to wild yearling fish.
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Sequence diversity within fish and in “outbreaks”.  Considering the new RNA sequences generated in this 
report, each of the RNA2 sequences from three humpback grouper in Vietnam, sampled at the same time 
from the same hatchery, were all 100% identical. Similarly, all three Taiwanese giant grouper samples sampled 
at the same time and from the same hatchery were 100% identical (Supplementary Table S2). If there had 
been another strain, say at 0.5 frequency in both Vietnam and Taiwan, then chance of failing to detect it is 
less than 2% (even if another strain had been present in both stocks at a frequency of only 30%, the chance of 
failing to detect in among the six samples is about 10%). Thus it appears unlikely there were different NNV 
sequences in the infections at moderate frequencies. Apparently similar results, of identical RNA2 genotypes 
were reported in most other grouper data sets where there were multiple RNA2 sequences for the same spe-
cies in the same hatchery at the same time, that is, these samples tended to have identical RNA2 genotypes 
and examples included Humpback grouper in Indonesia, Tiger grouper in Indonesia, Tiger Grouper in East 
Malaysia and in West Malaysia. Barramundi, however, tended to show slightly different genotypes in the same 
time/location (e.g. India, Malaysia).

Translated protein sequence.  Of the 50 polymorphic RNA sites tabulated in Fig. 1, 42 were in codon position 
3 (RNA polymorphic sites in codon 1 or 2 are in bold, top row, Fig. 1). The average divergence among pairs of 
samples for protein sequences, considering all 82 samples listed in Fig. 1 was just 1% (Supplementary Fig. S7), 
and there was little evidence for the pronounced protein “CATS”, as seen for the RNA, that associated with region, 
species or year. The maximum likelihood tree for the protein sequence (Fig. 3), notwithstanding some regional 
clustering, did not have significant nodes save for one exception. Codon-based test of purifying selection (MEGA 
724) indicated statistically significant (P < 0.001) excess of synonymous substitutions over nonsynonymous sub-
stitutions per site when considering all sequences, just those for grouper or just those for barramundi (average 
numbers of synonymous sites per codon for all samples, grouper and barramundi, respectively, were 1.152, 0.582, 
0.317, and respective values for nonsynonymous sites were 0.152, 0.042, 0.089). On the other hand, relative syn-
onymous codon counts for NNV were not statistically significantly different between two major host fish species 
groups, namely, grouper and barramundi.

Discussion
High level of RNA and protein similarity across large regions.  From Japan to India, and considering 
various marine fish hosts, the average sample pair difference for NNV RNA2 cds was just 2% for percent RNA 
sequence similarity and 1% for the translated protein sequence. At face value, one could infer rather heavy evo-
lutionary constraints on the virus throughout the region and among species, or perhaps co-transport with hosts 
among regions for commercial production is homogenizing the virus groups. These first impressions are reflected 
in the literature where previously no formal statistical analysis revealed genetic diversity of Asian RGNNV that 
significantly associated with region, host or time.

Characteristic attributes identify regional strains.  However, our analyses using “characteristic attrib-
utes” and statistical approaches such as AMOVA and n-way ANOVA, and Bayesian Tip-association testing 
(BaTS) and using the largest data set so far compiled for Asian grouper (and other marine Asian species), show 
clear regionality in RGNNV strains. This is the first clear evidence of regionality for RGNNV in the Indo Asian 
region, but interestingly a large survey in Southern Europe by Panzarin et al.28 also detected regionality (geo-
graphic subdivision) of mostly RGNNV strains. This understanding, of regionality for RGNNV strains, is a com-
pletely novel one for Asian marine species, and possibly has some implications for selective breeding programs 
for host resistance in different regions, and also possibly for general management and prevention of this disease. 
Far more cases of statistically significant regional differences were detected using “characteristic attributes” than 
using maximum likelihood tree analyses, lending support to the postulate that characteristic attributes can better 
discriminate closely related species than traditional phylogenetic analyses16, 18.

Our evidence for species specific and year specific “CATS” is somewhat less than for regional differences. 
Actually, there is evidence of sharing of “CAT” genotypes among species, such as grouper and barramundi 
in Eastern Malaysia and Indonesia, and flounder, grouper and sole in North China (Fig. 1) which questions 
whether NNV has yet evolved specificity for different marine finfish in Asia. Panzarin et al.28, in their large survey 
from Southern Europe, considered many local host species (sea bass, mullet, sea bream etc.) and observed no 
“species-specific” mutations in the RNA2 region. Our evidence for temporal stability of NNV strains over years is 
mixed, on one hand, the same “CATS” are evident over six or so years in Northern China, and in Eastern Malaysia 
over two years, in Vietnam over eight years but not in India over six years (Fig. 1); on balance we cannot conclude 
that each year brings a new wave of very different genotypes to a particular region, on the contrary, the overall 
picture is one of genotype stability over years in given regions.

Potentially confounding effects.  There is a possibility that the levels of RNA variation would be artifi-
cially increased after passage in cell cultures, because of the different selective pressures in tissue culture than 
those found in the fish host. Actually, we found no evidence of such a hypothetical effect, and indeed there 
was slightly more variation in sequences from fish hosts than from cell cultures; moreover AMOVA tests did 
not show significant differences between the sequences from fish hosts and from cell lines. Accordingly, there 
does not appear to be any evidence based reason not to include the RNA sequences from cell cultures in our 
analyses on the grounds that they are intrinsically more variable, or intrinsically more different, than sequences 
from fish.

Another potentially confounding matter was that of substantial diversity of NNV sequences within hatcheries. 
We did not find evidence of much if any diversity for the same species, same hatchery and same sampling time for 
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grouper species, although some barramundi samples from India showed some slight differences from the same 
collection time and place; in any case such slight differences were clearly, ipso facto, insufficient to confound the 
analyses that assessed regional differences (i.e. regional differences were statistically significant).

RNA genetic diversity is greater than the capsid protein diversity.  The RNA sequence considered 
here was from the RNA2 gene, which encodes the virus protein capsid protein. Interestingly, the translated RNA2 
sequences showed even less variation than the RNA with less evidence of region specific amino acid “CATS”; 

Figure 3.  Maximum likelihood tree for NNV RNA2 translated protein sequences. Numbers at tree branches 
indicate the percentage of replicate trees in which the same clusters are found in the bootstrap tests of 1000 
replicates. Letters in brackets after years refer to months of the year. (W) refers to wild fish; (Y) to wild yearling fish.
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indeed most RNA “CATS” were found at codon position three which did not lead to changes in the capsid pro-
tein. Statistical tests indicated a very substantial excess of synonymous substitutions over nonsynonymous sites, 
indicating “purifying” selection. Every node in the maximum likelihood tree for the protein sequences was not 
significant for clusters save one. A parsimonious model to account for this interesting discrepancy between the 
RNA sequence and the protein is that strains to some degree are geographically isolated and free to diverge espe-
cially at RNA triplet positions not tightly constrained by selection (i. e. most codon 3 positions), but those sites 
(RNA codon positions one and two) where changes can lead to changes in the capsid protein, are more tightly 
constrained by selection. Balancing all the evidence, the null hypothesis is that the regional Asian strains of NNV 
are functionally equivalent which may give encouragement that selection for resistance in one region will lead to 
fish capable of resisting NNV in another. Indeed various have reported that all RGNNV strains that were tested 
in Asian and Europe were serologically related (within each region) and had the same serotype despite different 
RNA genotypes, further supporting the hypothesis that selection for one RGNNV RNA genotype will give rise to 
resistance for all within a region29, 30. If this hypothesis is confirmed, then variation evident in the RNA sequences 
and “CATs” may become less relevant to the issue of genetic selection, but still may inform about the epidemiol-
ogy of the pathogen (see following).

Implications for disease management.  Munday et al.6 stated “Lack of knowledge of the epidemiology of 
the diseases caused by nodaviruses, except for vertical transmission of the pathogen in some species, has impeded 
the development of control measures”. By showing the existence of regional strains of RGNNV in Asian marine 
fish for the first time, our study points to the existence of regional, endemic sources of NNV that may recurrently 
infect local hatcheries. This understanding is consistent with reports of finding NNV in wild fish31. So in addition 
to taking precautions not to import NNV along with imported broodstock, grouper hatcheries may also now con-
sider the possibility that NNV can enter the hatcheries from local reservoirs from local wild fish carrying NNV.

Conclusions

•	 RNA sequence variation shows the existence of regional Asian RGNN strains
•	 Translated protein differences showed less regionality than the RNA data
•	 While gene flow appears largely restricted among regions, selection apparently constrains variability of capsid 

protein sequence
•	 The apparent selection constraint mitigates the risk that despite geographic subdivision, NNV strain variabil-

ity will confound genetic selection for host resistance
•	 Regional Asian RGNN strains may suggest hatcheries are at risk from NNV not only from imported material 

but also from endemic reservoirs.
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