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Tailoring Eigenmodes at Spectral 
Singularities in Graphene-based PT 
Systems
Weixuan Zhang, Tong Wu & Xiangdong Zhang

The spectral singularity existing in PT-synthetic plasmonic system has been widely investigated. Only 
lasing-mode can be excited resulting from the passive characteristic of metallic materials. Here, we 
investigated the spectral singularity in the hybrid structure composed of the photoexcited graphene 
and one-dimensional PT-diffractive grating. In this system, both lasing- and absorption-modes can 
be excited with the surface conductivity of photoexcited graphene being loss and gain, respectively. 
Remarkably, the spectral singularity will disappear with the optically pumped graphene to be lossless. 
In particular, we find that spectral singularities can exhibit symmetry-modes, when the loss and gain 
of the grating is unbalanced. Meanwhile, by tuning the loss (gain) of graphene and non-PT diffraction 
grating, lasing- and absorption-modes can also be excited. We hope that tunable optical modes at 
spectral singularities can have some applications in designing novel surface-enhanced spectroscopies 
and plasmon lasers.

Since the pioneering work of Bender et al.1, who showed that the complex PT-symmetric potentials can have a 
real spectrum, significant attention has been devoted to quantum Hamiltonian systems with PT-symmetry2–4. 
Beyond some non-Hermiticity threshold, typically called the exceptional point, PT-symmetric systems can dis-
play an abrupt phase transition and the corresponding eigenspectra become complex. Recently, the concept of 
PT-symmetry has been fruitfully extended to wave optics. Photonic platforms are ideally suited to implement the 
structures with PT-symmetry, which is directly translated into a requirement for the arrangement of elements 
with balanced gain and loss5–25. Various intriguing optical phenomena have been revealed in PT-symmetric sys-
tems, such as asymmetric light propagation7–9 and invisibility10, 11, Bloch oscillation of energy12, coherent perfect 
laser absorber13–17, PT-symmetric metasurfaces18–21, single-mode laser22, 23, reversing the pump dependence of a 
laser24 and loss-induced suppression and revival of lasing25.

More recently, PT-symmetric systems built using plasmonic elements have attracted increased attention. The 
strong interaction between surface plasmons and electromagnetic field can enhance the extraordinary properties 
associated with exceptional points26–30. Besides the exceptional point, the spectral singularity31, 32 existing in the 
PT-plasmonic system, which is related to scattering resonance of the non-Hermitian Hamiltonian and manifests 
itself as giant transmission and reflection with vanishing bandwidth, also has unique features. For example, hugely 
anisotropic optical scattering33, three-dimensional light confinement34, and loss-induced super scattering35, 36.

On the other hand, there is a rapid progress in the field of graphene plasmonics motivated by the unique 
electrical and optical properties of graphene37, 38. For example, nanopatterned graphene can be used as an active 
medium for infrared electro-optic devices39, 40. Meanwhile, loss induced amplification of graphene plasmons41, 
regulation of energy distribution in graphene42, and singularity-enhanced sensing based on the PT-graphene 
metasurface43, as characteristics of exceptional point behaviors, have been demonstrated theoretically. However, 
characters of spectral singularities in graphene-based PT systems has not been discussed.

In this work, we systematically investigate characteristics of the eigenmode at spectral singularity when 
the electromagnetic field, in terahertz (THz) regime, is incident on an optically pumped monolayer graphene 
underneath the one-dimensional gain-loss diffractive grating. The intrinsic loss of graphene can exhibit neg-
ative, zero, and positive values resulting from the population inversion produced by cascaded optical-photon 
emission44–47. Such diverse surface dynamic conductivity responses can be used to manipulate optical modes 
of spectral singularities in graphene-based PT-systems. When the grating possesses perfect PT-symmetry, the 
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spectral singularity will present the feature of lasing-mode (electric fields concentrate mainly on the gain element) 
or absorption-mode (electric fields concentrate mainly on the loss element) with the loss of optically pumped 
graphene being negative or positive, respectively. It is noted that spectral singularities are vanished if the loss of 
optically pumped graphene becomes zero. In particular, the spectral singularity may exhibit symmetry-modes 
(electric fields concentrate equally on loss and gain elements), when the loss and gain of the grating is unbalanced. 
In this case, the spectral singularity on the lasing or absorption-mode also appears with the loss and gain for the 
grating exceeding the value of the corresponding symmetry-modes.

Results and Discussions
Optically pumped graphene and graphene-based PT system. The nonequilibrium THz properties 
of graphene are especially interesting due to the population inversion and negative dynamic conductivity. The 
optical generation of electron-hole pairs in graphene can be described by quasi-Fermi-levels for electrons uFe and 
holes uFh of the same absolute value uFe = −uFh = uF. Since the relaxation time for intraband transition is much 
faster than the recombination time for electron-hole pairs, the population inversion can be achieved with optical 
pumping. In this condition, the complex intraband and interband conductivities, σintra and σinter, can be approxi-
mately expressed as (in THz frequency)48:
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where ω is the angular frequency, e is the electric charge,  is the reduced Planck’s constant, kB is the Boltzmann 
constant, T is the temperature, and τ is the momentum relaxation time of charge carriers. In Fig. 1(a) and (b), we 
plot real and imaginary parts of the conductivity of graphene (σ σ/ 0) as functions of the incident frequency with 
different τ , respectively. Here, σ0 equals to e /42   and σ σ σ= +intra inter . The temperature is T = 3 K and 
quasi-Fermi-level is uF = 100 meV. As can be seen, the loss of graphene σ σRe( / )0  can be continuously tuned from 
negative to positive by just varying the value of τ. In this condition, the imaginary part of conductivity of graphene 
is nearly invariable. The frequency range considered here is starting from 6 THz to 8 THz, which is consistent with 
the operating wavelength for the designed system associated with photoexcited graphene. The corresponding 
schematic diagram is shown in Fig. 1(c). Here, we use an optically pumped graphene underneath the 
one-dimensional gain-loss diffractive grating (infinite along z-axis) to facilitate its plasmon excitation49. The 
amplifying view of a unit cell is clearly presented in the inset of Fig. 1(c). The gain-loss elements repeat in x-axis 

Figure 1. Real (a) and imaginary (b) parts of the conductivity of graphene as functions of the incident 
frequency with different τ. (c) The schematic of graphene-based system.
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with the period being p = 8 um. The sizes of the grating along x- and y-axis are 2.0 um and 1.8 um, respectively. 
The relative permittivities of the gratings are given by ε = − jF10(1 )gain gain  and ε = + jF10(1 )loss loss  with Fgain 
and Floss being the non-Hermiticity coefficients of the system. It is noted that the whole structure possesses the 
PT-symmetry, only when distributions of gain/loss elements are balanced (Fgain = Floss) and the dynamic conduc-
tivity of graphene becomes zero ( σ σ =Re( / ) 00 ).

PT-diffractive grating and lossless monolayer grapheme. Firstly, we proceed to investigate the inter-
action between the PT-diffraction grating and lossless monolayer graphene ( σ σ = .Re[ / ] 0 00 ), where the whole 
structure is PT-symmetric. The dispersion relations between the eigenfrequency and Bloch wave vector can be 
calculated by using finite element method (Comsol Multiphysics 5.2a). In Fig. 2(a) and (d), we plot the complex 
dispersion curves with non-Hermiticity coefficient being zero (Fgain = Floss = 0). Only two modes are considered 
here with eigenfrequencies (real part) locating within 6–8 THz. Although the system has no loss or gain element, 
the imaginary part of eigenfrequency is still non-zero resulting from the existence of radiation loss, which is larg-
est at the Brillouin center and vanished at Brillouin boundaries. As we turn on the gain and loss (Fgain = Floss = 0.05), 
the gap of the real part of eigenfrequency at the Brillouin boundary will be closed and the imaginary part sepa-
rated, giving rise to the exception point (red arrow), as shown in Fig. 2(b) and (e). Due to the non-ignorable 
radiation loss existing at the Brillouin center, Fig. 2(d) shows that the real part of eigenfrequency cannot coalesce 
fully even in the PT-broken phase. However, a pair of lasing- and absorption-modes are still formed with the 
imaginary parts of eigenfrequency completely separated, as shown in Fig. 2(f).

In order to observe the evolution of eigenmode with the variation of non-Hermiticity coefficient, in 
Fig. 3(a) and (b), we plot real and imaginary parts of eigenfrequencies at Brillouin center as functions of the 
non-Hermiticity coefficient Fgain = Floss = F, respectively. We find that real parts of eigenfrequencies nearly coa-
lesced and imaginary parts completely separated, when the parameter F increases to a critical value about 0.0626. 
In this condition, the PT symmetry is broken. It is worthy to note that imaginary parts of eigenfrequencies have 
already separated in a small degree before F reaches to the critical value (~0.0626), as shown in the inset of 
Fig. 3(b). This phenomenon stems from the existence of radiation loss in open PT-symmetric systems. On the 
other hand, comparing with the absorption loss, the radiation loss is negligible. Consequently, before the breaking 
threshold (F~0.0626) is reached, the electric fields are nearly symmetrically distributed on the loss and gain ele-
ments and no spectral singularity appears. Figure 3(c) and (d) present evolutions of lasing- and absorption-modes 
fields with the non-Hermiticity coefficient (shown in lower right corners) being varied. When the PT-symmetry 
is broken, the electric field is confined mainly in the amplification section for the lasing-mode, whereas the 
absorption-mode is loss-dominant with electric field mainly concentrated on the loss section. To investigate 
the scattering property of this PT-system, we plot the reflectance and transmittance as functions of the incident 
frequency with different non-Hermiticity coefficients F, as shown in Fig. 3(e) and (f). We find that two peaks (val-
leys) of the reflectance (transmittance) gradually approach to each other with increasing non-Hermiticity coeffi-
cients, and merge into one peak at the exceptional point. If we further increase the non-Hermiticity coefficients, 
the reflectance (transmittance) peaks (valleys) gradually disappeared. The frequencies of reflectance peaks are 
consistent with real parts of eigenfrequencies calculated in Fig. 3(a). It is worthy to note that although significant 
gain and loss exist in this perfect PT-system, the sum of the transmittance and reflectance nearly equals to one, 
and no spectral singularity appears.

Figure 2. Complex band structures with non-Hermiticity coefficient F being 0.0 (a), (d), 0.05 (b), (e) and 0.1 
(c), (f). The loss of graphene is zero.
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PT-diffractive grating and passive or active monolayer grapheme. The property of the system changes 
dramatically when the loss of graphene becomes non-zero (the whole structure is not PT-symmetric). The evolu-
tions of eigenfrequencies for the states at kx = 0 in a complex frequency plane are shown in Fig. 4(a). The green dash 
arrows point the evolution directions of eigenfrequency with F being increased. The black dot line represents the 
condition that the real part of the surface conductivity of graphene is positive ( σ σ = .Re[ / ] 0 1450 , passive). In this 
case, the eigenfrequency on the lasing-mode approaches to the lasing threshold (blue dash line). While, the 
absorption-mode leaves away from it. Thus, the spectral singularity (marked by the red arrow) appears on the 
lasing-mode. When we change the real part of the surface conductivity of graphene to be negative 
( σ σ = − .Re[ / ] 0 1370 , active, red dot line), the corresponding spectral singularity appears on the absorption-mode. 
Consequently, the spectral singularity can be tuned from lasing-mode to absorption-mode by just changing the 
surface conductivity of graphene from passive to active. It is extremely different from the PT-plasmonic systems, 
where the spectral singularity only exists on the lasing-mode due to the metallic materials are uniformly lossy34–36.

The spectral singularity manifests itself as giant transmission and reflection with vanishing bandwidth. In 
Fig. 4(b) and (c), we plot the transmittance (red line) and reflectance (black line) at spectral singularities with 
the surface dynamic conductivity of graphene being negative and positive, respectively. The corresponding 

Figure 3. Real (a) and imaginary (b) parts of eigenfrequencies (kx = 0) as functions of F with the loss of 
graphene being zero. The inset of Fig. 3(b) shows the imaginary parts of eigenfrequencies as functions of 
the non-Hermiticity coefficient F (ranging from 0.0-0.002). (c) and (d) show evolutions of the electric field 
distribution of the lasing- and absorption-modes by varying the non-Hermiticity coefficient. (e) and (f) show 
the reflectance and transmittance of the PT-system with different values of the non-Hermiticity coefficient.
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non-Hermiticity coefficients are F = 0.06613 and F = 0.06455, respectively. It is presented that the giant trans-
mittance and reflectance appear, and corresponding near-field distributions are shown in Fig. 4(d) and (e). When 
the surface resistance of graphene is positive (passive), the electric field is mainly confined on the amplification 
sections (corresponding to the lasing-mode). While, the electric field is concentrated on the loss element mostly 
(corresponding to the absorption-mode), when the surface resistance of graphene is negative (active). Also, the 
frequencies correspond to the giant transmittance and reflectance are consistent with the eigenfrequencies cal-
culated in Fig. 4(a). In contrast to the previous method to control the near-field by modifying the geometrical 
parameters of the plasmonic structures or the surrounding dielectric environment, we can tune the near-field 
distributions by just varying the surface dynamic conductivity of graphene.

Non-PT-diffractive grating and passive or active monolayer grapheme. Finally, we will investi-
gate the interplay between a non-PT diffraction grating, 2Fgain = Floss = F, and the optically pumped graphene. 
The evolutions of the eigenfrequencies for the states at kx = 0 in a complex frequency plane are shown in 

Figure 4. (a) Movement of the eigenfrequencies for the states at kx = 0 in the complex plane with the surface 
dynamic conductively of graphene being σ σ = .Re[ / ] 0 1450  (black dot line) and σ σ = − .Re[ / ] 0 1370  (red dot 
line). (b) and (c) show the transmittance and reflectance of the normal incident wave with the surface dynamic 
conductivity of graphene being negative (F = 0.06613) and positive (F = 0.06455), respectively. (d) and (e) show 
the corresponding near-field distributions at spectral singularities.
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Fig. 5(a). The green dash arrows point the directions with F being increased. When the surface dynamic con-
ductivity of graphene is active σ σ = − .Re[ / ] 0 0650  (the black dot line), three spectral singularities exist (marked 
by 1, 2, 3) and each possesses different eigenmodes, shown in right insets of Fig. 5(a). Two of them (1, 2) pos-
sess symmetric eigenmodes before the eigenfrequency passes through the inflection points (marked by the 
blue arrows). Beyond the inflection points, the lasing-mode, which previously left away from the lasing thresh-
old, will approach to it again and the corresponding spectral singularity reappears. This phenomenon follows 
the main characteristics of the quasi-PT-systems with exceptional points, like loss-induced suppression and 
revival of lasing15, and reversing the pump dependence of a laser14. It is noted that spectral singularities only 
exhibit symmetry-modes, when the distributions of the loss and gain for the diffractive grating are unbalanced. 
Moreover, in Fig. 5(b–d), we plot the reflectance (black line) and transmittance (red line) at these three spectral 
singularities. Reasonably, the giant transmission and reflection happened. The corresponding near-field distri-
butions are plot in Fig. 5(e,f), which are consistent with eigenmode fields. In addition, if we change the value of 
surface dynamic conductivity of graphene, the number of the spectral singularity many be reduced. Only 
symmetric mode exists with the surface dynamic conductivity of graphene being σ σ = − .Re[ / ] 0 1370  (green 
dot line in Fig. 5(a)), and the lasing-mode exists with the surface dynamic conductivity of graphene being 

σ σ = .Re[ / ] 0 1450  (red dot line in Fig. 5(a)).
We also consider the condition, when non-Hermiticity coefficients satisfied the relationship of Fgain = 2Floss = F. 

Characteristics of the corresponding spectral singularities in a manner analogous to the above case are shown in 
Fig. 6. When the surface dynamic conductivity of graphene is passive σ σ = .Re[ / ] 0 0470 , three spectral singularities 
exist. Two of them (1, 2) possess symmetric eigenmodes and another one presents features of the absorption-mode. 
Similarly, the giant transmission and reflection are also excited at frequencies of the corresponding spectral 
singularities.

Figure 5. Non-PT grating 2Fgain = Floss = F. (a) Movement of the eigenfrequencies for the states at kx = 0 in the 
complex plane when the surface dynamic conductively of graphene being σ σ = − .Re[ / ] 0 0650  (black dot line), 

σ σ = .Re[ / ] 0 1450 (red dot line), and σ σ = − .Re[ / ] 0 1370  (green dot line). The right insets show the eigenmode 
fields at three (1, 2, 3) spectral singularities. (b)–(d) show the transmittance and reflectance of the normal 
incident wave on the graphene-based quasi-PT system with the surface dynamic conductivity of graphene being 

σ σ = − .Re[ / ] 0 0650  and the non-Hermiticity coefficients being F = 0.01045, F = 0.0194 and F = 0.04174, 
respectively. (e)–(g) show the near-field distributions at three spectral singularities (1, 2, 3).
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Conclusions
In conclusion, we have demonstrated numerically that eigenmodes at spectral singularities can be conveniently 
tuned by a suitable variation of the loss and gain in the graphene-based quasi-PT systems. When the diffractive 
grating, which assisted graphene plasmonics excitation, has the perfect PT-symmetry, the spectral singularity 
can present the feature of lasing- or absorption-modes, which is decided by the intrinsic property of loss or gain 
characteristic for the surface conductivity of the pumped graphene. These spectral singularities vanished if the 
surface resistance of graphene becomes zero. In particular, the spectral singularity may exhibit symmetry-mode 
only with the asymmetric distribution of the loss and gain for the diffractive grating. Furthermore, with the 
increasing of non-Hermiticity coefficients, the spectral singularities with asymmetric eigenmodes reappeared. In 
contrast to the previous method to control the near-field by modifying the geometrical parameters of the plas-
monic structures, we can tune the near-field distributions around the graphene-based PT-system by just varying 
the surface dynamic conductivity of graphene. We hope that our finding may have some applications in designing 
novel surface-enhanced spectroscopies and plasmon lasers.

Methods
All full wave numerical simulations and dispersion relations were done using finite element method (Comsol 
Multiphysics). In the simulations, the graphene is modeled as a two-dimensional surface with complex conduc-
tivity. The mesh size inside the graphene layer is 0.5 nm, which is fine enough for convergence.
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