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Pharmacogenetics of 
methylphenidate in childhood 
attention-deficit/hyperactivity 
disorder: long-term effects
Clara I. Gomez-Sanchez1,2, Juan J. Carballo3, Rosa Riveiro-Alvarez1,2, Victor Soto-Insuga4, 
Maria Rodrigo4, Ignacio Mahillo-Fernandez5, Francisco Abad-Santos   6, Rafael Dal-Ré7 & 
Carmen Ayuso 1,2

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in which 
a significant proportion of patients do not respond to treatment. The objective of this study was to 
examine the role of genetic risk variants in the response to treatment with methylphenidate (MPH). 
The effectiveness of MPH was evaluated based on variations in the CGI-S and CGAS scales over a 
12-month treatment period using linear mixed effects models. A total of 208 ADHD patients and 34 
polymorphisms were included in the analysis. For both scales, the response was associated with time, 
extended-release MPH/both formulations, and previous MPH treatment. For the CGI-S scale, response 
was associated with SLC6A3 rs2550948, DRD4 promoter duplication, SNAP25 rs3746544, and ADGRL3 
rs1868790. Interactions between the response over time and SLC6A3 and DRD2 were found in the CGI-S 
and CGAS scales, respectively. The proportion of the variance explained by the models was 18% for 
the CGI-S and 22% for the CGAS. In this long-term study, the effects of SLC6A3, DRD4, SNAP25, and 
ADGRL3 on response to treatment reflect those observed in previous studies. In addition, 2 previously 
unreported interactions with response to treatment over a 12-month period were found (SLC6A3 and 
DRD2).

Attention-deficit/hyperactivity disorder (ADHD) is a very common neurodevelopment condition in children, 
involving about 5% of children and adolescents1. About 65% of ADHD children are also symptomatic in adult-
hood, thus suggesting that the disease is chronic2, 3. The symptoms of ADHD include inappropriate levels of 
attention and/or hyperactivity and impulsivity. In addition, over 65% of ADHD patients present psychiatric 
comorbidities, such as depression, anxiety, and learning disorders4, 5, all of which affect academic performance 
and family life, with huge social and economic repercussions6, 7.

Stimulants are the most effective medications for improvement of ADHD symptoms, and methylpheni-
date (MPH) is often the first choice owing to its effectiveness and safety, as demonstrated in several studies8–10. 
However, although the clinical condition of most patients treated with MPH improves, a considerable proportion 
(35%) do not respond to treatment or present adverse effects, thereby making response to MPH variable and 
difficult to predict11, 12. As a result, clinicians often use a trial-and-error approach based on different types of 
medication or on titration of dosages to find the best fit for each patient13. It seems clear that identifying accurate 
predictors of response to medication would be beneficial for clinical practice14–16.
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ADHD is a heterogeneous and complex disorder involving environmental and genetic risk factors. The strong 
genetic component of ADHD is supported by family, twin, and adoption studies, which have found a mean 
estimated heritability of 76%17, suggesting that ADHD is among the most heritable neuropsychiatric disorders.

Predictions based on genetic factors are the basis of pharmacogenetic testing. Numerous candidate genes 
have been associated with an increased risk of ADHD18. As many of these genes play a role in the mechanisms of 
action of psychostimulants, there is a high probability that they are also associated with response to treatment19. 
The results of pharmacogenetic studies of ADHD are variable and inconclusive19. The objective of this study was 
to examine the role of risk genes in the response to MPH in children with ADHD and to evaluate the effectiveness 
of the drug over 12 months of follow-up.

Results
A total of 238 Caucasian ADHD patients were included in the initial step of the study. After the quality control 
procedure, 208 patients remained in the final analysis, and 176 completed the 12-month follow-up. Fifty-seven 
(27%) were treatment-naive. Among the MPH-experienced patients (151), 41% reported a poor or partial 
response at the time they entered in the study. The demographic and clinical characteristics of the cohort are 
shown in Table 1.

For all variants, the call rates of genotype per-marker were higher than 96%; therefore, no polymorphisms 
were excluded from the analysis. The fixed effects of the models are summarized in Table 2 with the point esti-
mate, 95% confidence intervals (95% CI), and p values.

Sex, age, and ADHD subtype were not significant as covariates for any of the efficacy models. We found a 
significant improvement in the response over time in the CGI-S and CGAS scales. In addition, previous MPH 
treatment and extended-release MPH alone/both formulations were positive predictors of response according to 
CGI-S and CGAS. Dosage was a significant factor only in the CGAS effectiveness model.

As for the genetic component, in the CGI-S model, we found recessive effects in DRD4 promoter duplication, 
and ADGRL3 rs1868790, which were associated with significant impairment, and a dominant effect in SLC6A3 
rs2550948 and SNAP25 rs3746544, with a significant improvement in the symptoms. Moreover, an interaction 
was found between the SLC6A3 intron 8 VNTR and treatment over time (Table 2 and Fig. 1).

Finally, no significant association was observed between CGAS scores and genetic variants, although an inter-
action was found between DRD2 rs1800497 and treatment over time (Table 2 and Fig. 1).

The proportion of the variance explained by the model was 18% for CGI-S and 22% for CGAS. The datasets 
generated during and/or analysed during the current study are available from the corresponding author on rea-
sonable request.

Baseline 3 months 6 months 12 months

N 208 172 183 176

Age

Mean (SD) 10.6 (2.9) 10.7 (2.9) 10.5 (2.8) 10.5 (2.8)

Range 6–18 6–18 6–18 6–18

Gender

Male (%) 163 (78.3) 136 (79.1) 145 (79.2) 138 (78.4)

Female (%) 45 (21.7) 36 (20.9) 38 (20.8) 38 (21.6)

ADHD diagnosis

Combined type (%) 121 (58.2) 99 (57.7) 106 (57.9) 105 (59.6)

Inattentive type (%) 78 (37.5) 66 (38.4) 69 (37.7) 65 (36.9)

Hyperactive type (%) 9 (4.3) 7 (4.1) 8 (4.4) 6 (3.5)

Previous treatment

Naive patients (%) 57 (27.4) 47 (27.3) 46 (25.1) 47 (26.7)

Experienced patients (%) 151 (72.6) 125 (72.7) 137 (74.9) 129 (73.3)

Methylphenidate

Immediate-release (%) 17 (8.2) 13 (7.6) 8 (4.4) 8 (4.5)

Extended-release (%) 173 (83.1) 144 (83.7) 155 (84.7) 143 (81.3)

Both at the same time (%) 18 (8.7) 15 (8.7) 20 (10.9) 25 (14.2)

Doses mg/day

Mean (SD) 35.5 (15) 39.5 (15.7) 39.4 (15.8) 40.5 (15.5

Cases with at least one side 
effect (%) 51 (29.6) 72 (39.3) 47 (26.7)

CGI-S score

Mean (SD) 3.24 (0.58) 3.10 (0.56) 3.06 (0.55) 3.07 (0.57)

CGAS score

Mean (SD) 69.15 (11.67) 74.62 (9.26) 75.26 (9.69) 75.90 (9.29)

Table 1.  Demographic and clinical characteristics of ADHD patients.
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Discussion
We investigated the role of genetic factors that were associated with ADHD as predictors of the clinical response 
to MPH in a Caucasian population; the interaction between genetic variants and treatment over time was also 
assessed.

The values for CGI-S and CGAS improved significantly over time, although with a modest effect size, maybe 
because 73% of patients were on treatment before the beginning of the study. ADHD subtype was not a significant 
factor in response to treatment, according to previously studies20. In addition, treatment-experienced patients and 
patients who took extended-release MPH or both formulations had a better response in all the efficacy param-
eters considered (CGI-S and CGAS scales). Treatment-experienced patients were better responders, possibly 
because of selection bias: they continued on treatment because they were responding to the treatment, with no 
safety issues. Adjusting models by treatment status, we controlled which polymorphisms were associated with the 
response regardless of the confounding variable. The resulting data suggest that the extended-release formulation 
could have led to an improvement in the response to MPH, for example, by improving adherence to treatment21. 
Dosage was only a significant factor in the CGAS model. In CGI-S, statistical significance may not have been 
reached because of insufficient sample size.

As for the genetic component, our results showed the implication of the genes SLC6A3 and DRD4, which 
have been widely associated with changes in response to MPH19, 22. On the other hand, we failed to replicate the 
most studied variant in SLC6A3 (VNTR 3′ UTR), thus reflecting previous negative results on the implication of 
this variant and the pharmacogenetics of ADHD19, 23. Consequently, other polymorphisms of this gene must be 
explored. In this context, we found a previously unreported association between a promoter variant (rs2550948) 

Variable Genotype β (95% CI) Model P

CGI-S

Time — −0.01 (−0.02 to −0.01) —  <0.001

Previously treated patients — −0.25 (−0.40 to −0.12) — 0.001

Extended-release MPH or both 
formulations — −0.38 (−0.58 to −0.20) —  <0.001

SLC6A3 rs2550948 A/G o G/G −0.14 (−0.27 to 0.02) Dominant 0.011

DRD4 promoter duplication S/S 0.74 (0.40–1.18) Recessive 0.001

SNAP25 rs3746544 A/C o C/C −0.16 (−0.27 to −0.03) Dominant 0.018

ADGRL3 rs1868790 A/A 0.23 (0.02–0.45) Recessive 0.026

Interaction

SLC6A3 intron 8 VNTR *Time 6/− o −/− −0.02 (−0.03 to −0.01) Dominant 0.010

CGAS

Time — 0.51 (0.39–0.60) —  <0.001

Treatment-experienced patients — 5.15 (2.57–7.73) —  <0.001

Extended-release MPH or both 
formulation — 7.74 (4.54–10.94) —  <0.001

Dosage — 0.03 (0.02–0.09) — 0.008

Interaction

DRD2 rs1800497*Time T/T −0.63 (−1.17 to −0.08) Recessive 0.024

Table 2.  Significant results of fixed effects from linear mixed-effect models to evaluate the association between 
covariates/genetic variants and response according to the CGI-S and CGAS scales.

Figure 1.  Significant interactions between response over time and genetic variants in the CGI-S model (a) and 
CGAS model (b).
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and response to MPH. In the case of DRD4, once again, we did not replicate the most studied association, which 
was with the VNTR exon 3 variant19. The results of studies that investigate the implication of this variant in 
response to MPH are also conflicting19. However, we did find an association between the DRD4 tandem duplica-
tion polymorphism in the promoter region and response to MPH. No significant effect on response to MPH was 
found with this variant in 2 small-scale studies of children24 and adults25.

A statistically significant association with response to MPH was found in the neurodevelopmental genes 
SNAP25 and ADGRL3. Although the role of these genes in susceptibility to ADHD is widely studied, they have 
been less largely studied in terms of the effectiveness of MPH. Contini et al.26 evaluated the same polymorphism 
in SNAP25 (rs3746544) but identified no effect in adults with ADHD. Elsewhere in the literature, inconsistent 
findings were found between ADGRL3 and response to MPH. The marker rs6551665 had previously been asso-
ciated with the response to MPH27, 28. Arcos-Burgos et al.27 reported that the G allele was associated with a good 
response, whereas Labbe et al.25 found that it was associated with a poor response. The divergent results could 
be explained by differences in sample subtypes or outcome measures29. In addition, the marker rs6858066 was 
associated with a better response28, 30. In the present study, the associations between rs6551665 and rs6858066 and 
response to MPH were not statistically significant. In contrast, we established a previously unreported statistically 
significant association between rs1868790 and response to MPH.

Furthermore, our pharmacogenetic study suggested that SLC6A3 and DRD2 genotypes were associated with 
different degrees of improvement in ADHD symptoms. For both genes, a faster response effect was observed dur-
ing the first 3 months, respectively, in patients with the genotypes 6/− or −/− and T/C or C/C. To our knowledge, 
this is the first report of differences in the response to MPH over time in these genes.

Gene Description Variant Reference

SLC6A2 Norepinephrine transporter rs28386840a 44

r5569c 18

ADRA2A Adrenergic receptor alpha 2A rs1800544a 18

rs553668e 18

SLC6A3 Dopamine transporter rs2550948b 45

rs2652511b 45

rs11564750a 45

3’UTR VNTRe 18

Intron8 VNTRd 18

DRD2 Dopamine receptor D2 rs1800497f 46

DRD4 Dopamine receptor D4 rs3758653a 47

Exon3 VNTRc 46

Promoter duplicationb 46

SLC6A4 Serotonin transporter Promoter VNTRb 18

Intron2 VNTRd 18

HTR2A Serotonin-2A receptor rs7322347d 48

HTR2C Serotonin-2C receptor rs6318c 49

GRM7 Glutamate receptor metabotropic 7 rs3792452d 50

SLC9A9 Glycine transporter rs9810857f 51

COMT Catechol-O-methyltransferase rs4680c 18

rs4818c 52

SNAP25 Synaptosomal-associated protein 25kDA rs3746544e 18

DDC Dopa decarboxylase rs6592961d 48

STS Steroid sulfatase rs12861247d 53

rs17268988d 53

FADS2 Fatty acid desaturase 2 rs498793d 54

ADGRL3 Adhesion G protein-coupled receptor L3 rs1397548c 27

rs2305339d 27

rs6551655d 27

rs1868790d 30

rs6813183d 30

rs6858066d 30

CDH13 Cadherin 13 rs6565113d 47

GFOD1 Glucose-fructose oxidoreductase domain 
containing 1 rs552655d 47

Table 3.  Description of the genes and polymorphisms analyzed. Position in the gene: aUpstream variant, 
bPromoter variant, cExon variant, dIntron variant, e3′UTR variant, fDownstream variant.
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Our study reflects the considerable difficulty in replicating pharmacogenetic association studies in ADHD. 
The results reported are conditioned by polymorphisms analyzed per gene or model of inheritance evaluated. 
Furthermore, they depend on factors that influence the response, such as phenotype, concomitant treatment, and 
sample characteristics (age, sex, ADHD subtype), which are not always taken into account19, 31, 32. Results are also 
difficult to reproduce because of the definition of response in assessment scales. In fact, there is no clear consensus 
on the best approach to find objective and reliable measures of response to treatment33.

The strengths of our study are that we evaluated response using 2 scales that provide more detailed informa-
tion and thus reveal the heterogeneity in response effect. Moreover, we evaluated the response to MPH under 
conditions of routine clinical practice, thus highlighting the role of genetic factors in real-world situations34. Ours 
is the first 12-month study of the pharmacogenetic of response to MPH in children, and we provide much more 
relevant clinical information than short-term studies. The literature contains little evidence of the long-term 
effects of medication owing to the difficulty in follow-up and the low persistence on therapy rate35.

Some limitations of this study should be considered. First, the determination of the scores for the clinical 
response through the scales CGI-S and CGAS, which are recorded by doctors, despite are based on what parents 
and children report, is not free of subjectivity risk of the doctor. However, having scales assessing what parents 
and patients believe with regards to the overall functioning of patients would be of interest in the assessment of 
the treatment effectiveness, since it would be free of evaluator’s bias36. By contrast, this approach has to cope with 
the risk of serious discrepancies between informants, which ultimately will hinder patient’s assessment37.

Another limitation of the study to be considered is that 73% of patients were on treatment before beginning 
the study. Although we have adjusted the models by previous treatment status, experienced patients started with 
better response at baseline visit, and for that reason they had limited clinical improvement at the end of the study 
period.

In conclusion, we report moderate effects of the genes SLC6A3, DRD4, SNAP25, and ADGRL3 in the response 
to MPH, thereby supporting several previous studies of these genes. We also found interactions between response 
to treatment over 12 months and genotypes of SLC6A3 and DRD2. When all the covariates are taken into account, 
the models explain around 20% of the response to MPH. Therefore, other genetic or non-genetic factors must be 
involved in the variability of response to MPH. More research is required to find pharmacogenetic variants that 
could help to establish the best treatment regimen.

Method
Patients, clinical assessment, and ethical review.  We performed a prospective, observational study of 
unrelated Spanish Caucasian patients with ADHD aged 6 to 18 years who were enrolled and clinically assessed by 
psychiatrists and pediatricians at Fundación Jiménez Díaz University Hospital. ADHD was diagnosed following 
the Diagnostic and Statistical Manual of Mental Disorders38. All patients were evaluated, taking into account 
different sources of information (parents, children and clinicians).

To be included, patients had to have ADHD, be Spanish and Caucasian, be treatment-naive or have been 
treated with only MPH at baseline, and have been receiving MPH at least from baseline onwards. Patients could 
receive one of 2 formulations: (a) the immediate-release formulation (Rubifen) or (b) the extended-release for-
mulation (Medikinet and Concerta)/ both formulations. Patients treated with medication (in addition or instead 
of) other than MPH were excluded.

Doses and type of MPH formulation were individually prescribed according to the summary of product char-
acteristics and the clinical criteria of the psychiatrist and were adjusted during follow-up visits until the desired 
therapeutic effects were obtained.

Clinical effectiveness was evaluated using the Clinical Global Impression-Severity (CGI-S) scale39 and the 
Children’s Global Assessment Scale (CGAS)40. CGI-S provides a global evaluation of the severity of illness at the 
time of evaluation using a 7-point scale ranging from 1 (no impairment, normal) to 7 (maximum impairment). 
CGAS is used to rate the general functional status in children and adolescents using a numerical scale, with values 
ranging from 1 (need for constant supervision) to 100 (superior functioning).

During the assessment period, the following side effects were evaluated: loss of appetite, insomnia, gastroin-
testinal problems, headaches, cognitive, emotional and behavioral disturbances.

Clinical assessments were performed at baseline and after 3, 6, and 12 months of treatment with MPH.
The study protocol was reviewed and authorized by the Research Ethics Committee of the IIS-Fundación 

Jiménez Díaz University Hospital. The study was carried out in accordance with the ethical principles that are 
reflected in the Declaration of Helsinki. Before recruitment, once the study objectives and procedures had been 
detailed, parents or legal guardians signed a written informed consent.

DNA extraction and genotyping.  Peripheral blood lymphocytes or saliva were used to obtain genomic 
DNA, employing an automatic DNA extractor (BioRobot EZ1, Qiagen, Hilden, Germany) or the Oragene DNA 
self-collection kit (DNA Genotek, Kanata, Ontario, Canada), respectively, according to the manufacturer’s recom-
mendations. DNA concentration and sample quality were evaluated through a spectrophotometer (NanoDrop® 
ND-1000 Spectrophotometer, Wilmington, DE, USA).

Thirty-four polymorphisms from 18 genes were chosen according to their significance in the literature. All 
genes were previously associated with ADHD (Table 3).

Single-nucleotide polymorphisms (SNPs) were genotyped through the TaqMan on-demand or pre-designed 
SNP genotyping assays system, according to the company’s instructions (Applied Biosystems, Foster City, CA, 
USA). We run PCR and allelic discrimination assays in a LightCycler 480 (Roche Diagnostics, Mannheim, 
Germany) and we analyzed them using the LightCycler® 480 software, version 1.5. (Roche Diagnostics, 
Mannheim, Germany).
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Variable number tandem repeat (VNTR) polymorphisms were identified using fragment analysis. PCR prod-
ucts were displayed on an ABI Prism 3130xl DNA sequencer (Applied Biosystems Foster City, CA, USA), and we 
analyzed the results by means of GeneMapper software, version 4.0 (Applied Biosystems, Foster City, CA, USA). 
Primer sequences and PCR conditions can be provided upon request.

For each VNTR polymorphism, subjects were categorized into 3 genotypes according to the previously 
described risk allele18, as follows: SLC6A3 3′UTR VNTR (10/10, 10/−, −/−), SLC6A3 intron8 VNTR (6/6, 6/−, 
−/−), DRD4 promoter duplication (L/L, L/S, S/S), DRD4 exon3 VNTR (7/7, 7/−, −/−), SLC6A4 promoter 
VNTR (L/L, L/S, S/S), and SLC6A4 intron2 VNTR (10/10, 10/−, −/−).

Statistical analysis.  During the quality control procedure, genotype call rates per sample and per polymor-
phism < 80% were excluded from the analysis. The outcome measures of treatment with MPH were evaluated 
as quantitative data according to CGI-S and CGAS. Analyses of the effects of different genotypes on response 
to treatment over time were performed using linear mixed-effects models. These mixed-models are useful for 
repeated-measures analyses where follow-up times are not uniform across all subjects41. Models were constructed 
using the lme function from the nlme package in R.

As in other genetically complex diseases in which the model of inheritance is uncertain, the analyses were 
performed under the assumption of dominant, recessive, codominant, and additive models. The best model was 
selected based on the one with the lowest Akaike information criterion (AIC). Data for variants located on chro-
mosome X (HTR2C and STS genes) were analyzed taking X inactivation into account according to Clayton’s 
approach42.

Age, sex, ADHD subtype, previous treatment, type of MPH (immediate-release vs. extended-release/both 
formulations), and dosage were also entered into the models as potential explanatory covariates. Statistical signif-
icance for main effects and interactions was assessed using the ANOVA F-test and set at a 2-tailed p value of 0.05. 
In these multivariable models, the effect size of the associations was measured by the coefficients of the models 
“β”.

The proportion of the variance explained by the model was assessed using Omega Squared43.
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