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An improved statistical iterative 
algorithm for sparse-view 
and limited-angle CT image 
reconstruction
Zhanli Hu, Juan Gao, Na Zhang, Yongfeng Yang, Xin Liu, Hairong Zheng & Dong Liang

Because radiation is harmful to patients, it is important to reduce X-ray exposure in the clinic. For 
CT, reconstructions from sparse views or limited angle tomography are being used more frequently 
for low dose imaging. However, insufficient sampling data causes severe streak artifacts in images 
reconstructed using conventional methods. To solve this issue, various methods have recently been 
developed. In this paper, we improve a statistical iterative algorithm based on the minimization of 
the image total variation (TV) for sparse or limited projection views during CT image reconstruction. 
Considering the statistical nature of the projection data, the TV is performed under a penalized 
weighted least-squares (PWLS-TV) criterion. During implementation of the proposed method, the 
image reconstructed using the filtered back-projection (FBP) method is used as the initial value of the 
first iteration. Next, the feature refinement (FR) step is performed after each PWLS-TV iteration to 
extract the fine features lost in the TV minimization, which we refer to as ‘PWLS-TV-FR’.

Although the clinical value of CT is unquestionable, radiation exposure is harmful to patients1, 2. To date, 
many hardware-based scanning protocols have been proposed to reduce the CT scan radiation dose3, 4. Many 
software-based image reconstruction techniques have also been used to handle low-dose data from available CT 
scanners lacking hardware modifications5–7. In the CT field, the radiation dose is usually reduced by lowering 
the X-ray tube current, lowering the X-ray tube voltage, or sampling fewer views or using limited-angle projec-
tion. However, lowering X-ray exposure or using sparse or limited views increases noise and data inconsistency. 
Without adequate processing, it is difficult to reconstruct high-quality diagnostic CT images using conventional 
algorithms. Generally, a traditional CT algorithm using insufficient data will lead to degraded reconstruction 
accuracy and severe image artifacts8. Exact reconstruction methods with noise suppression capabilities intended 
to support dose reduction have been widely investigated.

One of the main strategies for low-dose CT image reconstruction restores the line integrals from acquired 
low-dose projection data, and a transform-based method has been presented to address the noise properties of 
low-mAs CT sinogram data. Li et al. determined a nonlinear relationship between the variance and the mean 
of acquired low-mAs sinogram data9, which facilitates low-dose CT image reconstruction. Based on this rela-
tionship, a framework for image reconstruction using low-mAs sinogram data with penalized re-weighted least 
squares was investigated by Wang et al.10. A general series of sophisticated CT image reconstruction methods 
were reported by Fessler et al.11.

Reducing projection views or limiting the scan angle is another strategy that has been used for CT dose reduc-
tion, as reducing the number of projections will clearly reduce the radiation dose5. In this study, we focused on 
CT image reconstruction from sparse-view or limited-angle projection data. Many iterative algorithms have been 
used for CT image reconstruction, and the actual iterative algorithms are well established12. Among them, statis-
tical iterative reconstruction (SIR), which is used to model measurement statistics and imaging geometry, can sig-
nificantly maintain the image quality in cases of insufficient sampling data, especially compared with the filtered 
back-projection (FBP) reconstruction algorithm13. The cost function of SIR is usually composed of a data-fidelity 
term and a regularization term. The data-fidelity term models the measurement statistics to ensure successful SIR 
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image reconstruction, and the regularization term shows the prior information for the desired image intended 
to regularize the solution14. The traditional regularization term usually produces unfavorable smoothing effects 
on edge regions. To address this issue, several edge-preserving regularization terms have been presented, such as 
total variation (TV) regularization with a piecewise constant assumption (PCA)15–17. Numerous investigations 
have shown that high-quality CT images can be reconstructed via TV minimization from sparse-view sampling 
data. However, PCA often produces noticeable patchy artifacts in reconstructed images5.

Recently, we developed a statistical interior tomography approach for CT reconstruction18. Its potential use-
fulness have been demonstrated for feature preservation of interior tomography with truncated projection meas-
urements. However, this algorithm is a little bit complex, involving FBP with projection extension, PWLS-TV and 
feature refinement and the last component is not very well characterized with the CT interior tomography appli-
cation. Moreover, the algorithm was applied to a scanning configuration which is not practically used (namely 
the interior problem).

In this paper, we extend this method to a more practical protocol, sparse-view and limited-angle image recon-
struction. Furthermore, the FBP algorithm is adopted instead of the FBP-EP algorithm which is time-consuming. 
To remove the patchy artifacts from the TV-based methods, we improved a statistical iterative image recon-
struction algorithm based on minimizing the image TV that is specifically performed using PWLS criteria 
(PWLS-TV), which models the statistical properties of the projection data. Furthermore, after each PWLS-TV 
iteration, a feature refinement step (FR) is performed to restore the desired structure details that are lost in the 
TV minimization. For simplicity, the presented method is termed “PWLS-TV-FR”. The proposed PWLS-TV-FR 
method tends to relieve the PCA requirement by statistical modeling and iterative feature refinement.

The remainder of the paper is organized as follows. Section II briefly reviews the CT imaging model and 
describes the TV-regularized PWLS criterion in the image domain and the FR step. The experimental setup and 
evaluation metrics are also presented in this section. In section III and IV, the experimental results on a digital 
phantom and using micro-CT are reported, followed by a conclusion section.

Methods
PWLS-TV minimization. Based on the statistical properties of the projection data, the iterative PWLS 
approach including a data-fidelity term and a penalty term has been applied to the image domain for dual-energy 
X-ray CT reconstruction19–21. But the PWLS method for low-dose X-ray CT reconstruction are flawed in the sup-
pression of noise and artifacts. According to our previous study, the TV-regularized PWLS algorithm we referred 
to as “PWLS-TV” can address this issue, which can be solved using the steepest descent algorithm. Based on the 
image gradient magnitude sparseness22, TV of the image is one of the most commonly used techniques:
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in which s and t are the index of the location of the attenuation coefficients of the desired image and α is a small 
constant used for keeping the equation differentiable with respect to image intensity, which is assigned a value of 

−10 8 in this work.
Thus, given the current estimated image μn, a new image μn+1 can be calculated by minimizing the cost func-

tion of PWLS-TV, which can be described as follows:
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in which ∇TV(μn) denotes the gradient of TV(μn), τn represents the gradient step size and β is a smoothing 
parameter balancing the degree of agreement between the estimated and the measured data. This can be com-
puted as follows:
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Feature refinement (FR). High-diagnostic CT images reconstructed from limited-angle or sparse-view 
acquisitions are very important in clinical practice. However, due to the piecewise constant assumption, some 
details in the reconstruction using the TV minimization are likely to be lost; in particular, the residual image 
between two successive iterations in PWLS-TV minimization might contain useful structural information, espe-
cially when the dose is very low or the projection data are insufficient. Motivated by this discovery, an FR was 
performed after each PWLS-TV minimization iteration to extract the main features of the loss from the residual 
image. This is described in the following equation:
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in which the constants C is introduced for numerical stability. Local statistics σp, σq and σpq at pixel i are defined 
as follows:
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, pi and qi denote two local image patches with a size of ×N N  

centered at pixel i and extracted from µ +n 1 and a degraded image µd obtained by a linear Gaussian filter from µ +n 1, 
respectively. The nature of the presented model structure descriptor is a structure-related map and includes a 
contrast variation component and a structure correlation component. The former calculates the reduction of 
contrast variation due to the degraded operation, and the latter quantifies the structural correction between the 
original and degraded images23. The value of each element in the feature descriptor image ft is in the interval  
[0, 1], and the larger the value, the more likely it belongs to part of the structure. In this paper, the proposed sta-
tistical iterative CT image reconstruction algorithm using the FR approach is referred to as “PWLS-TV-FR” and 
includes the three main steps shown in Fig. 1.

Figure 1. A flowchart of the proposed PWLS-TV-FR approach.
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Animal preparation and anesthesia administration. All animal experiments described in this work 
were approved by the Institutional Ethical Committee of Animal Experimentation of Shenzhen Institutes of 
Advanced Technology (Chinese Academy of Sciences). The experiments (Certificate number: SIAT-IRB-
150203-YGS-QWB-A0088) were carried out strictly in accordance with governmental and international guide-
lines on animal experimentation. All efforts were made to minimize the usage amount of animals and the 
suffering during experiments according to the request of Biosafety and Animal Ethics. The mouse was anesthe-
tized by intraperitoneal injection of ketamine (70 mg/kg) and xylazine (7 mg/kg) cocktail during CT scanning.

Data availability. The datasets generated or analyzed during the current study are available from the corre-
sponding author on reasonable request.

Experiments
To validate the performance of PWLS-TV-FR, we performed a digital simulation experiment and a physical 
experiment. We used digital phantom simulation data that spanned 120 views to verify the effect of PWLS-TV-FR 
on sparse-view data. Additionally, sparse-view anesthetized mouse data and limited-angle mouse bone sample 
data were acquired from a commercial CT scanner to demonstrate the feasibility of the proposed method in prac-
tical applications for sparse-view or limited-angle sampling data. For both phantom simulation and Micro-CT 
data, Table 1 shows the idea projection number needed for FBP and the projection number used for proposed 
method.

Digital phantom simulations. A head model of the digital XCAT phantom was chosen as experimental 
simulation data (as shown in Fig. 2) to evaluate the performance of the FR step after each PWLS-TV iteration. 
To simulate sparse sampling, only 120 views were spanned on a circular orbit of 360°, and the number of bins 
per view was 672. The distance from the X-ray source to the detector was 1040 mm, and the distance from the 
rotation center to the curved detector was 570 mm.

Micro-CT data. In this experiment, two scans were performed using a Micro-CT Skyscan1076 scan-
ner with a normal-dose (70 kVp, 225 mAs) protocol. One scan was performed on an anesthetized mouse, in 
which 450 projections were uniformly collected over a 360° range, and another scan was performed on a mouse 
bone sample, in which 291 projections were uniformly collected over a 197.88° range, which can be considered 
limited-angle sampling. In this work, 450 projections of the anesthetized mouse were encoded from 0 to 449, and 
only even-numbered projections were selected for use as under-sampled data for a final total of 225 projections. 
Only the central slice projection was extracted, which is typical for fan-beam geometry. For each projection, 4000 

Projection number Simulated data Micro-CT data

Idea projection number 
of FBP 1160 450

Used projection number of 
PWLS-TV-FR 120 225

Table 1. Projection number.

Figure 2. The head model for XCAT. Unless otherwise noted, all of the phantom images are shown in the same 
window [0.004 0.019].
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detector elements were equally angularly distributed with a total length of 50.12 mm. The distance from the object 
to the curved detector was 165 mm, and the distance from the object to the X-ray source was 121 mm.

Performance evaluation. (1) In this work, the root mean squared error (RMSE) was used to evaluate 
reconstruction accuracy and is described as:

µ µ
=

∑ −= m m
Q
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( ( ) ( ))

(9)
m
Q
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in which µ denotes the reconstructed image, µtrue denotes the true image, m indexes the pixels of the image and 
Q is the total number of pixels in the image.

(2) To evaluate the noise reduction capability of different reconstruction algorithms, the peak signal to noise 
ratio (PSNR) metric was adopted in this paper and is as follows:
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in which µ denotes the reconstructed image, µtrue denotes the true image, and µMAX( )true  represents the maxi-
mum intensity value of µtrue.

Results
Digital phantom result. In this experiment, with sparse sampling data, images were reconstructed using 
three methods, FBP, PWLS-TV and PWLS-TV-FR, which are shown with partial magnification in Fig. 3. 
From Fig. 3, it is clear that there are severe streak artifacts in the image reconstructed using FBP, whereas the 
PWLS-TV results exhibit fewer artifacts but degraded details. Moreover, the image reconstructed using PWLS-
TV-FR showed noticeable improvements over that reconstructed using PWLS-TV by preserving small-scale and 
low-contrast structures, as indicated by the arrows in the amplified areas. Figure 4 shows residual reconstructed 
images (shown in Fig. 3) resulting from the true image subtracted from the reconstructed image. The smaller 
the features of the residual image, the more accurate the reconstructed image. As is clear from Fig. 4, the resid-
ual reconstructed image using PWLS-TV-FR has the smallest features, which indicates that the PWLS-TV-FR 
method for sparse-view data retains more details than either the PWLS-TV or FBP methods.

In the process of updating images using the PWLS-TV or PWLS-TV-FR functions, the trend is that the 
image gradually becomes clearer and eventually reaches an extreme value as the number of iterations increases. 
However, as shown Fig. 5, whether it is evaluated by RMSE or by PSNR, the PWLS-TV-FR method always per-
forms better than PWLS-TV. Figure 6 depicts the horizontal profiles of the reconstructions in Fig. 3 and the 
corresponding horizontal residual value. The result reconstructed using PWLS-TV-FR was closer to the reference 
profiles, and the residual values reconstructed using PWLS-TV-FR are much smaller than those using PWLS-TV; 

Figure 3. Reconstructed image of the head model from 120 views using different methods. The images in the 
second row are partially enlarged views of the first row. (a) Reference (b) FBP (c) PWLS-TV (d) PWLS-TV-FR.
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Figure 4. The residual image of the reconstructed results from Fig. 2. From left to right, the images are the 
residuals of results reconstructed by FBP, PWLS-TV and PWLS-TV-FR. The images are displayed in the 
window [−0.0015 0.0015].

Figure 5. RMSE and PSNR as a function of the total number of image updates. The RMSE function is shown on 
the left, and the PSNR function is shown on the right.

Figure 6. The left graph is profiles located at the pixel positions x from 200 to 300 and y = 260 of different 
results in Fig. 3. The graph on the right is the residual value corresponding to the left graph.
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it is obvious that PWLS-TV-FR achieves better performance. Figure 7 shows a histogram of the RMSE and PSNR 
evaluation results for the reconstructions in Fig. 3. The red column represents the RMSE value, and the blue 
column represents the PSNR value. It is important that the RMSE value of PWLS-TV-FR is the minimum and 
the PSNR value of PWLS-TV-FR is the maximum, which verifies the validity of the PWLS-TV-FR algorithm for 
sparse-view digital phantom data.

Micro-CT result. Figures 8 and 9 show images and zoomed images reconstructed using FBP, PWLS-TV and 
PWLS-TV-FR. Figure 8 is a reconstruction using sparse-view sampling of the anesthetized mouse projection data 
with 225 views, which shows that the PWLS-TV-FR method can suppress severe artifacts and preserve fine tissue 
structure from sparse-view sampling data in the clinic. Figure 9 is the reconstruction using limited-angle sam-
pling data of mouse bone sample projection data using a scanning angle of 197.88°. Image reconstructions using 
FBP showed severe streak artifacts resulting in low detail visibility. The images reconstructed using the other two 
algorithms show a lower level of streak artifacts. However, the features reconstructed using PWLS-TV-FR are 
clearer than those reconstructed by PWLS-TV. In conclusion, the experimental micro-CT data demonstrate that 
the presented method can recover structural information lost using the PWLS-TV method for sparse-view or 
limited-angle sampling data.

Conclusion and Discussion
To address the global use of high-diagnostic CT images obtained from sparse-view or limited-angle projec-
tion data, we improved on the statistical iterative algorithm by including an FR step. Two key components were 
included in this algorithm. One is a TV minimization model using PWLS criteria that account for the statistical 
nature of projections. The other is an FR step that is performed after each iteration of PWLS-TV to recover any 

Figure 7. Image quality metrics.

Figure 8. The anesthetized mouse data reconstructions from 225 views by different methods. From left to right, 
the images of the first row are the results obtained using FBP, PWLS-TV and PWLS-TV-FR method. The images 
of the second row are the partial enlarged view of the first row.
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missing fine features. The improved method is designed to relieve the piecewise constant assumption of TV-based 
methods for sparse-view or limited-angle CT image reconstruction. The reconstruction results from a digital 
phantom, anesthetized mouse and a mouse bone sample dataset show that the proposed PWLS-TV-FR approach 
is a significant improvement over the PWLS-TV method in terms of the preservation of structural details and the 
suppression of undesired patchy artifacts. This result demonstrates its potential to reduce CT radiation doses by 
decreasing the number of projection views or the rotation angle of the scan.

An iterative reconstruction algorithm usually involves numerous parameters, which can significantly impact 
reconstruction properties. In this work, we try our best to select the “optimal” parameters for different algorithms 
in order to make a fair comparison on their performance. For example, the smoothing parameter β balancing the 
degree of agreement between the estimated and the measured data in function (2) should be a small value to avoid 
data distortion, however, after testing, we found that β = −e 2 is better. Furthermore, the image patch size in the 
feature descriptor designed to distinguish structure from noise and artifacts has to be carefully selected because 
the large one leads to better detail-detection ability, while the small one can benefit the computational load. 
According our previous study, the patch size of ×3 3 is a good choice for balancing the structure detection ability 
and computational efficiency. Additionally, the parameter C is introduced for numerical stability to avoid the 
condition that σ σ+p q

2 2 is very close to zero. Therefore, it is assigned . × −1 25 10 5 as a small constant in our work.
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