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Forming-less and Non-Volatile 
Resistive Switching in WOX by 
Oxygen Vacancy Control at 
Interfaces
Seokjae Won1, Sang Yeon Lee1, Jucheol Park2 & Hyungtak Seo1,3

Resistive switching devices are recognized as candidates for next-generation memory devices in that 
they can replace conventional memory devices. In these devices, a WOX film deposited by RF magnetron 
sputtering with a significant number of oxygen vacancies exhibits a resistive switching property and 
does not involve the use of a forming process. The resistive switching mechanism involves the hopping 
of electrons through the sub-band states of the oxygen vacancies in E-field-driven electromigration. 
X-ray photoemission spectroscopy, ultra-violet photoemission spectroscopy, and transmission electron 
microscopy-electron energy loss spectroscopy were performed to analyze local variations in the 
O-vacancies and in the electronic band structure of a WOX thin film. The band structure is responsible 
for the correlation between the motion of the electrons under the interface effect at the electrodes 
with the change in the resistance and the bias-polarity dependence of the I-V property of the device. 
The optimized metal-insulator-metal structure (Pt/WOX/Au), which has an asymmetric electrode and 
many oxygen vacancies, gives rise to excellent resistive-switching properties with a high on/off ratio on 
the order of 105 times, a low set voltage of <0.34 V, and a uniform DC cyclic performance in the order 
of 1500 cycles at room temperature. These specifications can be further adopted for application to non-
volatile memory-device applications.

In spite of the ongoing reduction in the dimensions of conventional Si-based flash-memory devices, it is expected 
that there will come a point where physical limitations will prevent any further reduction in device size1–5. Many 
researchers have been searching for a promising alternative to non-volatile memory to overcome this issue. 
Resistive switching behavior has emerged as a strong candidate for the next generation of non-volatile memory 
given its structural simplicity, high scalability, low power consumption, fast switching speed, and high-density 
integration6–9. A key aspect of resistive random access memory (ReRAM) is the use of the switching of the 
resistance mode of the insulator. Therefore, many studies have reported on insulators with a resistive-switching 
behavior, whereby the insulator can reversibly switch between a high-resistance state and a low-resistance state10. 
This resistive switching behavior can be explained by two mechanism models; filamentary and non-filamentary 
switching8. Filamentary resistive random access memory (ReRAM) features a forming process whereby filaments 
are formed to link the bottom electrode to the top electrode10. While the conductive filaments are aligned, the 
resistance is low. Then, the rupturing of these filaments, as a result of electrochemical redox and Joule heating, 
makes the resistance high8. On the other hand, it is generally agreed that the mechanism responsible for the 
behavior of non-filamentary ReRAM is resistive switching caused by the migration of oxygen vacancies during 
the application of a voltage. This plays a crucial role in the resistive switching behavior8, 10. Unipolar or bipolar 
resistive switching behaviors have been identified in various types of materials such as perovskite, transition 
metal oxide (TMO), chalcogenide, and organics1, 3, 4, 8, 11–14. Among them, TMO has a particularly large number 
of candidates; NiO, TiO2, TaO2, HfO2, WO3 and (Ba,Sr)TiO3

1, 15–19. Notably, WO3 has been identified as being 
well suited for application as an active layer in ReRAM due to its excellent compatibility and simple process13. 
Although some reports focusing on ReRAM device performance have been published13, 20, 21, in-depth analyses of 
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material tuning and the switching mechanism of WO3 have been relatively lacking. It has been reported that, in 
the case of WO3, it is important to have a wide band gap with a resistive switching behavior8, although the behav-
iors and distribution of the oxygen vacancies (O-vacancy) in the WO3 are unknown in spite of its importance to 
non-filamentary resistive switching. Since WO3 is known to be a highly reactive material due the large quantity 
and chemical reversibility of O-vacancies, the investigation of this property of WO3 would be invaluable to the 
optimization of TMO-based ReRAM. Herein, we demonstrate an improved approach to the fabrication of WOX 
ReRAM with non-filamentary resistive switching, based on the migration of oxygen vacancies. A non-crystalline 
WOX thin film was deposited using RF magnetron sputtering at a low temperature (near room temperature, 
40 °C). WOX conforms to the depletion model for ReRAM operation, whereby control depends on there being 
more oxygen vacancies than WO3, and where the oxygen vacancies can be easily redistributed to form a path for 
a charge. Considerably reliable ReRAM, with a of Pt/WOX/Au metal-insulator-metal (MIM) structure, exhibits 
outstanding ReRAM electrical properties such as a high on/off ratio in the order of 105 times, a low set voltage 
of less than 0.34 V, and a uniform DC cyclic performance of around 1500 cycles at room temperature, even if 
deposited at near room temperature. The results of the present study suggest the pivotal role of oxygen vacancies 
and the relevant energy band structure. These were experimentally probed by the application of spectroscopic 
techniques, to explain the mechanism of resistive switching and the characteristics of the I-V curve. Furthermore, 
we proved the role of electrodes, which are used in MIM structure to make the effect of rectifying junction.

Results
Scheme and electrical properties of resistive switching. Figure 1a shows the general scheme of the 
resistive switching in a WOx-based metal (Pt)-insulator-metal (Au) ReRAM with oxygen vacancy distribution. 
The white circles represent the oxygen vacancies which act as the conductive channel for charges. When Pt, 
configured as the top electrode, is positively biased, oxygen vacancies migrate and then accumulate to form a 
path, allowing many electrons to pass through the insulator (WOX) between the top electrode (Pt) and bottom 
electrode (Au). When Au, configured as the top electrode, is positively biased, the Joule heating destroys the oxy-
gen vacancies, leading to the rupture of the conductive channel22, 23. Figure 1b shows the typical progression of 
resistive switching at room temperature. A voltage is applied in the sequence of 0.0 V → 2.0 V → 0.0 V → −2.0 V 
→ 0.0 V at a biasing interval of 0.02 V. Then, the current exhibits counterclockwise switching (CCWS). When the 
voltage bias on the top electrode is positive, the resistance changes from the high state to the low state without 
any extra process such as the forming needed to make a metallic filament. This change in the resistance allows 
a greater current to flow. As shown indicated by the current-voltage (I-V) curve, however, the current does not 
increase instantly and steeply but instead increases gradually. This switching property is different from that of a 
metallic filament10, 24. The set voltages are less than 0.5 V and are about 0.34 V on average. I-V curves with uniform 
and low set/reset voltages are shown for up to 1500 DC sweeps. This large number of DC cycles is comparable to 

Figure 1. Scheme and I–V characteristics; (a) Schematic of Pt/WOX/Au structure of resistive switching 
mechanism with oxygen vacancies, (b) I–V curves for 1500 cycles of DC voltage from 2.0 to −2.0 V with 
counter-clockwise bias sweep, (c) Endurance for 1500-cycle DC-bias and resistance between HRS and LRS, (d) 
Cumulative probabilities of MIM structure for 1500 cycles.



www.nature.com/scientificreports/

3Scientific REPORTS | 7: 10186  | DOI:10.1038/s41598-017-10851-8

that of previously reported WOX ReRAM1, 8, 13, 18, 25–27. It can be seen that the current which flows when a negative 
voltage is applied is suppressed but when a positive voltage is applied, a high current flows, in the same way as in 
a rectification diode. The DC endurance characteristics between the high-resistance state (HRS) and low-resist-
ance state (LRS) at 0.34 V are shown in Fig. 1c. The on/off ratio between the HRS and LRS is up to 105 times and 
remains stable for 1500 cycles or more. While the LRS remains stable for 1500 cycles, the HRS is slightly unstable 
in the early stages but becomes more stable after approximately 550 cycles. The cumulative probability for 1500 
cycles is shown in Fig. 1d. As expected, the Pt/WOX/Au exhibits a resistive switching behavior with a good distri-
bution of the LRS and a slightly unstable distribution of the HRS.

Control groups. To identify the physical origins of the electrical properties of Pt/WOX/Au, various types of 
control devices were fabricated. Figure 2 shows the effect of the electrodes and oxygen vacancies in WOx. A Pt/
WOX/Pt device is shown in Fig. 2a. It has the same Pt electrodes at both the top and bottom. The overall I-V curve 
feature of the Pt/WOX/Pt device differs from that of the Pt/WOX/Au device, and the rectification under bias is 
much weaker than that of the reference (Pt/WOX/Au) device. The cyclic performance and on/off ratio were also 
worse and the set/reset voltage was much higher than those of the reference device. There are the rectification 
properties in I-V curve, because oxygen vacancies are concentrated at top of device near top electrode (this will 
be more discussed in Fig. 3c.). In addition, Fig. 2b shows the characteristics of the device with the electrodes 
switched between the top and bottom, that is, Au/WOX/Pt. The resistive switching characteristic is opposite to 
that of the reference group. In the reference group, the marked resistive switching characteristic appears when 
the positive voltage is applied. However, the control device shown in Fig. 2b shows the marked resistive switching 
characteristic at the negative voltage. Therefore, Fig. 2a and b confirm the roles of the two kinds of electrodes on 
the bias-polarity asymmetric switching behaviors, rectification, and on/off ratios. Rectification properties are 
confirmed in Fig. 2a and b due to differences of electrode work function and position of oxygen vacancies (this 
will be further discussed in Fig. 4.). The two control devices shown in Fig. 2c and d were fabricated to confirm 
the role of the oxygen vacancies in WOx. The WOx deposition shown in Fig. 2c was carried out in an oxygen-rich 
atmosphere (Ar:O2   = 30:5 SCCM). This amount of oxygen was 10 times greater than the standard amount used 
for the reference device. The control device shown in Fig. 2c has a much lower on/off ratio and higher set volt-
age than the reference device. The set voltage is 0.62 V at the 600th cycle, at which the on/off ratio is 617. The 
device with higher oxygen concentration requires a higher set voltage, while the gap between the HRS and LRS 
decreases. Figure 2d shows the I-V curves for a device deposited under the same Ar/O2 conditions (Ar:O2   = 30:5 
SCCM) as those used for the reference group but subsequently annealed at 400 °C, under an O2 pressure of 7 Torr 
for 3 min. The annealed device does not exhibit any resistive switching property at all and its base current is too 
high, even though this device has a lack of oxygen vacancies due to the oxygen annealing. This result may be due 

Figure 2. I–V curves of control devices for comparison; (a) Pt/WOX/Pt device for 100 cycles from 2.5 to 
−2.5 V, (b) Au/WOX/Pt device for 100 cycles from 3.0 V to −3.0 V, (c) Pt/WOX/Au deposited by RF magnetron 
sputtering in oxygen-rich atmosphere for 600 cycles between 1.5 and −1.5 V, (d) Pt/WOX/Au annealed at 400 °C 
and 7 Torr in an oxygen atmosphere for 20 cycles between 1.5 V and −1.5 V.
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to the increase in the grain boundaries because of the thermal crystallization of the WOx film, which can be a 
conductive path. It was experimentally confirmed, from Fig. 2, that the electrodes and oxygen vacancies in the 
WOx greatly affect the resistive switching in the control devices.

XPS and TEM-EELS analysis. To characterize the binding state and valence band electronic structure of 
WOx, an XPS analysis was performed. The W 4 f spectra shown in Fig. 3a were deconvoluted into four doublets 
by Gaussian fitting, corresponding to W5+ 4f5/2 (36.93 eV), W5+ 4f7/2 (34.83 eV), W6+ 4f5/2 (37.68 eV), and W6+ 
4f7/2 (35.58 eV)28–31. Although the deposition process was carried out using the WO3 target, the XPS data indicates 
that the tungsten oxide thin film is either not fully oxidized (i.e., WOX, X < 3) or incorporates oxygen vacancies. 
The peak area ratio of W5+/W6+ is 6.38%, which indicates a considerable O deficiency in the oxide. Figure 3b 
shows the O 1s spectrum for the WOX thin film. This peak was also deconvoluted into three components, namely, 
O2−, OH−, and H2O. The binding energy of O2− is about 530.88 eV, corresponding to the strong W=O bonds32. 
The binding energy of OH− is about 532.23 eV and the binding energy of H2O is about 533.53 eV. Table 1 lists 
the binding energies and atomic composition ratios. The stoichiometric ratio between tungsten and oxygen can 
be inferred from the composition ratio. The atomic ratio of tungsten is 17.95% and the atomic ratio of oxygen 
is 49.48%. Therefore, the ratio of tungsten to oxygen is about 1:2.76 (WO2.76), not 1:3 (WO3). This indicates that 
this WOX contains a large number of oxygen vacancies. In the cross-sectional scanning TEM-EELS analysis, 
the selected area electron diffraction (SAED) pattern does not show any pattern indicating a degree of crys-
tallinity but merely indexes the ambiguous diffraction patterns shown in Fig. 3c, that is, the amorphous phase. 
Figure 3d shows a cross-sectional SEM image of the Pt/WOX/Au MIM structure, which consists of uniformly 

Figure 3. Chemical and structural analysis of WOX; (a) XPS narrow scan of W 4f at the surface which was peak-
deconvoluted with sub-peaks for each chemical binding state, (b) O 1s XPS of WOX, (c) cross-sectional TEM 
image and depth-wise EELS analysis which indicates OK1 edge spectra with onset energies (solid arrows) and 
secondary onset energies (dotted arrows), (d) SEM image of Pt/WOX/Au device, (e) XRD data of amorphous 
WOX on Au substrate, (f) Raman data of amorphous WOX measured using 532-nm laser excitation, (g) AFM 
image of surface of WOX device, (h) XPS valence band maximum of WOX device as determined by spectrum 
onset binding energy, and (i) band gap determination of WOX device throughout UV-vis measurement; the 
oscillation in the spectra from 1.2 to 3 eV is due to the internal optical interference pattern. The intrinsic 
absorption starts from around 3 eV near the band gap energy of WO3.
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staked structures. The WOX film exhibits a columnar structure with an amorphous phase. This amorphous WOX 
phase can be confirmed from the XRD data shown in Fig. 3e, which exhibits a broad peak at approximately 25°. 
In addition, the Raman results clearly show the presence of a WOx film consisting of O-W-O bending and the 
stretching mode in Fig. 3f 33. The surface roughness of the WOX was estimated to have a root-mean-square (RMS) 
roughness of 2.124 nm of by AFM analysis (Fig. 3g). The uniform WOX surface is crucial because its interface 
with the electrode has a major influence of the electrical properties, such as the on/off ratio, switching uniformity, 
and cyclic performance. An RMS roughness of 2.124 nm is reasonable in terms of deposition by RF magnetron 
sputtering. This is because the deposition was carried out at around room temperature with no driving force for 
the crystallization. Figure 3c shows how EELS analysis was performed to confirm the depth-wise distribution 
of oxygen vacancies, relative to the amount of oxygen vacancies at the surface, as determined by XPS. The EELS 
results show an O K1 excitation from 529 eV to 533.5 eV. The evolution of the O K1 onset energy is fitted, with the 
dotted arrows indicated the plotted onset energy points. On the other hand, the solid arrows indicate those points 
at which the secondary onset energy starts (applied to positions 1 to 4). The dotted arrows correspond to strongly 
bound oxygen, while the solid arrows indicate less strongly bound oxygen. The presence of weak bonds means 
that there is an oxygen vacancy, but not a full oxidation state. It can be seen that the secondary onset energies 
are clear, with those in the upper region (near the top electrode) being much more distinctive. As a result, EELS 
shows that there are more oxygen vacancies in the upper region near the top Pt electrode. Figure 3h and i identify 
a valence band maximum at 2.16 eV, based on the Fermi energy (EF) level as determined by XPS analysis and an 
optical bandgap at 3.01 eV, as apparent in the Tauc plot of the absorption spectrum of the WOX film. These VBM 

Figure 4. UPS analysis for the work function extraction and construction of band structure to explain the 
mechanism; UPS spectra of (a) Pt, (b) Au, and (c) WOX with the work functions of the top and bottom 
electrodes, respectively. The inset figures indicate the extraction of Ecutoff and EF energy from the high- and 
low-energy shoulders in the UPS spectra. (d) Band structure of WOX device without voltage (at thermal 
equilibrium).

Material Binding Energy (eV) Atomic ratio (%)

W 4f 35.54 17.95

O 1s 527.86 49.48

C 1s 284.55 29.60

N 1s 402.24 2.97

Table 1. Summary of atomic ratios of W, O, C, and N, as calculated from XPS peak areas of W 4f, O 1s, C 1s, 
and N 1s by considering the sensitivity factor of each element.
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and bandgap values indicate that the WOX film is an n-type semiconductor. The oscillating pattern of the Tauc 
plot below 3 eV, shown in Fig. 3i, is due to the internal optical interference inside the WOX.

UPS and band alignment. UPS and XPS analyses were performed to construct the band structure and 
explain the behavior of the carrier transport and injection. Figure 3h shows the valence band maximum as deter-
mined from the XPS analysis, which points to an energy gap at 2.16 eV between valence band maximum and 
Fermi energy level. It was previously reported that a partially filled W 5d state appears below 3 eV in the VB edge 
XPS spectra34. Furthermore, the UV-vis data exhibits a band gap of WOX, as shown in Fig. 3i. There are some 
oscillating spectra between 1.2 eV and 3.0 eV due to the internal optical interference and the intrinsic absorption 
from around 3.0 eV near the band gap energy of WO3. Therefore, we can say that the WOX band gap is 3.01 eV, as 
determined from the UV-vis observations.

Figure 4a and b show UPS data indicating the work functions of the Pt and Au used as an electrode. The fol-
lowing equation expresses the photoelectron emission of UPS:

ω ϕ= − −E h E , (1)kin b

where Ekin is the electron kinetic energy, hω is the photo energy of light (He UV emission at 21.22 eV), ϕ is the 
work function of the specimen, and Eb is the binding energy. Therefore, the equation can be revised to calculate 
the work function from the UPS data:

ϕ = ω − −h E E , (2)cutoff F

where Ecutoff and EF can be represented by fitting the energy graph of the UPS at high and low kinetic energies. 
Using these equations, it was confirmed that the work functions of the top Pt electrode and the bottom Au elec-
trode were 5.56 and 5.15 eV, respectively. In Fig. 4c, the UPS data for the WOX is shown. The work function of the 
WOX was observed to be 4.49 eV. The band structure based on the measured UPS, XPS, and UV-vis data is shown 
in Fig. 4d. Schottky barriers occur at the Pt/WOX and WOX/Au interfaces, due to the differences in the Fermi 
energy level. The Schottky barrier at the interface with the top electrode is much larger than that at the bottom 
electrode due to the difference in the work function. This suggests that the metal/WOX interfaces have a major 
impact on electron injection. Especially, the asymmetric Schottky barrier at the two interfaces may have a greater 
influence on the behavior of the electrons, depending on the polarity of the voltage applied to the device.

Discussion
When a voltage is applied, the band structure is changed due to the formation of a quasi Fermi energy level. 
Figure 5a shows that, when a positive voltage is applied to the top electrode, a corresponding negative voltage is 
applied to the bottom electrode. When a negative voltage is applied to the bottom electrode, the Schottky barrier 
is lowered and electrons are easily injected into the top electrode. However, as shown by the I-V curve, the current 
does not increase immediately but increases gradually and step-wise, pointing to the double process of carrier 
injection and hopping. The oxygen vacancies form partially electron-filled W 5d and form sub-band edge states 
where the electrons can hop34. Because the Schottky barrier at the interface near the bottom electrode is low, 
electrons can readily pass through at the interface and then the electrons can move via the sub-band edge states of 
oxygen vacancies16, 35–38. Thus, as a result of this process, the current increases stepwise. Figure 5b shows the band 
structure when a negative voltage is applied to the top electrode. The Schottky barrier at the interface near the top 

Figure 5. Band structures under biasing condition; Band structure showing (a) electron hopping from bottom 
(Au) to top (Pt) electrode via sub-bands of oxygen vacancies when the positive voltage is applied to the top 
electrode. As the concentration of oxygen vacancies increases, sub-bands become shallower states and (b) 
difficulty in hopping of electron from top to bottom electrode when a negative voltage is applied to the top 
electrode.
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electrode is too high for electrons to pass easily. This may be the reason why the I-V curves are similar to those 
of rectification junctions. The band alignments also can explain the shape of the I-V curves in control devices. 
The current flows consist of carrier injection at the Schottky interface in one direction only due to the difference 
in the work functions of the electrode and carrier transport as a result of the oxygen vacancies in the WOX, a key 
element of the resistive switching. Therefore, the resistive switching devices in the control devices exhibit poor 
properties, suggesting the importance of the optimization of the interface and resistive oxide stoichiometry for 
improved ReRAM performance.

Conclusion
We successfully fabricated a WOX film based on ReRAM devices using RF magnetron sputtering with a WO3 tar-
get. The combined spectroscopic analysis using XPS, the TEM-SAED pattern, and STEM-EELS results revealed 
the actual distribution of the oxygen vacancies in the WOX film and its top and bottom interfaces with the metal 
electrodes. Oxygen vacancies inside the WOX film form a sub-band edge, which helps the electrons to move 
through the WOX channel while the voltage-driven electromigration of the oxygen vacancies is responsible for 
the resistance between the HRS and LRS. The rectifying I–V curve is also explained by the asymmetric interfacial 
alignments (i.e., the different Schottky barrier energies) due to the work function difference between the Pt and 
Au electrodes, as confirmed by UPS. The optimized resistive switching Pt-WO2.76-Au MIM device has a stable 
DC cyclic property at 1500 cycles and outstanding on/off ratio of about 105 times. Therefore, this strategy demon-
strates an effective means of fabricating the WOX-based resistive switching device using RF magnetron sputtering 
at around room temperature.

Experimental
To form the bottom electrode, Au with a thickness of approximate 50 nm was deposited on an SiO2 wafer using 
an E-beam evaporator. The resistive switching channel for formed by depositing WOX with a thickness of 
about 200 nm at 40 °C using RF magnetron sputtering. As the sputter source material, WO3 (purity: 99.99%) 
with a diameter of 2 inches was used. The base pressure before the injection of reacting gas was lower than 
4.0 × 10−7 Torr. As the reacting gas, argon and oxygen were introduced into the sputter chamber at flow rates of 
30 and 0.5 SCCM, respectively, to maintain a working pressure of 20 mTorr for the film deposition. The deposi-
tion was carried out at an RF power of 150 W for 30 min. For the top electrode, Pt was deposited to a thickness 
of 50 nm by E-beam evaporation using a mask with a diameter of 50 μm. A metal-insulator-metal (MIM) struc-
ture was fabricated through this process to evaluate the ReRAM characteristics. X-ray diffraction (XRD, Rigaku 
MiniFlex-II Desktop) and high-resolution Raman spectroscopy (Raman, HORIBA Jobin Yvon LabRam HR 
Evolution) were used to observe the element and crystal structure of the thin film. The surface of the thin film was 
confirmed using an atomic force microscope (AFM, Tecsco Multi-mode SPM). A field-emission scanning elec-
tron microscope (FESEM, Hitachi S-4800) was used to check the thickness of the top and bottom electrodes and 
the insulator. The I–V characteristics of the electrical properties were measured using a probe station (Keithley 
4200SCS). X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific Co., theta probe base system) was 
used to identify the chemical compositions of the WOX thin film at a binding energy resolution of 0.05 eV. The 
XPS binding energy calibration was set to the reference C-C bonding (284.55 eV) in C1s. To check the local crys-
talline structure and the depth-resolved composition changes, Cs-corrected field emission transmission electron 
microscopy (TEM, JEM-ARM 200 F) was used. A specimen using a focused ion beam (FIB, NOVA 600 Nanolab 
(FEI)) was used for the cross-sectional TEM analysis.
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