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An efficient algorithm for finding all 
possible input nodes for controlling 
complex networks
Xizhe Zhang1,2, Jianfei Han2 & Weixiong Zhang3,4

Understanding structural controllability of a complex network requires to identify a Minimum Input 
nodes Set (MIS) of the network. Finding an MIS is known to be equivalent to computing a maximum 
matching of the network, where the unmatched nodes constitute an MIS. However, maximum 
matching is often not unique for a network, and finding all possible input nodes, the union of all 
MISs, may provide deep insights to the controllability of the network. Here we present an efficient 
enumerative algorithm for the problem. The main idea is to modify a maximum matching algorithm to 
make it efficient for finding all possible input nodes by computing only one MIS. The algorithm can also 
output a set of substituting nodes for each input node in the MIS, so that any node in the set can replace 
the latter. We rigorously proved the correctness of the new algorithm and evaluated its performance on 
synthetic and large real networks. The experimental results showed that the new algorithm ran several 
orders of magnitude faster than an existing method on large real networks.

Controlling complex networks1–3 is of great importance in many applications, such as social, biological and tech-
nical networks. For example, it has been shown that understanding network controllability can help identify 
genes responding to viral infection4 and genes related to cancer5, as well as assist analyzing metabolic process6.

A network is said to be controllable if it can be driven from any initial state to a desirable state in finite steps 
by exerting external control signals on some selected nodes1, which are called driver nodes7, input nodes8 or 
control nodes9. The controllability of a network can be determined by Kalman’s controllability rank condition1 
if the weight of each edge is known, or Lin’s structural controllability theory10 if only a zero or non-zero value of 
each edge’s weight is known. As edge weights of many real networks cannot be precisely measured and are often 
unknown, the structural controllability theory has been widely adopted recently to analyze biological systems, 
such as protein interaction network4, 5, 11, signaling pathway network12, and gene regulatory network13, 14.

Based on the structural controllability theory, one approach7–9, 15, 16 assumes that a node can control only one 
of its outgoing neighbor. Therefore, input nodes of a network can be inferred by finding a maximum matching 
of the network, which is consisted of the set of maximum edges that do not share nodes3. The unmatched nodes 
related to a maximum matching constitute a Minimum Input nodes Set, or MIS. However, this approach can be 
only applied to directed networks. Another approach5, 17, 18 assumes that a node can control all of its outgoing 
edges independently, that is, a node can output different signals for each edge. Under this assumption, a mini-
mum node dominate set (MDS) can be used to control the network18. This approach may be more reasonable for 
artificial networks and can be applied to undirected networks.

Based on above frameworks, extensive works have been done about control principles of complex networks. 
It has been shown that the size of an MIS is closely related to the node degree distribution of the network7. 
Interestingly, the fraction of input nodes is primarily determined by the nodes of low in- and out-degrees16. The 
concepts of input nodes and MIS are also extensively used in analyzing many biological networks, e.g., identifying 
important proteins in biological networks4, 5, analyzing interbank networks19, and increasing the effectiveness of 
selective modulation of brain networks20.

Unfortunately, maximum matching is not unique for most networks21 (Fig. 1), so there may exist numerous 
MISs. Although these MISs have the same size, they may have different input nodes. We call a node in an MIS a 
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possible input node. Apparently, all possible input nodes are the union of all MISs. It is important to find all pos-
sible input nodes for understanding the controllability of a complex network. For example, finding all possible 
input nodes may help understand the roles of nodes in control systems22, design suitable MISs under different 
constraints8, and identify critical genes on signaling pathways14. Finding all possible input nodes is essentially 
an enumeration problem. While enumeration problems have been extensively studied, such as for enumerating 
all maximum matchings23, 24 or all maximally-matchable edges25, there are very few works on how to find all 
unmatched nodes. To solve this problem, a previous approach22 first computes a maximum matching and then 
assess if an unmatched node is a possible input node by removing it to test if its removal may result in a larger 
maximum matching. The computational complexity of finding a maximum matching is O(N1/2L) and the eval-
uation process is O(NL) on a network of N nodes and L edges, for a total complexity of O(NL) for this method.

We developed an efficient algorithm for finding all possible input nodes of a network. We proved that all possi-
ble input nodes could be identified by a simple modification to a maximum matching algorithm. The complexity 
of our algorithm is O(N1/2L), which is the same as the complexity of the maximum matching algorithm. Because 
our algorithm does not need to evaluate every node of the network, it runs several orders of magnitude faster than 
the previous method22 on large networks. Furthermore, our algorithm can also output the substituting nodes set 
for each input nodes. Because some input nodes may not be suitable to be inputted control signals due to some 
economic or technical constraints, these substituting nodes can be used to replace the original input nodes and 
obtain new MISs with some input nodes replaced.

Method
Consider a directed network G(V, E) over a set of nodes V and a set of edges E. To find an MIS of a directed net-
work G(V, E), we first convert G(V, E) to an equivalent undirected bipartite graph B(Vin, Vout, E) (Fig. 2A,B). The 
bipartite graph is built by splitting the node set V into two node sets Vin and Vout, where a node n in G is converted 
to two nodes nin and nout in B, and nodes nin and nout are, respectively, connected to the in-edges and out-edges of 
node n.

Now consider maximum matching. A matching is a set of edges that share no common node. A node is called 
a matched node if it is connected to a matching edge, or unmatched node, otherwise. A matching with the max-
imum number of edges is called a maximum matching. In an undirected bipartite graph, an alternating path is a 
path whose edges are alternate in and out matching. An augmenting path is an alternating path whose two end 
nodes are unmatched nodes. Based on the Berge theorem26, a matching M* is a maximum matching if there is no 

Figure 1. An example network with two MISs. (A) An example network; (B) two MIS of the network D1 = {1, 
3}, D2 = {1, 2}; (C) all possible input nodes of the network, which form the union of both MISs.

Figure 2. An example of a maximum matching of a network. (A) A directed network; (B) its corresponding 
bipartite graph; (C) A maximum matching of the bipartite graph. An unmatched node in the in-set is an input 
node; (D) Two alternating paths corresponding to the maximum matching in (C).
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augmenting path in B(v1, v2, E) with respect to M*. The input nodes are the unmatched nodes in Vin correspond-
ing to a maximum matching of bipartite graph B(Vin, Vout, E). The unmatched nodes in Vin corresponding to any 
maximum matching form an MIS of G. If there exists a perfect matching in the network, the MIS can be any node 
of the network based on the Minimum Input Theorem7.

Because maximum matching is not unique for most networks, there may exist many MISs. The union of all 
MISs contains all possible input nodes. We now show that to find all possible input nodes of a network, we only 
need to compute one maximum matching without enumerating all MISs or evaluating all matched nodes as done 
before in ref. 22.

Theorem 1: Given a directed network G and a maximum matching M of G, a node n is a possible input node if it 
satisfies one of the following two conditions:

 1. Node n is an input node related to M;
 2. The in-node nin of the bipartite graph B can be reached from an input node min related to M through an 

alternating path pnm.

Proof: It is sufficient to prove condition 2.
Sufficiency. Suppose that node n satisfies condition 2. Apparently, the length of pnm must be even because 

both node nin and min are in the set Vin of bipartite graph B. Therefore, the alternating path pnm must start with an 
unmatched edge connected to min and end with a matched edge connected to node nin. Change the types of all 
edges of pnm, i.e., change the matched edges to unmatched and the unmatched edges to matched, then the new 
path p’nm is still an alternating path. Consequently, we get a new maximum matching M’. Clearly, the node nin is 
not matched by M’ and min is matched by M’. Therefore, node n is an input node of MIS D’ = D-{m} + {n}.

Necessity. Let node nin be matched in M and be unreachable by any input node related to M. Suppose that 
node nin is not matched by a maximum matching M’. Node nin must have at least one in-edge because it is matched 
by M. Therefore, there must be an alternating path pnm related to M’ which starts with unmatched node nin and 
end with a matched node min. Now consider the path pnm under the maximum matching M. The length of pnm 
must be even because nodes nin and min are both in the set Vin. Therefore, the alternating path pnm must end with 
an unmatched node min related to M because nin is matched by M. This contradicts the fact that nin cannot be 
reached by any input node related to M, which completes the proof.

The above proof implies an important fact that any of the nodes reachable from an input node can be used to 
replace the original input node and obtain a new MIS. Therefore, we have the following corollary:

Corollary 1: Consider an MIS D and one of its input node m ∈ D, let Km be the set of the nodes that satisfied con-
dition 2 of Theorem 1. For every node n ∈ Km, D’ = D − {m} + {n} is an MIS.

Figure 3. An example of the process of algorithm All_Input(G). (A) A sample network and its maximum 
matching (red edges) (B) the corresponding bipartite graph; (C) In the last step of the algorithm, we search for 
alternating paths from unmatched nodes. The nodes on the alternating paths in Vin are nodes {8, 6, 9}, and the 
input nodes are {4, 10}. Therefore, all possible input nodes of the network are {4, 6, 8, 9, 10}. The substituted 
nodes of input node 4 are node 8 and node 6, and those of input node 10 is node 9. Therefore, if node 4 or 10 
is not suitable to be inputted control signals, we can use the corresponding substituted nodes to input control 
signals and regain full control of the network.
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Based on Theorem 1, the proof to the corollary is trivial. Corollary 1 suggests how to find the substituting 
nodes for an input node. For example, in Fig. 3, the substituting nodes of input node 4 are node 8 and node 6. If 
node 4 is not suitable for accepting control signals, we can use either node 8 or node 6 to substitute node 4, and 
the new MIS would be {8, 10} or {6, 10}.

The significance of Theorem 1 and Corollary 1 is that all possible input nodes can be identified by some 
alternating paths of the input nodes of any given MIS. This observation leads to a novel two-step approach to 
identification of all possible input nodes, i.e., we first compute an MIS and then consider all of its alternating 
paths. Moreover, these two steps can be combined using a simple modification to the Hopcroft–Karp maximum 
matching algorithm for undirected graphs27. The basic idea of the Hopcroft–Karp algorithm is to iteratively find 
all augmenting paths corresponding to the matching M at hand, and then to derive a larger matching M’. A max-
imum matching is obtained when no augmenting path can be founded. The last step of the algorithm is exactly 

Figure 4. Speedup of our algorithm as compared to the previous algorithm22. (A) Speedup as a function of the 
average degree when n = 106; (B) Speedup as a function of the number of nodes when average degree < k > = 8. 
The networks are generated based on Scale-Free Network model29 with rin = rout = 3.

Figure 5. Input nodes and their substituted set of St. Marks foodweb43. (A) Network topology of St. Marks 
foodweb. The input nodes are green nodes. (B) All 13 Input nodes and their substituted nodes. We showed the 
alternating paths which connected the input nodes and their substituted nodes. The red edges are the matching 
edges.
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to look for all alternating paths starting from the input nodes of the maximum matching. Therefore, all possible 
input nodes can be obtained in the last step of Hopcroft–Karp algorithm based on Theorem 1.

The above idea and steps can be formulated in Algorithm All_Input(G) for finding all possible input nodes in 
network G, which is listed as follows:

All_Input(G):

 1. For a directed network G(V, E), let B(Vout, Vin, E) be its corresponding bipartite graph; let the initial match-
ing M = null;

 2. Find all the alternating paths of all unmatched nodes in Vin, denoted as AP = {P1, P2 … Pn}, and let the 
nodes of AP in Vin as candidate results;

 3. If AP contain augmenting paths, expand all augmenting paths and obtain a new matching M’; clear all 
candidate nodes, M = M’; return to step 2;

 4. If AP contain no augmenting path, the candidate nodes are all possible input nodes, and the set of the 
unmatched nodes is an MIS of G.

Network L npd tnew(sec) told(sec) Speedup

n = 106

<k> = 6 300000 0.444 0.343 108.1 315.1

<k> = 8 400000 0.396 0.546 687.9 1260.1

<k> = 10 500000 0.124 0.858 1198.6 1396.9

<k> = 12 600000 0.039 0.826 2330.6 2821.5

<k> = 14 700000 0.018 0.889 3080.3 3464.9

<k> = 16 800000 0.008 0.952 3900.1 4096.8

<k> = 8

n = 105 40000 0.332 0.047 2.5 52.1

n = 5 * 105 200000 0.388 0.218 102.9 472.0

n = 106 400000 0.411 0.530 562.9 1062.2

n = 2 * 106 800000 0.397 1.435 2784.6 1940.5

n = 3 * 106 1200000 0.397 2.106 7381.4 3504.9

n = 4 * 106 1600000 0.399 2.777 14550.0 5239.5

n = 5 * 106 2000000 0.395 3.276 24012.7 7329.9

Table 1. Comparison of the execution time of some synthetic networks. For each network, we show its average 
degree <k>, number of nodes (N) and edges (L), destiny of all possible input nodes Npd, the execution time of 
our method tnew, the execution time of previous algorithm22 told, and the speedup ratio.

Type Name N L npd tnew (sec) told (sec) Speedup

Biological

E. Coli30 423 578 0.730 0.001 0.016 16.0

TRN-Yeast-131 4441 12873 0.999 0.015 0.062 4.1

TRN-Yeast-232 688 1079 0.920 0.001 0.015 15.0

Human PPI33 6339 34814 0.585 0.032 1.295 40.5

Trust

Slashdot090234 82168 948464 0.912 0.421 1568.3 3725.2

Slashdot081134 77360 905468 0.910 0.234 1388.9 5935.5

WikiVote35 7115 103689 0.666 0.047 2.044 43.5

SciMet36 3084 10416 0.661 0.015 0.187 12.5

Kohonen37 4470 12731 0.669 0.016 0.172 10.8

Internet

p2p-138 10876 39994 0.911 0.062 2.746 44.3

p2p-238 8846 31839 0.926 0.046 1.732 37.6

p2p-338 8717 31525 0.933 0.031 1.700 54.8

Product co-purchasing

Amazon030239 262111 1234877 0.177 1.685 14119.4 8379.5

Amazon031239 400727 3200440 0.127 9.344 36696 3927.2

Amazon050539 410236 3356824 0.915 7.519 45453 6045.2

Amazon060139 403394 3387388 0.053 2.886 49293 17080.1

Social network

Twitter40 81306 1768149 0.800 2.230 2532.5 1135.6

Higgs_Twitter41 456626 14855842 0.297 12.589 66445.2 5278.0

UClonline42 1899 20296 0.819 0.016 0.296 18.5

Facebook_34840 572 6384 0.612 0.001 0.062 62.0

Table 2. Comparison of the execution time of some real networks. For each network, we show its type, name, 
number of nodes (N) and edges (L), density of all possible input nodes npd, the execution time of our method 
tnew, the execution time of previous algorithm22 told, and the speedup ratio.
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Figure 3 illustrates an example of All_Input(G) on a small network. The time complexity of the above algo-
rithm is the same as that of the Hopcroft-Karp algorithm, which is O(N1/2L).

Result
To assess the efficiency of the new algorithm, which was coded in JAVA, we compared it with the previous  
algorithm22. The source code of our algorithm and the previous algorithm is available in the supplementary infor-
mation. The comparison was done on a Windows 7 workstation with a quad-core Intel i7-3770 processor of 
3.9 GHz and 32GB DDR3 1600MHz memory.

We considered 13 synthetic networks, in which the number of nodes n varied from 105 to 5 × 106 and the 
average degree <k> varied from 6 to 16. Networks were generated with Gephi28 based on the Scale-Free Network 
model29. The experimental results on these networks showed that our algorithm outputted the same results set 
yet significantly outperformed previous algorithm22 (Fig. 4). With a small network with n = 105, our algorithm 
achieved 52x speedup compared to the previous algorithm22. With a larger network with n = 5 × 106, our algo-
rithm achieved 7330x speedup with the execution time being only 3.276 seconds. Note that the speedup increases 
with the average degree.<k> (Fig. 4A), which indicates that our algorithm has better performance on dense 
networks. The details of the results are listed in Table 1.

Next, we evaluated the performance of the algorithm on some real networks. These networks were selected 
based on their diversity of topological structures. These networks include biological networks, social networks, 
and Internet networks. The size of these networks varied from very small (E. Coli network, 423 nodes) to very 
large (Amazon network, 4 × 106 nodes). The results shown in Table 2 indicated that our algorithm also signifi-
cantly outperformed the previous algorithm. On large networks, such as Amazon or Twitter, the results can be 
obtained within 10 seconds, resulting in an almost 104x speedup compared to the previous algorithm.

As we have proven in corollary 1, our algorithm can also output the substituting nodes for each input node. 
Figure 5A shows an example of St. Marks foodweb43, which has 13 input nodes in an MIS. We computed the sub-
stituting nodes for each input node and showed the alternating paths between them in Fig. 5B. Interestingly, the 
size of the substituting nodes set of each input node is different, indicating some input nodes are more robust in 
controlling the network. The experimental results on other real networks are similar (Fig. 6). Note that some input 
nodes have the same number of substituting nodes because they are linked to the same set of substituting nodes, 
e.g., those of TRN-Yeast-131 and Ythan foodweb44 in Fig. 6.

Figure 6. Percentage of substituted nodes for each input node of real networks. The networks we used are 
Kohonen37, TRN-Yeast-131, Ythan foodweb44 and TRN-Yeast-231. The vertical axis represents the percentage 
of substituted nodes pi = si/N, where si is the number of substituted nodes of input node i, and N is the total 
number of the nodes. The horizontal axis shows an MIS, in which the input nodes are sorted based on si by 
descending order.
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Conclusion
We developed an efficient algorithm for finding all possible input nodes for controlling complex networks. We 
proved that all possible input nodes can be efficiently identified along with computing an MIS without increasing 
the overall complexity beyond finding the MIS. Therefore, our algorithm offers a significant speedup over the pre-
vious algorithm on both synthetic networks and many large real networks. Furthermore, our algorithm can also 
output the substituted nodes set for each input node. It means that once we computed an MIS, we can immediate 
obtain all the substituting nodes for the MIS. Thanks to its efficiency, the new algorithm makes it possible to study 
controllability of large real-world networks and will have many potential applications in diverse areas.

Data availability. All data generated or analyzed during this study are included in this article (and its 
Supplementary Information files).

References
 1. Kalman, R. E. Mathematical description of linear dynamical systems. Journal of the Society for Industrial and Applied Mathematics, 

Series A: Control 1, 152–192 (1963).
 2. Luenberger, D. Introduction to dynamic systems: theory, models, and applications. Proceedings of the IEEE 69 (1979).
 3. Murota, K. Matrices and matroids for systems analysis. Vol. 20 (Springer Science & Business Media, 2009).
 4. Vinayagam, A. et al. Controllability analysis of the directed human protein interaction network identifies disease genes and drug 

targets. Proc Natl Acad Sci USA 113, 4976–4981, doi:10.1073/pnas.1603992113 (2016).
 5. Wuchty, S. Controllability in protein interaction networks. Proceedings of the National Academy of Sciences 111, 7156–7160 (2014).
 6. Basler, G., Nikoloski, Z., Larhlimi, A., Barabási, A.-L. & Liu, Y.-Y. Control of fluxes in metabolic networks. Genome research 26, 

956–968 (2016).
 7. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature 473, 167–173 (2011).
 8. Zhang, X., Lv, T. & Pu, Y. Input graph: the hidden geometry in controlling complex networks. Scientific reports 6 (2016).
 9. Ruths, J. & Ruths, D. Control profiles of complex networks. Science 343, 1373–1376 (2014).
 10. Lin, C.-T. Structural controllability. IEEE Transactions on Automatic Control 19, 201–208 (1974).
 11. Wuchty, S., Boltz, T. & Küçük‐McGinty, H. Links between critical proteins drive the controllability of protein interaction networks. 

Proteomics (2017).
 12. Kawakami, E. et al. Network analyses based on comprehensive molecular interaction maps reveal robust control structures in yeast 

stress response pathways. npj Systems Biology and Applications 2, 15018 (2016).
 13. Wang, B. et al. Diversified control paths: A significant way disease genes perturb the human regulatory network. PloS one 10, 

e0135491 (2015).
 14. Ravindran, V., Sunitha, V. & Bagler, G. Identification of critical regulatory genes in cancer signaling network using controllability 

analysis. Physica A: Statistical Mechanics and its Applications 474, 134–143 (2017).
 15. Zhang, X., Lv, T., Yang, X. & Zhang, B. Structural controllability of complex networks based on preferential matching. PloS one 9, 

e112039 (2014).
 16. Menichetti, G., Dall’Asta, L. & Bianconi, G. Network controllability is determined by the density of low in-degree and out-degree 

nodes. Physical review letters 113, 078701 (2014).
 17. Nacher, J. C. & Akutsu, T. Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult 

to control. New Journal of Physics 14, 073005 (2012).
 18. Nacher, J. C. & Akutsu, T. Structural controllability of unidirectional bipartite networks. Scientific reports 3, 1647 (2013).
 19. Delpini, D. et al. Evolution of controllability in interbank networks. Scientific reports 3, 1626 (2013).
 20. Kumar, A., Vlachos, I., Aertsen, A. & Boucsein, C. Challenges of understanding brain function by selective modulation of neuronal 

subpopulations. Trends in neurosciences 36, 579–586 (2013).
 21. Zdeborová, L. & Mézard, M. The number of matchings in random graphs. Journal of Statistical Mechanics: Theory and Experiment 

2006, P05003 (2006).
 22. Jia, T. et al. Emergence of bimodality in controlling complex networks. Nature communications 4 (2013).
 23. Uno, T. Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. Algorithms and Computation, 

92–101 (1997).
 24. Uno, T. In International Symposium on Algorithms and Computation. 367–379 (Springer).
 25. Tassa, T. Finding all maximally-matchable edges in a bipartite graph. Theoretical Computer Science 423, 50–58 (2012).
 26. Berge, C. Two theorems in graph theory. Proceedings of the National Academy of Sciences 43, 842–844 (1957).
 27. Hopcroft, J. E. & Karp, R. M. In Switching and Automata Theory, 1971., 12th Annual Symposium on. 122–125 (IEEE).
 28. Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 

361–362 (2009).
 29. Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).
 30. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature 

genetics 31, 64–68 (2002).
 31. Balaji, S., Babu, M. M., Iyer, L. M., Luscombe, N. M. & Aravind, L. Comprehensive analysis of combinatorial regulation using the 

transcriptional regulatory network of yeast. Journal of molecular biology 360, 213–227 (2006).
 32. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).
 33. Vinayagam, A. et al. A directed protein interaction network for investigating intracellular signal transduction. Sci. Signal. 4, rs8–rs8 (2011).
 34. Leskovec, J., Lang, K. J., Dasgupta, A. & Mahoney, M. W. Community structure in large networks: Natural cluster sizes and the 

absence of large well-defined clusters. Internet Mathematics 6, 29–123 (2009).
 35. Leskovec, J., Huttenlocher, D. & Kleinberg, J. In Proceedings of the 19th international conference on World wide web. 641–650 (ACM).
 36. De Nooy, W., Mrvar, A. & Batagelj, V. Exploratory social network analysis with Pajek. Vol. 27 (Cambridge University Press, 2011).
 37. Handcock, M. S., Hunter, D., Butts, C. T., Goodreau, S. M. & Morris, M. statnet: An R package for the Statistical Modeling of Social 

Networks. Web page http://www.csde.washington.edu/statnet (2003).
 38. Ripeanu, M., Foster, I. & Iamnitchi, A. Mapping the gnutella network: Properties of large-scale peer-to-peer systems and 

implications for system design. arXiv preprint cs/0209028 (2002).
 39. Leskovec, J., Adamic, L. A. & Huberman, B. A. The dynamics of viral marketing. ACM Transactions on the Web (TWEB) 1, 5 (2007).
 40. Leskovec, J. & Mcauley, J. J. In Advances in neural information processing systems. 539–547.
 41. De Domenico, M., Lima, A., Mougel, P. & Musolesi, M. The anatomy of a scientific rumor. arXiv preprint arXiv 1301, 2952 (2013).
 42. Opsahl, T. & Panzarasa, P. Clustering in weighted networks. Social networks 31, 155–163 (2009).
 43. Baird, D., Luczkovich, J. & Christian, R. R. Assessment of spatial and temporal variability in ecosystem attributes of the St Marks 

National Wildlife Refuge, Apalachee Bay, Florida. Estuarine, Coastal and Shelf Science 47, 329–349 (1998).
 44. Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proceedings 

of the National Academy of Sciences 99, 12917–12922 (2002).

http://dx.doi.org/10.1073/pnas.1603992113
http://www.csde.washington.edu/statnet


www.nature.com/scientificreports/

8SCIENtIfIC REPORts | 7: 10677  | DOI:10.1038/s41598-017-10744-w

Acknowledgements
This research was supported by the Fundamental Research Funds for the Central Universities of China under 
grand number N140404011, and the Natural Science Foundation of China under grant number 91546110, and 
China Scholarship Council under grant number 201606085011, and the Special Program for Applied Research 
on Super Computation of the NSFC-Guangdong Joint Fund (the second phase).

Author Contributions
X.-Z.Z. proved the theorem and designed algorithm. J.-F.H. wrote the code and performed the experiments. X.-
Z.Z. and W.-X.Z. wrote the paper. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-10744-w
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-10744-w
http://creativecommons.org/licenses/by/4.0/

	An efficient algorithm for finding all possible input nodes for controlling complex networks
	Method
	Result
	Conclusion
	Data availability. 

	Acknowledgements
	Figure 1 An example network with two MISs.
	Figure 2 An example of a maximum matching of a network.
	Figure 3 An example of the process of algorithm All_Input(G).
	Figure 4 Speedup of our algorithm as compared to the previous algorithm22.
	Figure 5 Input nodes and their substituted set of St.
	Figure 6 Percentage of substituted nodes for each input node of real networks.
	Table 1 Comparison of the execution time of some synthetic networks.
	Table 2 Comparison of the execution time of some real networks.




