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A Controllable and Integrated 
Pump-enabled Microfluidic Chip 
and Its Application in Droplets 
Generating
Bei Zhao1, Xingye Cui2,3, Wei Ren1, Feng Xu2,3, Ming Liu1 & Zuo-Guang Ye4,1

A microfluidic chip with a controllable and integrated piezoelectric pump was proposed and 
demonstrated, where the pump was designed as a micro-actuator based on polyvinylidene fluoride 
(PVDF) organic piezoelectric film. In this case, the pump should integrate with the microfluidics device 
very well into one chip. The flow rate can be precisely controlled in the range of 0–300 µl/min for water 
by tuning the Vpp and frequency of Alternating Current (AC) voltage applied on the diaphragm. To 
analyze the relationship between the flow rate and the deflection of diaphragm, the deformations 
of diaphragm at different voltages were researched. The displacement of diaphragm was defined as 
17.2 µm at the voltages of 3.5 kV, 5 Hz when the pump chamber was full of water. We have used the 
integrated microfluidic chip with two pumps for droplet generation to demonstrate its great potential 
for application in droplet-based microfluidic chip.

Microfluidics technology has found widespread applications in the biomedical1–8, chemical9–12, physical13, 14 and 
electronics15–17 areas, due to their advantageous features such as increased resolution and sensitivity, reduced 
sample volume, shortened turnout time and with less manual intervention18–20. In microfluidic chip, pumps with 
stable and directional fluid flow are generally required to drive flow of continuous phase or dispersed phase, 
where an ideal pump should be small, easy to be integrated, simple for fabrication and environment friendly to 
achieve well controlled, miniaturized and integrated microfluidic chip. Traditionally, two commercialized pumps 
contain syringe pump and peristaltic pump which are generally used in microfluidics to actuate fluid flow because 
of their stability, well defined directionality, wide flow rate range (minimum as 1 nl/hr. and maximum as more 
than one hundred microliter per minute) and low controlled error of less than ± 5%21, 22. Nevertheless, miniaturi-
zation and integration of microfluidic devices are difficult to be realized by these bulky pump chips, which greatly 
restrain their use for the microfluidic devices especially the devices that need more than one pump.

To address these issues, several self-powered or bulky facility-free pumps have been developed, such as fin-
ger or hand powered pump23–25 and capillary pump26. For instance, in finger-powered microfluidics, pushing 
the chamber wall by finger, the pressure of the chamber will change and then the fluid flow out of the chamber, 
which offers the advantages of small size, passive and low cost. However, the fluid cannot flow contiguous, the 
flow rate cannot be  controlled well, and more importantly it is difficult to manipulate several pumps at the same 
time. In capillary pump, precise fluid transport can be achieved through capillary imbibition that occurs on a 
programmed substrate or micro-channel, where the flow field is determined by physicochemical properties and 
geometrical characters of the flow domain27. Even though capillary pump offers the advantages of low cost, con-
tiguous flow and easy to integrating several pumps into one chip, but it has limitations in processing large volume 
of fluid and modulating flow rate due to complex pump geometrical design and physicochemical modification28. 
Electromagnetic pump driven by DC motor could obtained the flow rate of ~490 µl/min under the back pressure 
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of 592 Pa29. Thermal bubble actuated by nozzle-diffuser pump was used in a microfluidic mixer, the speed of mix-
ing liquids was obtained as 6.5 µl/min. Which realized integrated the pump into the microfluidic chip successfully. 
But it is very difficult to control the bubble in velocity, size, position and other factors30.

In order to achieve precise controlled of flow in integrated microfluidic devices, many electronic materials 
have been used to fabricate pump, such as piezoelectric ceramics with big displacement and applied force27, 31, 
piezoelectric films integrated with silicon membrane using Micro-Electromechanical Systems (MEMS) technol-
ogy32, 33, dielectric elastomeric with electrostriction for its flexibility and environmental performance34. However, 
piezoelectric ceramics are fragile, while dielectric elastomeric is not stable when using for a long time and the 
process of MEMS is complex. To address these issues, electrostrictive poly(vinylidene fluoride-trifluoroethylene) 
(PVDF-TrFE) thick film with a large electrostrictive strain has been used for pump, which can achieve maximum 
flow rate of around 25 µl/min for methanol at 63 Hz with a backpressure of 350 Pa35. The pump diaphragm was 
made up of a unimorph with the thickness of 80 µm which was formed by bonding two 20 µm thick films to an 
inactive PVDF polymer film using epoxy, apparently, the fabrication process is not simple enough. Besides this, 
the using of dilute hydrofluoric acid (HF) solution in wet etching on the glass substrate will bring about potential 
safety hazard and environment matter.

In this work, we developed a microfluidic chip integrated with two organic piezoelectric pumps, where the 
piezoelectric pump was fabricated using a thin PVDF film with the phase of β which own excellent piezoelec-
tricity and flexibility. The PVDF film with electrodes was adhered onto the face of channel layer and served as a 
wall of the microchannel: this setup allows the pump element to combine with microfluidic chip consummately 
in order to realize a novel pump which can be integrated into one microfluidic chip with several pumps and other 
devices easily. The deformation of the PVDF film under electrical stimulation according to inverse piezoelectric 
effect will induce the volume change of the chamber and then drive the fluid flow. The PVDF piezoelectric pump 
can provide a wide range of flow rate (e.g., up to 300 µl/min for water). The directional flow was achieved by using 
a nozzle-diffuse design in pump chamber36–38. The microfluidics with droplet generating should manipulates 
droplets for studying rare gene expression and single-cell analysis39, 40. As a demonstration, we have integrated 
two PVDF piezoelectric pumps into one T-junction36, 39, 40 microfluidic chip to generate droplets, where con-
trolled droplet size was achieved by tuning the peak to peak value of driving voltage.

Results and Discussion
Displacement of diaphragm. β phase PVDF film was used to fabricate the microfluidic pump and chip, 
the structure and picture of the piezoelectric pump based on PVDF are shown in Fig. 1. The crystal structure of 
the film was detected by x-ray diffraction (XRD), the pattern was shown in Fig. 2(a). The sharp peak at 2θ = 20.8 
and 2θ = 36.7 are assigned to (110, 200) and (020, 101) reflections of PVDF crystal plane respectively which are 
attributed to the ferroelectric β phase. The fluid flow rate depends on the change of chamber volume which relies 
on the displacement of diaphragm. The performance of the pump is investigated in detail in this part. To analyze 
the relationship between the flow rate and the deflection of diaphragm, the deformations of the diaphragm at dif-
ferent voltages (Vpp = 1.2 kV, 1.5 kV, 2.0 kV, 2.5 kV, 3.0 kV, 3.2 kV and 3.5 kV) were measured. The animation about 
the diaphragm deformation at the voltage of 2 kV and the frequency of 5 Hz is shown in Supplementary Video S1. 

Figure 1. The principle of the nozzle-diffuse pump with single diaphragm, supply mode and pump mode (a) as 
the structure of the channel (b) fabricated by the process flow (c).
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The relationships between the displacement and the voltage for different conditions are shown in Fig. 2(b), in 
which the chamber was full of water or mineral oil. The surface morphology of diaphragm bend to different direc-
tion, under pressure caused by increased chamber volume Fig. 2(c) the pump works as supply mode and in the 
other hand the pump works as pump mode as shown in Fig. 2(d). The displacement will increase with the increas-
ing of Vpp when the frequency is fixed. The biggest displacement for mineral oil is 14 µm which appeared at 3.5 kV, 
5 Hz which is less than for water under the same measurement conditions (17.2 µm). These results indicate that 
the fluids with different viscosities will experience different resistance for the oscillatory movement of diaphragm.

At low frequency, the deflection of diaphragm can reach positive maximum and then reverse as the voltage 
switches from ± 1/2 Vpp to ∓ 1/2 Vpp. Under this condition, the film displacement will show significant change 
with the change of Vpp or frequency, where a higher Vpp and a lower frequency lead to a larger displacement. In 
comparison, at high frequency, the increased fluid loading on the diaphragm41, 42 deduced the displacement of 
diaphragm and a small change will be observed with the change of Vpp or frequency.

Measurement about flow rate. The piezoelectric film would oscillate under the AC voltage, which will 
band up or down, making the volume of the chamber increase or decrease. The phenomenon of under pressure 
in the chamber may appear when the chamber volume increases and the pressure decreases. In this case, the liq-
uid flows into the pump chamber, and the pump works as supply mode; on the other hand, under overpressure 
caused by decreased chamber volume, the liquid flows out of the pump chamber, and the pump works as pump 
mode (Fig. 1(a)). Based on the trapezoidal groove, the flow resistance from pump chamber to storage poll was 
different from pump chamber to collect poll; meanwhile, the flow resistance from storage poll to pump chamber 
was different from the resistance from collect poll to pump chamber. This results in the directional flow of liquid. 
To characterize the pump, the flow rates at different voltages for fluids with various viscosities (e.g., water (1 cs), 
mineral oil (36 cs) and simethicone (10 cs)) were measured and shown in Fig. 3. Under a fixed Vpp, the fluid rate 
increases with increasing frequency, reaches maximum and then decreases quickly. The comparison of the flow 
rates for different fluids with the Vpp of 2.5 kV is shown in Fig. 3(c), which indicates the same tendency for three 
lines. The maximum flow rates show a linear relation with the viscosity, as shown in Fig. 3(d). Based on these 
results, we can confirm that the viscosity of the fluid is a crucial factor determining the flow rate when the Vpp and 
frequency are decided. The pump could pump water at the highest fluid rate of 300 µl/min at 100 Hz with the Vpp 
of 3 kV (as shown in Supplementary Video S2), this value is larger than those integrated pumps23, 27.

For a nozzle/diffuser type micro-pump, the volume flow rate can be expressed as38:
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Figure 2. The characterization of β phase PVDF film: XRD pattern (a), displacement under different conditions 
(b) and the surface topography of the diaphragm when the diaphragm bend up (c) and down (d).
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where ∆V is the volume change of the chamber during one period of the diaphragm incentive by the alternating 
voltage, which is related to the displacement of diaphragm and the chamber structure, f is the frequency of the 
alternating voltage, η is the nozzle-diffuser efficiency which is determined by the nozzle/diffuser structure, the 
viscosity of fluid and the fluid flow rates in the narrow sides of the nozzle/diffusers. In the low frequency range, 
∆V and η will almost not change with frequency, so the flow rate increasing linearly with frequency. But in the 
high frequency range, the ∆V decreased quickly because of the reduced displacement of diaphragm caused by 
the increased fluid loading on the diaphragm41, 42. In this case, the linearly relationship between Q and f is broken 
and Q decreasing mainly determined by the reduction of ∆V. It is obviously that, the flow rate is determined by 
volume change of chamber, frequency of voltage, peak to peak value of AC voltage, nozzle-diffuser structure and 
viscosity of fluid together. Based on the previous discussion, the volume change of chamber will decrease at high 
frequency, so a maximum flow rate should be obtained at one point under the resonance frequency.

For high driving voltages, a signal generator and an amplifier must be used in the testing. In order to get more 
portable device, an advanced high voltage source which could output high Vpp of AC voltage with a small size 
should solve this issue. Besides, we have made efforts to change the parameters of diaphragm film for the purpose 
of reducing the driving voltage and got some good effects.

Droplets generating. We developed a microfluidic chip that contains several organic pumps based on a thin 
PVDF piezoelectric film (Fig. 4(a)). In the testing, droplets can be generated based on the T-junction structure 
which is shown in Fig. 4(c), the mono-dispersed water-in-oil (W/O) droplet was generated successfully and the 
droplets size can be controlled easily by changing the voltage. As Fig. 4(b) shows, increasing Vpp is equivalently to 
increase the flow rate at the frequency of 5 Hz, while the shear force is also increased which improve the generat-
ing rate and the distance between two neighboring droplets which are indeed a function of flow rate43. Different 
droplets sizes were obtained through adjusting the flow rate of continuous and dispersed phases by changing the 
Vpp and frequency of the applied voltage. Increasing the Vpp from 1.2 kV to 2.0 kV, the droplets size decreased 
obviously: with the diameter of 1.1 mm for 1.2 kV; 0.8 mm for 1.5 kV and 0.5 mm for 2.0 kV (Fig. 5). In the testing, 
the droplets could be generated stably (Supplementary Video S3, with a Vpp of 1.5 kV, 5 Hz), indicating that the 
piezoelectric film pump can serve as the drive in microfluidics system44.

Herein, our proposed device offers advantages in flow rate which is easy to control. Besides, its features of 
being soft, easy to fabricated, chemically stable, especially easy to integrate several pumps into one chip hold great 
potential for applications in many microfluidic fields. The pump element will also be taken into account when a 
microfluidic chip is designed rather than selecting one pump for a designed chip.

Figure 3. Properties of the piezoelectric pump. (a) relationship of fluid flow rate and frequency under different 
Vpp for water. (b) relationship of fluid flow rate and frequency under different Vpp for mineral oil. (c) flow rate of 
different fluids. (d) relationship of maximum fluid flow rate and kinematic viscosity.
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Conclusions
A microfluidic chip for droplets with integrated pumps based on organic piezoelectric film was designed, fab-
ricated and investigated. The surface topography of the diaphragm was described and the displacement of dia-
phragm for resonance in different chamber conditions was obtained. The flow rates of pump for different fluids 
were measured and the maximum flow rate was found to be linearly dependent on the viscosity of the fluid. 
Droplets were produced stably and the droplets size decreased with the increase of Vpp when the frequency was 
defined. It is simpler to integrate several pumps into one microfluidic chip in emerging droplet based microfluid-
ics usage, in which cost-effective pumps integration is of great significance. This work demonstrates the feasibility 
of integrating delivery, mixture, detection, analysis and any other operations onto one chip with a small size and 
promotes the development of microfluidic chip to realize portable detection technology.

Materials and Methods
System design and fabrication. The microfluidic chip for droplets generating with integrated pumps 
based on piezoelectric film contains four layers, i.e., bottom substrate, channel layer, active layer and top sub-
strate. The working principle and the fabrication processes of the pump and chip were shown in Fig. 1. Polymethyl 
methacrylate (PMMA) plate was selected to serve as channel layer and substrate layers. PVDF piezoelectric film 
(~28 µm, MIS, USA) was used as piezoelectric layer. These four layers were stuck together using double-sided 
adhesive (~50 µm, 3 M, USA).

The fluidic network was defined by top and bottom substrate layers and the channel layer, which contains 
pump chamber, channel, inlet port and outlet port. For the channel, there were two diffuser/nozzle elements, one 
for the inlet and the other for the outlet of the pump. The diffuser/nozzle element was specially designed so that 

Figure 4. The picture (a) of droplet generating chip. (b) shows the picture of droplet generator working at 5 Hz, 
1.2 kV (I); at 5 Hz, 1.5 kV (II); at 5 Hz, 2.0 kV (III). (c) is the schematic of T-junction.

Figure 5. Droplet size decreased with the increasing of Vpp.
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the volume flowed into the diffuser direction was higher than into the nozzle direction and thus the fluid flowed 
from inlet to outlet under the resonance of the diaphragm. As shown in Fig. 1(b), the angle of the trapezoidal θ is 
15°. The values of d, D, L and w are 1 mm, 2.6 mm, 6 mm and 2 mm, respectively. The diameters of storage poll 
(2R), collect poll (2r) and diaphragm (ɸ) are 7 mm, 5 mm and 5 mm, respectively.

The pattern of channel layer and substrate layer in the microfluidic system was customer-designed and then 
the PMMA plate was cut by a laser cutting machine (Universal VLS2.30, USA). As the first step to fabricate the 
pump, the channel layer was etched from a PMMA plate with a thickness of 250 µm; two pieces of double-side 
adhesive tape were etched as the same pattern to the channel layer and adhered onto the double faces of the 
channel layer. Second, the bottom and top substrate layers were cut from PMMA plate with a thickness of 500 µm. 
The PVDF piezoelectric film was then prepared and gold layers are deposited on the two sides of the PVDF film 
by a DC sputtering apparatus. Next, the bottom substrate as a complete piece of PMMA plate was pressed onto 
the surface of the adhesive on the bottom of the channel, the PVDF piezoelectric film with patterned electrodes 
was pressed onto the surface of the adhesive on the top of the channel as active layers, and the top substrate with 
double-side adhesive was adhered onto the top side of PVDF film (Fig. 1(c)). In the final fabrication step, silver 
wire with a diameter of 100 μm was adhered onto the gold electrodes by silver epoxy for electrical measurements. 
The total cost contains labor and material of the pump is only less than one dollar.

The picture of the chip with two pumps is shown in Fig. 4. A traditional T-junction geometry channel was 
used to produce droplets, there are two pumps in this microfluidic chip, one transport the continuous phase and 
the other transport the dispersed phase and the dispersed phase perpendicularly intersects the continuous phase. 
The shrink of the dispersed phase was 0.5 mm, the width of the continuous phase channel was 1 mm, and the 
diameter of the pump is 8 mm for continuous phase and 5 mm for dispersed phase. Due to the shear force from 
the continuous phase, the dispersed phase was broken up so the droplets were generated at the cross of the two 
phases. Furthermore, multiple channels chip has also been designed (Supplementary Figure S1).

Surface morphology. In order to describe the oscillatory movement of piezoelectric film, a scanning Laser 
Doppler Vibrometer (PSV-400, PolyTec, Germany) was used as a typical non-contact measuring instrument. This 
equipment contains many advantages like no added mass effect, strong anti-interference ability, field application, 
convenient measurement and high precision and so forth, so it is very suitable for explosion and impact test. This 
diaphragm morphology is visualized by reflection digital holography microscopy: the advantage is its capability of 
fast detection of the diaphragm resonating under different voltage without perturbing the device operation. The 
laser beam is focused using the focusing lens and split into two parts by the beam splitter. The microscopic objec-
tive is placed at one side of the beam splitter and the focusing lens is adjusted such that the object beam becomes 
collimated. The other beam is focused on a plane mirror and reflects back. The object beam and the reference 
beam are reflected by the mirror, and after reflection, interfere and are recorded by the CCD.

The helium-neon laser beam was directed to the resonating diaphragm and the scattered light was collected 
and interfered with the reference beam on a photodetector. The output of the photodetector was a standard 
frequency spectrum representing the velocity or displacement of the diaphragm. The diaphragm was excited by 
applying a periodic chirp signal on the pump, so the surface morphology under different conditions of the voltage 
should be obtained. The excitation voltage (square wave) was changed from 1.2 kV to 3.5 kV, and the frequency 
was increased from 5 Hz to 110 Hz.

Characterization. A square wave excitation signal was used to drive the pump which was supplied by a 
signal generator (ROGOL, China) and an amplifier (610E, Trek, USA). For the convenience of observation, food 
coloring solution was chosen as the test fluid to detect the fluid flow rate. The experimental process was as follows: 
(i) drop a solution of 20 µL into the storage pool to fill it up; (ii) turn on the power and start the time; (iii) when 
the storage pool is empty, stop the power and the time, and (iv) calculate the fluid flow rate from the elapsed time 
and the volume of the storage pool. The flow rates for water (food coloring solution) at different voltage parame-
ters were obtained through changing the frequency and peak-to-peak value (Vpp) of AC voltage. The flow rates for 
mineral oil (M5310, Sigma Aldrich) with a viscosity of about 36 cs and simethicone with a viscosity of 10 cs could 
also be obtained using the same method. The stability of the pump can be described through measuring the flow 
rate when it was working continuously. All of the tests were carried out at room temperature.

In the test of droplet creating, mineral oil was used as the continuous phase and food coloring solution was 
used as the dispersed phase. Mono-dispersed water-in-oil (W/O) droplet was generated due to the shear force.

References
 1. Bithi, S. S. & Vanapalli, S. A. Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters. Sci Rep 7, 

41707 (2017).
 2. Kim, S. et al. High-throughput automated microfluidic sample preparation for accurate microbial genomics. Nat Commun 8, 13919 

(2017).
 3. Jiang, H. et al. Integrated Microfluidic Flow-Through Microbial Fuel Cells. Sci Rep 7, 41208 (2017).
 4. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4, 261–286 

(2002).
 5. Tokel, O. et al. Portable microfluidic integrated plasmonic platform for pathogen detection. Sci Rep 5, 9152 (2015).
 6. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 

181–189 (2014).
 7. Wang, S. et al. Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol Adv 31, 438–449 (2013).
 8. Lee, W. G. et al. Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev 62, 449–457 

(2010).
 9. Jiang, J. et al. An integrated microfluidic device for rapid and high-sensitivity analysis of circulating tumor cells. Sci Rep 7, 42612 

(2017).
 10. Valencia, P. M., Farokhzad, O. C., Karnik, R. & Langer, R. Microfluidic technologies for accelerating the clinical translation of 

nanoparticles. Nat Nanotechnol 7, 623–629 (2012).

http://S1


www.nature.com/scientificreports/

7SCIEnTIfIC REPORts | 7: 11319  | DOI:10.1038/s41598-017-10785-1

 11. Mark, D. et al. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39, 1153–1182 
(2010).

 12. Elvira, K. S., Casadevall i Solvas, X., Wootton, R. C. & deMello, A. J. The past, present and potential for microfluidic reactor 
technology in chemical synthesis. Nat Chem 5, 905–915 (2013).

 13. Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: A new river of light. Nat Photon 1, 106–114 (2007).
 14. Bayraktar, T. & Pidugu, S. B. Characterization of liquid flows in microfluidic systems. International Journal of Heat and Mass Transfer 

49, 815–824 (2006).
 15. Xu, S. et al. Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin. Science 344, 70–74 (2014).
 16. Persano, L. et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-

trifluoroethylene). Nat Commun 4, 1633 (2013).
 17. Groisman, A., Enzelberger, M. & Quake, S. R. Microfluidic Memory and Control Devices. Science 300, 955–958 (2003).
 18. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).
 19. Whitesides, G. M. Cool, or simple and cheap? Why not both? Lab Chip 13, 11–13 (2013).
 20. Hu, J. et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54, 585–597 (2014).
 21. Li, Z., Mak, S. Y., Sauret, A. & C, H. C. Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow 

rate accuracy. Lab Chip 14, 744–749 (2014).
 22. Yobas, L., Tang, K. C., Yong, S. E. & Kye-Zheng Ong, E. A disposable planar peristaltic pump for lab-on-a-chip. Lab Chip 8, 660–662 

(2008).
 23. Gong, M. M., Macdonald, B. D., Vu Nguyen, T. & Sinton, D. Hand-powered microfluidics: A membrane pump with a patient-to-chip 

syringe interface. Biomicrofluidics 6, 44102 (2012).
 24. Holmes, D. P., Tavakol, B., Froehlicher, G. & Stone, H. A. Control and manipulation of microfluidic flow via elastic deformations. 

Soft Matter 9, 7049–7053 (2013).
 25. Elizalde, E., Urteaga, R. & Berli, C. L. A. Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15, 

2173–2180 (2015).
 26. Kokalj, T. et al. Self-powered imbibing microfluidic pump by liquid encapsulation: SIMPLE. Lab on a Chip - Miniaturisation for 

Chemistry and Biology 14, 4329–4333 (2014).
 27. Ren, K., Chen, Y. & Wu, H. New materials for microfluidics in biology. Curr Opin Biotechnol 25, 78–85 (2014).
 28. Iwai, K. et al. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip 14, 

3790–3799 (2014).
 29. Du, M., Ye, X., Wu, K. & Zhou, Z. A peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls. Sensors 

(Basel) 9, 2611–2620 (2009).
 30. Tsai, J.-H. & Lin, L. Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. Sensors & Actuators: A. 

Physical 97, 665–671 (2002).
 31. Friend, J. & Yeo, L. Piezoelectric Materials for Microfluidics, Springer - Book Chapter (2008).
 32. Ham, Y.-B. et al. Development of a piezoelectric pump for a highly-precise constant flow rate. Journal of the Korean Physical Society 

57, 873–876 (2010).
 33. Leng, X.-F. et al. Theory and experimental verification of spiral flow tube-type valveless piezoelectric pump with gyroscopic effect. 

Sensors and Actuators, A: Physical 195, 1–6 (2013).
 34. Tavakol, B. et al. Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. Soft Matter 10, 4789–4794 

(2014).
 35. Xia, F., Tadigadapa, S. & Zhang, Q. M. Electroactive polymer based microfluidic pump. Sensors & Actuators: A. Physical 125, 

346–352 (2006).
 36. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters 82, 

364–366 (2003).
 37. Olsson, A., Enoksson, P., Stemme, G. & Stemme, E. An improved valve-less pump fabricated using deep reactive ion etching. 

Proceedings of Ninth International Workshop on Micro Electromechanical Systems 479 (1996).
 38. Olsson, A., Stemme, G. & Stemme, E. A valve-less planar fluid pump with two pump chambers. Sensors and Actuators: A. Physical 

47, 549–556 (1995).
 39. Dangla, R., Kayi, S. C. & Baroud, C. N. Droplet microfluidics driven by gradients of confinement. Proc Natl Acad Sci USA 110, 

853–858 (2013).
 40. Teh, S. Y., Lin, R., Hung, L. H. & Lee, A. P. Droplet microfluidics. Lab Chip 8, 198–220 (2008).
 41. Xu, T. B., Cheng, Z. Y. & Zhang, Q. M. High-performance micromachined unimorph actuators based on electrostrictive poly 

(vinylidene fluoride–trifluoroethylene) copolymer. Applied Physics Letters 80, 1082–1084 (2002).
 42. Olsson, A., Stemme, G. & Stemme, E. A numerical design study of the valveless diffuser pump using a lumped-mass model. Journal 

of Micromechanics and Microengineering 9, 34–44 (1999).
 43. Zhang, Y. & Liu, H. Droplet formation in microfluidic cross-junctions. Physics of Fluids 23, 082101–082112 (2011).
 44. Harris, D. M., Liu, T. & Bush, J. W. M. A low-cost, precise piezoelectric droplet-on-demand generator. Experiments in Fluids 56 

(2015).

Acknowledgements
This work was financially supported by the International Science & Technology Cooperation Program of China 
(Grant Nos. 2010DFB13640 and 2013DFG02930), the ‘Qianren Program’ of the Chinese Government, the Natural 
Science and Engineering Research Council of Canada (NSERC, Grant No. 203773), the ‘111 Project’ of China 
(B14040), and the Key Grant Project of Chinese Ministry of Education (313045). FX was financially supported by 
the National 111 Project of China (B06024), International Science & Technology Cooperation Program of China 
(2013DFG02930), and Key Program for International S&T Cooperation Projects of Shaanxi (2014KW12-01).

Author Contributions
B.Z. designed, fabricated the device, characterized the pump and droplet generating chip; X.Y.C. provided 
technical help; B.Z. wrote the manuscript and a lot of proposals were given by X.Y.C.; W.R. supervised the study; 
F.X., Z.G.Y. and M.L. checked up the paper. All the authors involved in writing the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-10785-1
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-017-10785-1


www.nature.com/scientificreports/

8SCIEnTIfIC REPORts | 7: 11319  | DOI:10.1038/s41598-017-10785-1

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	A Controllable and Integrated Pump-enabled Microfluidic Chip and Its Application in Droplets Generating
	Results and Discussion
	Displacement of diaphragm. 
	Measurement about flow rate. 
	Droplets generating. 

	Conclusions
	Materials and Methods
	System design and fabrication. 
	Surface morphology. 
	Characterization. 

	Acknowledgements
	Figure 1 The principle of the nozzle-diffuse pump with single diaphragm, supply mode and pump mode (a) as the structure of the channel (b) fabricated by the process flow (c).
	Figure 2 The characterization of β phase PVDF film: XRD pattern (a), displacement under different conditions (b) and the surface topography of the diaphragm when the diaphragm bend up (c) and down (d).
	Figure 3 Properties of the piezoelectric pump.
	Figure 4 The picture (a) of droplet generating chip.
	Figure 5 Droplet size decreased with the increasing of Vpp.




