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Quantum mixed phases of a two-
dimensional polarized degenerate 
Fermi gas in an optical cavity
Yanlin Feng1,2, Kuang Zhang1,2, Jingtao Fan1,2, Feng Mei1,2, Gang Chen1,2 & Suotang Jia1,2

The coupling of ultracold fermions to a high-finesse optical cavity can result in novel many-body 
phenomena, and has attracted significant interests at present. Here we consider a realization of the 
Fermi-Dicke model with controllable parameters, based on a two-dimensional polarized degenerate 
Fermi gas coupled to an optical cavity. We analytically investigate the ground-state properties of such 
system under the mean-field approximation. We find the system can exhibit a rich phase diagram 
depending on the fermion-photon coupling strength and the atomic resonant frequency. Contrasting 
to the bosonic counterpart, a first-order quantum phase transition between the superradiant phase 
and the normal phase featuring two Fermi surfaces can occur for the weak atomic resonant frequency, 
and there is a unique mixed phase where this normal phase and the superradiant phase coexist. The 
experimental detection of our results is also discussed.

Cavity quantum electrodynamics (QED) systems, which remarkably illuminate the fundamental interaction 
between light and matter, have emerged as a novel platform to explore the many-body physics, and promise 
potential applications in quantum information processing and quantum computing. Recently, the coupling of 
a Bose-Einstein condensate to a high-finesse optical cavity has been experimentally achieved1–8, thus opens a 
new avenue that combines cavity QED with ultracold atoms. In particular, the bosonic atoms occupying the 
same quantum state can interact identically with a single-mode quantized field, which can result in a strong 
collective matter-field interaction. This has led to the remarkable experimental observation3–5 of the celebrated 
second-order quantum phase transition from the normal phase to the superradiant (SR) phase predicted more 
than 40 years ago9, 10. Cavities moreover allow unconventional dynamical optical potentials which can induce a 
rich variety of strongly correlated many-body phenomena11.

While current cavity QED experiments have focused on bosons, there are surging interests in exploring 
the novel physics arising from the coupling of ultracold fermions to the optical cavity12–25. Unlike bosons, fer-
mions obey the Pauli exclusion principle, and two fermions with weak attractive interaction can form Cooper 
pairs which are responsible for superconductivity26. By coupling ultracold fermions to a high-finesse optical 
cavity, exotic phenomena have been predicted to arise. For example, recent studies on spinless fermions in the 
cavity-induced dynamical optical potential have revealed the crucial role of the Fermi statistics on the SR phase 
transition at moderate and high densities17–19. It has been shown that the cavity-assisted spin-orbit coupling27, 28 
can induce a topological SR phase20. Moreover, the cavity-induced artificial magnetic field22, chiral phases23, and 
non-trivial topological states24 have been reported. Interestingly, when fermions in an infinite lattice are gauge 
coupled to a cavity mode, a SR phase exhibiting a directed particle flow is found to arise above an infinitesimal 
pumping threshold25.

In this report, we consider a two-dimensional (2D) polarized degenerate Fermi gas coupled to a 
high-finesse optical cavity and realize a Fermi-Dicke model. Our setup relies on two Raman transitions 
induced by the quantized cavity field and two transverse pumping lasers, and allows for flexible controllability 
of the Hamiltonian parameters, including the fermion-photon coupling strength and the effective Zeeman field 
represented by the atomic resonant frequency. Based on this microscopic model, we study the ground state 
under the mean-field approximation and find several distinct properties compared to its bosonic counterpart9, 

10. In particular, we predict a first-order quantum phase transition between the SR phase and the normal phase 
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featuring two Fermi surfaces for the weak atomic resonant frequency. As such, the system exhibits a unique 
mixed phase where the normal and SR phases coexist. Finally, we discuss possible experiment observations of 
our results.

Results
Model and Hamiltonian.  Motivated by the experiment with bosonic atoms5, we instead consider an ensem-
ble of ultracold four-level fermions coupled to a high-finesse optical cavity; see Fig. 1. The fermions are confined 
in a far-off-resonance optical trap in the yz plane [see Fig. 1(a)], and their motion in the x direction is frozen, 
thus effectively realizing a 2D system. The cavity mode is driven by a linearly polarized laser, while the fermions 
are pumped by two transverse lasers which are left- and right-circular polarized in the yz plane, respectively. We 
consider fermionic atoms with four internal levels, which contain two degenerate ground states (|↑〉 and |↓〉) and 
two excited states (|1〉 and |2〉) [see Fig. 1(b)]. As clearly illustrated in Fig. 1, in our setup two Raman processes 
can be induced from the quantized cavity field and the two transverse pumping lasers.

Figure 1.  An ensemble of ultracold four-level fermions coupled to a high-finesse optical cavity. (a) Schematic of 
the proposed setup: the ultracold fermions (black online) are confined in a far-of-resonance optical trap (yellow 
online) in the yz plane along with a tightly-radial confinement in the x direction. The fermions are coupled to a 
high-finesse optical cavity, where the cavity mode is driven by a linearly polarized laser (with frequency ωl) 
propagating along the x direction. Two transverse pumping lasers (with frequencies ωA and ωB), which are left- 
and right-handed circular polarized in the yz plane, propagate along the x direction. As a result, two Raman 
processes are induced. In order to obtain a time-independent Hamiltonian, the condition ω ω ω= +( )/2l A B  is 
required; see the detailed derivation in the main text. A magnetic field B is applied along the positive z direction, 
producing a Zeeman shift between two hyperfine ground states. (b) The atomic energy levels and their 
transitions. Each fermionic atom has two ground states (|↑〉 and |↓〉) and two excited states (|1〉 and |2〉). The |↓〉 
↔|1〉 and |↑〉 ↔|2〉 transitions (red solid lines) are caused by the quantized cavity field with fermion-photon 
coupling strengths g1 and g2. The |↑〉 ↔|1〉 and |↓〉 ↔|2〉 transitions (green dashed lines) are governed by the 
transverse pumping lasers with Rabi frequencies Ω1 and Ω2. ω ω ω= −↑↓ ↑ ↓ is the resonant frequency between 
the ground states |↑〉 and |↓〉 with eigenfrequencies ω↑ and ω↓. ∆1 and ∆2 are the detuning from the excited 
states |1〉 and |2〉.
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The considered system can be effectively described by the following 2D Hamiltonian

= + + + +ˆ ˆ ˆ ˆ ˆ ˆH t H H H t H t H( ) ( ) ( ) , (1)T F P D AR AP

where ĤF is the Hamiltonian for the free four-level fermions, i.e.,
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†

r( )i  and ψ̂ r( )i  ( = ↓ ↑i 1, 2, , ) are the field operators for the fermionic atoms with mass M, μ is the 
chemical potential, and ωi denotes the frequency of the ith eigenstate. The quantized cavity field and the driving 
laser are described by the Hamiltonian
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where ˆ†a  (â) creates (annihilates) the quantized cavity field with frequency ωc, and ε (ωl) labels the magnitude 
(frequency) of the driving laser. The Hamiltonian ĤAR represents the interaction between fermions and the trans-
verse pumping lasers, which under the rotating-wave approximation can be written as
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with Ω1 and Ω2 (ωA and ωB) being the Rabi frequencies (frequencies) of the two lasers. Finally, Hamiltonian ĤAP 
describes the interaction between fermions and the quantized cavity fields, i.e.,

∫ ψ ψ ψ ψ= + + . .↓ ↑
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with g1 and g2 labeling the fermion-photon coupling strengths associated with the two pumping lasers, 
respectively.

It is more transparent to recast the time-dependent Hamiltonian (1) into a time-independent form. 
Introducing a unitary transformation = ′ˆ ˆU t iH t( ) exp( ), where
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with ωl = (ωB+ωA)/2, we transform the Hamiltonian as = + ∂ ∂ˆ ˆ ˆ ˆ ˆ ˆ† †
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Here, ω ω ω= −
 c l is the effective cavity frequency, ω ω∆ = − /2A1 1  ( ω ω∆ = − /2B2 2 ) denotes the detuning 

from the excited state |1〉 (|2〉), and ω =↑  ω ω+↑ /2A  (ω ω ω= +↓ ↓
/2B ) describes the effective frequency associated 

with the internal state |↑〉 (|↓〉).
To proceed, we recall that in the experiments3–5, a weak driving (ε  → 0) and large detuning 

( ω ω∆ Ω� �{ }g, , ,1,2 1,2 1,2 0 ) have been considered. Assuming similar scenarios here, this allows us to ignore the 
term ε +ˆ ˆ†a a( ) in the Hamiltonian (7), as well as adiabatically eliminate both excited states |1〉 and |2〉29, 30. This 
way, we obtain
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Further considering
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the Hamiltonian (8) can be simplified into
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Here, the factor N1/ , with N being the total atom number, is introduced so as to ensure a finite free energy 
per fermion in the thermodynamic limit9, 10. Furthermore, ω0 =  ω ω−↓ ↑ 

( )/2 is the effective resonant frequency 
between the ground states |↑〉 and |↓〉, which in Eq. (10) acts as an effective Zeeman field. Without loss of general-
ity, below we shall take ω > 00 . In addition, the parameter η = Ω ∆⁎N g /(2 )1 1 1  = Ω ∆⁎N g /(2 )2 2 2  is the effective 
fermion-photon coupling strength, and ω ζ ω= +


N  labels the atom-number dependent cavity frequency with 

ζ = ∆ = ∆g g/ /1
2

1 2
2

2. We remark that all the parameter choice here are motivated by the experimental 
considerations3–5.

The Hamiltonian (10) represents the paradigmatic Fermi-Dicke model31 describing the fermion-photon inter-
action. We emphasize that our setup allows flexible controllability of all Hamiltonian parameters. For example, 
both ω0 and ω can be tuned by modifying the frequencies of the driving laser and the transverse pumping lasers, 
while η can be controlled via the Rabi frequencies of the transverse pumping lasers.

Ground-state properties.  Our goal is to investigate the ground state of the Hamiltonian (10). To this end, 
it is more convenient to transform to the momentum space representation. Writing
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where σĈk,  annihilates a fermion in the internal state σ with momentum k and S is the system size (hereafter S = 1 
is set for convenience), we obtain
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Here, ξ ε µ= −k k , ε = Mk /2k
2  is the kinetic energy, and π π= =n K E M/(2 ) /F F

2  is the 2D density of fermi-
ons with =E K M/(2 )F F

2  being the Fermi energy and KF being the Fermi momentum.
In solving the ground state of the Hamiltonian (12), we will rely on the mean-field approximation, i.e., by 

replacing â with its steady-state value. Specifically, we write down the Heisenberg-Langevin equation for the cav-
ity field operator â32, 33, taking into account of the cavity decay with rate κ, i.e.,
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tum noise usually occurs on a much shorter time scale than 1/κ34, its average effect can be generically ignored on 
the time scale relevant for the steady state. When 1/κ is much shorter than the time scales of system dynamics, a 
steady-state solution3, 35 to Eq. (13) can be found, i.e.,
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Motivated by the experiments3, 4 which shows that the mean-photon number α=ˆ ˆ†a a 2 determines the SR 
properties, we henceforth refer to it as the SR order parameter.

By approximating ≈ˆ ˆa a  in Eq. (12) using Eq. (14), we obtain a quadratic Hamiltonian
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with η η α α= + ⁎ n( )/ . Now, the Hamiltonian (15) can be easily diagonalized as
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where α ±ˆk,  describe the fermionic Bogoliubov quasiparticles, whose energy is given by
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0
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with η ω η α ω κ= +n4 /[ ( )]2 2 2 2 2 2 . Note that ±Ek,  can be either positive or negative depending on parameter 
choices. Regrouping terms with positive and negative energies using the Heaviside step function Θ x( ), we recast 
Eq. (17) as
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where EG is the ground-state energy expressed by
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k k k kG , , , ,
2

Despite the formal expression of the ground-state energy, Eq. (20) contains two variables, i.e., μ and |α|, which 
are to be determined from the particle number equation µ∂ ∂ = −E n/G  and the SR equation α∂ ∂ =E / ( ) 0G . 
Explicitly, we have

∑ − − + − =+ −f E f E n( 1)[ ( ) ( )] ,
(21)k

k k, ,

∑α ωη χ ω κ





− − − − + +





=− +f E f E n2 [ ( ) ( )] ( ) 0,
(22)k

k k
2

, ,
2 2

where δ− = Θ − − −± ± ± ±f E E E E( ) ( ) ( )k k k k, , , ,  and χ η ω= +2
0
2 . In deriving Eqs (21) and (22), we have used 

the identity δΘ′ =x x( ) ( ) with δ(x) being the delta function.
Equations (20–22) allow complete specification of the ground state: The ground-state energy can be obtained 

in a self-consistent manner by solving Eqs (21) and (22) for a fixed atom density n. It is important to bear in mind 
that solutions of above equations must be supplemented with a careful stability analysis, which we describe below.

Phase diagram.  We now detail our analysis on the ground-state properties. We shall be interested in four 
quantities: the ground-state energy per fermion =E E n/G G , the chemical potential μ, the scaled mean-photon 
number α 2, and the scaled polarization36 measuring the response to the effective Zeeman field defined by

ω
=

−
= −

∂
∂

.↑ ↓m
n n

n
E

(23)
G

0

As we shall see, their ground-state values depend crucially on the strength of the effective Zeeman field ω0 and 
the effective fermion-photon coupling strength η, in particular, new features compared to their boson counterpart 
are found in the regime ω < EF0 . Note that all energies will be measured in units of EF hereupon.

In order to gain some intuition, let us first consider the simplest case η = 0 corresponding to a free Fermi gas. 
Transforming Eq. (20) into an integral over momenta as usual, we calculate the ground-state energy per fermion as

µ ω µ ω µ ω µ ω= − + Θ + + − Θ − .E
E
1

4
[( ) ( ) ( ) ( )]

(24)F
G 0

2
0 0

2
0

Because µ ω+ < 00  will entail a unphysical result =E 0G  which excludes existence of real fermions37, 38, we 
shall limit our subsequent discussions in the regime µ ω+ > 00 . There, the Fermi gas can exhibit different 
ground states depending on whether ω µ>0  or ω µ<0 .

When ω µ>0 , µ ωΘ − =( ) 00  and Eq. (24) becomes

ω µ
= −

+
.E

E
( )

4 (25)F
G

0
2

Based on Eqs (21), (23) and (25), we obtain

µ ω= − = − = .E E E m, 2 , 1 (26)F FG 0

Thus the Fermi gas is in a normal phase characterized by a full polarization and one Fermi surface with 
µ =↑ E2 F, and we shall refer to it as the N-I phase.

In contrast, when ω µ<0 , µ ωΘ − =( ) 10  and Eq. (24) becomes
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Based on Eqs (21), (23) and (25), we have
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Hence the Fermi gas is only partially polarized and exhibits two Fermi surfaces, i.e., µ ω= +↑ EF 0 and 
µ ω= −↓ EF 0. We shall call it as the N-II phase. It is clear from Eqs (26) and (28) that, by tuning the parameter ω0 
across the critical point ω = Ec

F0
37, the Fermi gas undergoes a first-order transition between the N-I to N-II 

phases.
Now, suppose there exists a weak effective coupling between the photon and fermions, i.e., η is small. Still, 

the noninteracting terms in the Hamiltonian (12) dominate the system dynamics, such that |α|2 = 0 is expected 
to persist for the ground state and the Fermi gas remains in the N-I or N-II phase (depending on values of ω0).

However, the ground-state properties of the Fermi gas can change drastically from both normal phases for a 
strong photon-fermion coupling when η is increased above a threshold. As we show now, when the interaction 
part of the Hamiltonian (12) dominates, the system can acquire a macroscopic collective excitation with |α|2 ≠ 0, 
i.e., a quantum phase transition into the SR phase occurs when η is above some critical values. Integrating Eq. (20) 
over the momenta, we obtain
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with µ µ χ= ±±  and α α= n/2 2  being the scaled mean-photon number. We next analyze Eq. (29) when (i) 
µ <− 0 and (ii) µ ≥− 0.

Consider first the case µ <− 0, where Eq. (29) becomes
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We can obtain two set of solutions, namely,
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Obviously, while solutions (34) are associated with the normal phase, solutions (35) exhibit SR property. 
Furthermore, as mentioned earlier, the ground-state solutions must satisfy the stability condition as defined by 

α∂ ∂ >E / ( ) 02
G

2 . Consequently, we find that the stability condition for the normal solution [see Eq. (34)] is 
η η< c

(1) with

η
ω ω κ

ω
=

+
.

( )
2 (36)c

(1) 0
2 2

Instead, the SR solution [see Eq. (35)] is only stable when η η> c
(1). Notice that since µ µ χ= − <− 0, this 

additionally requires η η> c
(2) with

η
ω κ

ω
=

+
.

E ( )
2 (37)c

F(2)
2 2
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Following from above analysis, we find that for ω ≥ EF0  [c.f. Fig. 2(a)] and thereby η η>c c
(1) (2), the ground 

state of the Fermi gas is in the N-I phase for η η< <0 c
(1), but transits into the SR phase for η η> c

(1); see summa-
rized results below

η η

ωη
ω κ

ω ω κ
ωη

η η
=










− < <

− +
+

−
+

>
E

E

E

0

( )
4

,

(38)

F c

F c
G

(1)

2

2 2
0
2 2 2

2
(1)

with corresponding relevant quantities given by

µ
ω η η

ωη
ω κ

η η
=










− < <

−
+

>

E

E

2 0

2( )
,

(39)

F c

F c

0
(1)

2

2 2
(1)

α

η η

η
ω κ

ω ω κ
ω η

η η
=











< <

+
−

+
>

0 0

( )
4

,

(40)

c

c

(1)

2

2 2
0
2 2 2

2 2
(1)

η η

ω ω κ
ωη

η η
=










< <

+
>

.m
1 0

( )
2 (41)

c

c

(1)

0
2 2

2
(1)

The ground-state properties described by Eqs (38)–(41) exhibit two features. First, the quantum phase transi-
tion between the N-I and SR phases is second order in nature: while the first-order derivative of EG is continuous 
with respect to η, its second order derivative develops discontinuity at the critical point ηc

(1), as in the case with 
ultracold Bose atoms9, 10. Second, in contrast to the N-I phase, the SR phase features macroscopic collective excita-
tions for both fermions and photons, i.e., we have both α ≠ 0 and ≠m 0. Also note that while η∼m 2, we see 
µ η∼ −2. These analytical results are confirmed by our numerical calculations as illustrated by Fig. 3, where we 
plot EG, μ, α 2, and m as functions of η, respectively.

Next, turning to the case µ µ χ= − ≥− 0, we find from Eq. (29) that

Figure 2.  Comparison of the critical points ηc
(1) and ηc

(2) for (a) ω ≥ EF0  and (b) ω < EF0 . When ω ≥ EF0 , 
η η>c c

(1) (2), and µ <− 0 for both η η< <0 c
(1) and η η> c

(1). When ω < EF0 , η η<c c
(1) (2), and µ <− 0 for η η> c

(2) 
and µ >− 0 for η η< <0 c

(2).
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µ µ ω α= − + + .+ −E
E
1

4
( )

(42)F
G

2 2 2

Imposing the stability condition α∂ ∂ >E / ( ) 02
G

2 , and keeping in mind µ ≥− 0, we find that in the regimes 
ω < EF0  and η η< <0 c

(2), the relevant ground-state solutions are

µ α
ω

= = = .E m
E

, 0,
(43)F

F

0

Note that for ω < EF0  and η η> c
(2), we would have µ <− 0 [c.f. Fig. 2(b)], where the ground-state solutions are 

of the form of Eq. (35). Thus in contrast to the case ω ≥ EF0 , the ground state of the Fermi gas with ω < EF0  
exhibits the N-II phase for η η< <0 c

(2) and the SR phase for η η> c
(2). We summarize results below

ω
η η

ωη
ω κ

ω ω κ
ωη

η η

=











− − < <

− +
+

−
+

>

.E

E
E

E

2 2
0

( )
4 (44)

F

F
c

F c

G

0
2

(2)

2

2 2
0
2 2 2

2
(2)

We see that a quantum phase transition from the N-II phase to the SR phase occurs at the critical point ηc
(2), 

which is first order in nature and is accompanied by a sudden change in α 2 [see also red-dashed curves in 
Fig. 3(c)].

Interestingly, at the critical regime η η= c
(2), the scaled ground-state energies of the N-II and SR phases 

become equal, meaning both phases coexist. We shall therefore call it the N-II-SR mixed phase. In order to char-
acterize this mixed phase, let x0 stand for the fraction of the N-II part in the mixed phase, which can take arbitrary 
value in the regime ≤ ≤x0 10 . We find (see Methods Section for detailed derivation)

Figure 3.  (a) The scaled ground-state energy Ē E/ FG , (b) the chemical potential µ E/ F, (c) the scaled mean-
photon number α| |¯ 2, and (d) the scaled polarization m̄ as functions of the effective atom-photon coupling 
strength η E/ F. Analytical results are depicted by blue-solid and red-dashed lines, while the open symbols 
represent numerical simulations. For the atom-number dependent cavity frequency, we choose ω = E10 F, and 
we take the cavity decay rate as κ = E20 F. For ω = . E1 2 F0 , we take η = . E5 48c F

(1) , and when ω = . E0 8 F0 , we 
take η =c

(2)  E5 F.
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Since both the SR and N-II phases exhibit ≠m 0 [see Eqs (35) and (28)], the former due to the the macro-
scopic collective excitation of fermions while the later induced by the effective Zeeman field, it is naturally 
expected that both mechanisms contribute to the nonzero polarization of the N-II-SR mixed phase [see Eq. (48)]. 
In addition, we find two first-order quantum phase transitions, from the N-II-SR phase to the N-II phase and to 
the SR phase, respectively. This is different from the boson counterpart, as well as the previously discussed N-I 
phase, where the corresponding transitions are second order9, 10.

Collecting all above results, we plot in Fig. 4 the phase diagram in the entire parameter regimes of ω E/ F0  and 
η E/ F. As predicted previously, while the quantum phase transition from the N-I phase to the SR phase is second 
order, a first-order transition occurs between the N-II and SR phases due to coexistence of both phases at the 
critical line. In addition, the phase diagram exhibits a tri-critical point (see the red dotted curves), where the 
quantum phase transition changes its character from the first to the second order.

Parameter estimation and possible experimental observation.  We now provide an estimation 
of the relevant parameters taking 40K atom as the example. For the fermionic 40K atoms with the Fermi 
energy ∼ .E 0 73F  MHz, the ground states with 2S1/2 are represented by |↑〉 = |F = 9/2, mF = 9/2〉 and 
|↓〉 = |F = 9/2, mF = 7/2〉. For the excited states with 2P1/2, we choose |1〉 = |F = 9/2, mF = 7/2〉 and 
|2〉 = |F = 9/2, mF = 9/2〉, with F and mF labeling the total angular momentum and magnetic quantum num-
bers, respectively.

Considering the optical properties of the 40K D1-line, we take the cavity length as 178 μm and the wavelengths 
of the transverse pumping lasers as 770 nm. This ensures that both g1 and g2 characterizing the fermion-photon 
coupling strength are at the order of MHz, such that the rotating-wave approximation leading to Eqs (4) and (5) 
is valid. For a cavity with a waist radius 27 μm and a finesse ~105, we estimate its decay rate κ is at the order of 
MHz. For the effective fermion-photon coupling strength η = Ω ∆⁎N g /(2 )1 1 1  = Ω ∆⁎N g /(2 )2 2 2 , thanks to the 
prefactor N , a magnitude of MHz can be achieved simply by modifications of the Rabi frequencies of the trans-
verse pumping lasers, despite the large detuning required by the adiabatic approximation leading to Eq. (8). 

Figure 4.  Phase diagram as a function of the effective resonant frequency ω E/ F0  and the effective fermion-
photon coupling strength η E/ F. The atom-number dependent cavity frequency ω and the cavity decay rate κ are 
the same as those in Fig. 3. When the effective resonant frequency is chosen as ω = EF0 , η η=c c

(1) (2).
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Finally, the effective resonant frequency ω0 =  ω ω−↓ ↑ 
( )/2 and the atom-number dependent cavity frequency 

ω ζ ω= +


N  can be easily controlled by tuning the frequencies of the driving and transverse pumping lasers. In 
the experiments3, both ω0 and ω can be tuned from − GHz to GHz and even beyond.

We conclude this section by briefly discussing how to probe the predicted quantum phases and phase dia-
grams. As has been elaborated, the physics of the ground-state phases is determined by the scaled mean-photon 
number α 2 and the scaled polarization m. Building on the development of the state of the art experimental tech-
niques, m can be measured by observing the different density distributions between the two-component Fermi 
gas39, 40, while α can be detected using the calibrated single-photon counting modules which allows for the in situ 
monitor of the intra-cavity light intensity3. We thus expect that our results to be feasible within the experimental 
capabilities.

Discussion
In realistic experiments, there typically exists a shallow harmonic external confining potential, which can be 
modeled by ω= ⊥V r r( ) /22 2 , where ω⊥ is the harmonic trap frequency and r is the harmonic trap radius. In order 
to estimate its effect, we first use the local density approximation41 to obtain an effective chemical potential 
µ µ= −r V r( ) ( )0 , where μ0 is the chemical potential at the center of the harmonic trap and μ(r) determines the 
total density = +↑ ↓n n n . Then, the density distribution n(r) and the magnetization distribution m(r) can be 
solved from42

∫ ∫π π
= = .N rdrn r m

N
rdrm r2 ( ), 2 ( ) (49)

In Fig. 5, we plot the density distributions n(r)/n0 in the radial direction for (a) ω ≥ EF0  and (b) ω < EF0 , 
respectively, where π= n ME /(2 )F0 , ω= ⊥

R E2 /T F  is the Thomas-Fermi radius, and ω= ⊥
E NF  is the Fermi 

energy in the trapped systems. As shown in Fig. 5(a), for ω ≥ EF0  (fully polarized fermions), the density profile 
does not depend on the effective fermion-photon coupling strength η, which implies that the critical line η η= c

(1) 
for the second-order quantum phase transition from the N-I phase to the SR phase is unaffected by the trapping 
potential. However, for ω < EF0  (partially polarized fermions), the density profile depends strongly on the effec-
tive fermion-photon coupling strength η, leading to the modification of the critical line for the first-order quan-
tum phase transition from the N-II phase to the SR phase, as shown in Fig. 5(b). Moreover, the predicted N-II-SR 
mixed phase only exists near the center of the trap and the corresponding density profile has thus a jump discon-
tinuity, which provides an experimentally observable signature. We also note that the presence of the harmonic 
trap renders the system to become of finite size, i.e., the density profile vanishes for size >r R r R/ /T c T, where rc 
denotes the size of the trap, as shown in both Fig. 5(a) and 5(b).

In addition, when the decay rate κ, which has the order of MHz in experiments, is much larger than the exter-
nal atomic degrees of freedom, the relatively slow atoms at times κt 1/  feel an average affect of steady-state 
photons, i.e., Eq. (14). Furthermore, when the system enters the SR phase with a large mean-photon number, the 
commutator =ˆ ˆ†a a[ , ] 1 can be ignored at the leading order results. Thus, it is reasonable to neglect the 
non-commutability between â and ˆ†a  and just set them to their steady-state averaged value3, 4, 12–25. Based on the 
above two arguments, the employed mean-field approximation, which assumes to approximate the photon anni-
hilation operator by its steady-state averaged value, provides a good description of the system within our 
context.

Figure 5.  The density distributions n r n( )/ 0 for (a) ω ≥ ~EF0  and (b) ω < ~EF0  along the radial direction r R/ T. The 
atom-number dependent cavity frequency ω and the cavity decay rate κ are the same as those in Fig. 3. The 
scaled polarization is taken as = .m 0 5.
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In summary, we have analytically investigated the ground-state properties of a 2D polarized degenerate 
Fermi gas coupled to a high-finesse optical cavity. By solving the photon-number dependent BdG equation, we 
have found rich quantum phases and phase diagrams, which depend crucially on the fermion-photon coupling 
strength and the atomic resonant frequency (effective Zeeman field). In particular, for the weak atomic resonant 
frequency, we have shown that there exists a mixed phase where the N-II and SR phases coexist. In addition, we 
have revealed a first-order quantum phase transition from the N-II phase to the SR phase, which contrasts to the 
familiar second-order transition for the case with bosons. Finally, we have presented a parameter estimation and 
have addressed briefly how to detect these predicted quantum phases and phase diagrams in experiments.

Methods
In this Section, we present a detailed derivation of Eqs (45)–(48). We denote by µ µ µ∈− − −[ , ]N II SR N II SR  the 
chemical potential in the N-II-SR mixed phase, and let −nN II (nSR) and µ −N II (μSR) denote the atom density and 
the chemical potential in the N-II (SR) phase, respectively. In terms of the fraction ≤ ≤x0 10  of the N-II phase, 
we have42

µ ω µ ω η= + − .− − − − −n x n x n( , ) (1 ) ( , , ) (50)N II N II SR SR N II SR0 0 0 0

When x0 = 1, we simply have the N-II phase [see Eq. (28)], and µ π=− −n M /N II N II . Instead, when x0 = 0, 
µ ω ηE ( , , )SRG

SR
0 , μSR, α SR, nSR, and mSR are given by

µ ω ω κ
ωη

= − −
+E

E A4
( )
4

,
(51)

SR

F
G
SR

2
0
2 2 2

2

µ ωη
ω κ

= −
+

E2( ),
(52)SR F

2

2 2

α
µ η

ω κ
ω ω κ

ω η
=

+
−

+
E A

1
2 ( )

( ) ,
(53)

SR
SR

F

2 2

2 2 2 2
0
2 2 2

2 2

µ

π
=n

M
A2

, (54)SR
SR

ω ω κ
ωη

=
+m ( )

4
,

(55)SR
0

2 2

2

where ωη ω κ= − +A E1 /[ ( )]F
2 2 2 .

Using the phase equilibrium condition µ ω =−
− −E ( , )N II SRG

N II
0  µ ω η− −E ( , , )N II SRG

SR
0

37, 42, together with Eqs (28) 
and (51), we see that when µ µ= =− − − EN II SR N II F corresponding to x0 = 1, the phase boundary between the 
N-II phase and the N-II-SR mixed phase is described by η η= c

(2).  On the other hand, when 
µ µ ωη ω κ= = − +− − E2 2 /( )N II SR SR F

2 2 2  corresponding to x0 = 0, the phase boundary between the N-II-SR 
mixed phase and the SR phase is also described by η η= c

(2). In addition, for the N-II-SR mixed phase, we can 
determine µ − −N II SR from the relation µ ω =−

− −E ( , )N II SRG
N II

0  µ ω η− −E ( , , )N II SRG
SR

0 , which gives

µ = .− − E (56)N II SR F

This is the same as Eq. (46). Substituting Eq. (56), −nN II, and nSR into Eq. (50), we find x0 can take arbitrary 
values ranging from 0 to 1.

Finally, let us prove that the ground state of the N-II-SR mixed phase is stable. Due to the existence of both 
N-II and SR phases, the scaled ground-state energy in this mixed phase is defined by37, 42

ω η µ µ ω

µ ω η

= +

+ − .

− −
− −

−
− −

− −

E x E

x E

( , ) ( , )

(1 ) ( , , ) (57)

N II SR N II SR

N II SR

G
N II SR

0 0 G
N II

0

0 G
SR

0

Thus we obtain

ω η ω− =− − −E E( , ) ( ) 0, (58)G
N II SR

0 G
N II

0

ω η ω
ω

− = −
−− −E E E
E

( , ) ( )
2

,
(59)

F

F
G
N II SR

0 G
SR

0

2
0
2

which are either less than or equal to zero, i.e., the ground state of the N-II-SR mixed phase is stable at η η= c
(2).

Substituting Eqs (28), (51), and (56) into Eqs (53) and (57), we derive Eqs (45)–(47). In addition, according to 
Eq. (50), we obtain Eq. (48).
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