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A Dynamic Metabolic Flux Analysis 
of Myeloid-Derived Suppressor 
Cells Confirms Immunosuppression-
Related Metabolic Plasticity
Guillaume Goffaux, Iness Hammami & Mario Jolicoeur

Recent years have witnessed an increasing interest at understanding the role of myeloid-derived 
suppressor cells (MDSCs) in cancer-induced immunosuppression, with efforts to inhibit their maturation 
and/or their activity. We have thus modelled MDSCs central carbon metabolism and bioenergetics 
dynamic, calibrating the model using experimental data on in vitro matured mice bone marrow cells 
into MDSCs. The model was then used to probe the cells metabolic state and dynamics, performing 
a dynamic metabolic flux analysis (dMFA) study. Indeed, MDSCs maturation correlates with a high 
glycolytic flux contributing to up to 95% of the global ATP turnover rate, while most of the glucose-
derived carbon enters the TCA cycle. Model simulations also reveal that pentose phosphate pathway 
and oxidative phosphorylation activities were kept at minimal levels to ensure NADPH production and 
anabolic precursors synthesis. Surprisingly, MDSCs immunosuppressive activity, i.e. L-arginine uptake, 
metabolism and endogenous synthesis, only consumes sparse quantities of energy-rich nucleotides 
(ATP and NADPH). Therefore, model simulations suggest that MDSCs exhibit a heterogeous metabolic 
profile similar to tumour cells. This behavior is probably an indirect immunosuppressive mechanism 
where MDSCs reduce the availability of carbon sources in the tumour periphery microenvironment, 
which could explain the dysfuntion and death of immune effector cells.

The invasiveness of conventional anti-cancer therapies appeals to the establishment of novel therapeutic strate-
gies. Specifically, the immunotherapy approach is gaining in interest as it showed promising results in the treat-
ment of cancer of various types1. One of the mechanisms of immunotherapy specifically targets the inhibition 
of myeloid-derived suppressor cells (MDSCs) maturation and activity. Briefly, MDSCs are a heterogenous cell 
population of macrophages, dendritic cells, granulocytes, to name only the most abundant cell types2. These 
cells metabolize the semi-essential amino acid L-arginine through the enzymatic activities of arginase 1 and 
inducible nitric oxide synthase (ARG1 and iNOS, respectively)3. Both the sparse availability of L-arginine and 
the accumulation of nitric oxide derivatives (e.g. reactive nitrogen oxide species, RNOS) trigger the suppression 
of specific anti-tumour immune response4. Despite the considerable progress achieved in the comprehension of 
MDSCs biology that has resulted in multiple therapeutic approaches proposed to overcome MDSCs-mediated 
tumor escape, the metabolic events supporting MDSCs immunosuppressive potential are still ambiguous and 
poorly investigated.

Previous work on the activation of dendritic cells with lipopolysaccharides (LPS, known to activate iNOS 
enzyme) showed that cells undergo a PI3K/Akt-dependent metabolic transition from oxidative phosphorylation 
to aerobic glycolysis5. Likewise, LPS-activated M1 macrophages display enhanced glycolytic metabolism and 
reduced mitochondrial activity6. Therefore, we concentrated our efforts to study the central carbon metabolism 
and bioenergetics of MDSCs, investigating their specific requirements to acquire an immunosuppressive pheno-
type7, 8. The analysis of intracelullar metabolites concentration suggested that MDSCs exhibit a glycolytic metab-
olism and a high TCA cycle activity providing the immunosuppressive mechanisms with energy-rich nucleotides 
and carbon intermediates.
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Dynamic metabolic flux analysis (dMFA) have shown being useful, as a quite unique tool, to describe extracel-
lular and intracellular nutrients and metabolites concentration as well as fluxes transient behavior in mammalian 
cells9–11. However, such approach, as well as other metabolic modelling approaches, have not been applied yet to 
study the immunosuppression phenomenon, to the best of our knowledge. We thus propose here to apply a mod-
elling approach9–11 previously validated on Chinese Hamster Ovary (CHO) cells9–11, on the maturation process 
of bone marrow cells into MDSCs, and thus perform dMFA to unreaveal metabolic traits of MDSCs’ maturation 
process.

The dynamic metabolic model combines the central carbon metabolism (CCM) and cell energetics, redox 
states and metabolic regulation mechanisms, and includes MDSCs immunosuppressive machinery (ARG1 and 
iNOS enzymes) and L-arginine endogenous synthesis reactions. The model was calibrated on experimental data 
of extra- and intracellular metabolites generated in a previous work8. We are thus first presenting a descriptive 
model as well as evaluating its simulation capacity. Sensitive kinetic parameters and their confidence intervals 
were determined to identify the key kinetic parameters and biochemical reactions to be considered as potential 
targets for modulating MDSCs maturation and immunosuppressive activity. Then, a dMFA study was performed 
through model simulations for evaluating MDSCs metabolic performance.

Model simulations confirmed the hypothesis that MDSCs maturation correlates with a high glycolytic flux 
sustaining ATP turnover and also supporting a high TCA cycle activity, with low but not suppressed pentose 
phosphate pathway and oxidative phosphorylation activities generating NADPH and anabolic precursors. 
Interestingly, MDSCs immunosuppressive machinery reveals not being energetically costly, while the overall 
nutritional profile and metabolic flux studies showed that MDSCs mimic tumour cells’ metabolic plasticity12, 13.

Materials and Methods
Cell Culture. Experimental data used herein to verify the accuracy of the metabolic model were taken from 
our previous work8 where experimental settings are well detailed.

Briefly, BM cells were extracted from 6- to 8- weeks old C57BL/6 mice (Charles River, Quebec, Canada). 
Animal experimentations were performed in accordance with the Canadian Council on Animal Care guidelines 
and the protocol was approved by the Université de Montréal’s ethical committee. Mice were kept under specific 
pathogen–free conditions prior to euthanasia by CO2.

BM cells were cultured in RPMI1640 medium (Sigma, Ontario, Canada) supplemented with 10% 
(v/v) irradiated fetal bovine serum (Cedarlane, Onatrio, Canada), 1 mM Sodium Pyruvate (Sigma), 50 µM 
β-Mercaptoethanol (Sigma), 100 U/mL Penicillin, 150 U/mL Streptomycin (Cedarlane) in a 5% CO2 and 37 °C 
incubator. The maturation of BM-derived MDSCs was performed by culturing BM cells for 96 hours in the sup-
plemented medium mentioned above in the presence of 40 ng/mL of GM-CSF (granulocyte macrophage - colony 
stimulating factor) and 40 ng/mL IL-6 (Interleukin-6) as shown by Marigo et al.14.

Figure 1. Description of the metabolic network of the model. (A) Central carbon metabolism and 
bioenergetics. (B) Urea cycle and amino acid catabolism. Brown: extracellular, black: intracellular. Enzymes are 
indicated in all reactions. All reactions are explicitely described in Table 1, including the stoichiometry.
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It should be noted that the term “BM-derived MDSCs” is used when referring to experimental and simulation 
results on BM cells derived into MDSCs. When referring to literature, the more general term MDSCs is used 
because it is the terminology normally accepted for these cells.

Figure 2. Simulated (line) and experimental data (dots) for BM-derived MDSCs. (A) Cell growth and 
nutritional profile. (B) Glycolysis. (C) TCA cycle. (D) Cell energetics. Error bars are calculated based on 
independent triplicates. Cell density is in 106 cells.mL−1 and intracellular and extracellular concentrations are in 
mmol.10−6 cells and mM, respectively.
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Metabolites Measurements. Every 24 hours, extracellular nutrients and metabolites in medium were 
measured using a dual-channel immobilized oxidase enzyme biochemistry analyzer (2700 SELECT, YSI Life 
Sciences, USA) and metabolites were extracted using cold methanol and sonication on ice method modified from 
Kimball et al.8, 15.

Nucleotides concentrations were measured using a 1290 UPLC system coupled to a 6460 triple quadru-
ple mass spectrometer. A Symmetry C18 column (Waters, Canada) was employed for the separation. Mobile 
phases consisted of 10 mM ammonium acetate with 15 mM DMHA (N,N-dimethylhexylanine) at pH 7.0 and 
50%/50% (v/v) acetonitrile, 20 mM NH4OAc at pH 7.0. Organic acids concentrations were assessed using the 

No. Enzyme Flux Reaction

1 Hexokinase VHK EGLC + ATP → G6P + ADP

2 Phosphoglucose isomerase VPGI G6P ↔ F6P

3 Glucose-6-phosphate dehydrogenase VG6PDH G6P + 2 NADP+  → R5P + CO2 + 2 NADPH

4 Ribulose-5-phosphate epimerase VEP R5P →  × 5 P

5 Transketolase VTK R5P + 2 × 5 P → 2 F6P + GAP

6 Phosphofructokinase VPFK F6P + ATP → 2 GAP + ADP

7 Phosphoglycerate kinase VPGK GAP + ADP + NAD+  + Pi → PEP + ATP + NADH

8 Pyruvate kinase VPK PEP + ADP → PYR + ATP

9 Lactate dehydrogenase VLDH PYR + NADH ↔ ELAC + NAD+

10 Pyruvate dehydrogenase VPDH PYR + CoA + NAD+  → ACCoA + CO2 + NADH

11 Citrate synthase VCS ACCoA + OAA → CIT + CoA

12 Aconitase/isocitrate dehydrogenase VCITS CIT + NAD+  → AKG + CO2 + NADH

13 Alpha ketoglutarate dehydrogenase VAKGDH AKG + CoA + NAD+  → SCoA + CO2 + NADH

14 Succinyl coenzyme A synthetase VSCOAS SCoA + ADP + Pi → SUC + CoA + ATP

15 Succinate dehydrogenase VSDH SUC + 2/3 NAD+  → FUM + 2/3 NADH

16 Fumarase VFUM FUM → MAL

17 Malate dehydrogenase VMLD MAL + NAD+  → OAA + NADH

18 Malic enzyme VME MAL + NADP+  → PYR + CO2 + NADPH

19 Pyruvate carboxylase VPC PYR + CO2 + ATP → OAA + ADP + Pi

20 Alanine aminotranferase VAlaTA PYR + GLU → AKG + ALA

21 Glutamine transport VGlnT EGLN + ATP ↔ GLN + ADP

22 Glutamate transport VGluT GLU + ADP + Pi → EGLU + ATP

23 Glutamine synthetase VGLNase GLN ↔  → GLU + ENH4

24 Glutamate dehydrogenase VGLDH GLU + NAD+  → AKG + NADH + ENH4

25 Aspartate aminotransferase VASTA GLU + OAA → AKG + ASP

26 Aspartate transporter VAspT EASP + ATP ↔ ASP + ADP

27 Asparagine transporter VAsnT EASN + ATP ↔ ASN + ADP

28 Asparagine synthetase VAsnS ASP + ATP → ASN + AMP + PPi

29 Asparaginase VAsnase ASN → ASP + ENH4

30 Arginine transporter VArgT EARG + ATP → ARG + ADP

31 Argininosuccinate lyase VASL AS → ARG + FUM

32 Arginase 1 VArg1 ARG + H2O → ORN + Urea

33 Ornithine transcarbamylase VOTC ORN + CP → CTR + Pi

34 Nitric oxide synthase ViNOS ARG + 3/2 NADP+  → CTR + 3/2 NADPH

35 Argininosuccinate synthase VASS CTR + ASP + ATP → AS + AMP + PPi

36 Carbamoyl phosphate synthetase VCPS CO2 + NH4 + 2 ATP → CP + 2 ADP + Pi

37 Nucleotide synthesis VPrAMP R5P → AMP

38 Creatine kinase VCK PCr + ADP ↔ Cr + ATP

39 NADPH oxidase VNADPHox NADPH + 2 O2 → NADP+  + 2 O2
− + H+

40 Proton leak Vleak O2 + 2 NADH → 2NAD+  + 2 H2O

41 Respiration VResp O2 + 2 NADH + 4 ADP + 4 Pi → 4 ATP + 2 NAD+  + 2 H2O

42 ATPase VATPase ATP → ADP + Pi

43 Adenylate kinase VAK ATP + AMP → 2 ADP

44 NAD synthesis VNAT R5P +  × 5 P + EGLN + 2 ATP ↔ GLU + NAD + AMP

45 NADP synthesis VNHG NAD + ATP ↔ NADP + ADP

46 Cell growth rate Vgrowth
α G6P + β R5P + γ EGln + δ ATP → X + δ ADP α = 3.18 × 10−7, 
β = 1.50 × 10−8, γ = 5.03 × 10−9, δ = 3.15 × 10−8

Table 1. Reactions of the metabolic network. N.B. H+, O2, CO2, Pi, PPi and H2O were not considered in mass 
balances.
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Number Equation Parameter values

1 =
+ +

V VHK max,HK
EGLC

EGLC K1,EGLC

ATP
ATP K1,ATP

Vmax,HK = 5.08 × 10−4 
K1,ATP = 1.08 × 10−5 
K1,EGLC = 10−12

2 = −
+ +

V V VPGI max,PGI
f G6P

G6P K2,G6P max,PGI
r F6P

F6P K2,F6P

Vf
max,PGI = 3.53 × 10−4 

Vr
max,PGI = 9.47 × 10−7 

K2,F6P = 1.93 × 10−5 
K2,G6P = 1.04 × 10−6

3 =
+ + +

V VG6PDH max,G6PDH
G6P

G6P K3,G6P

NADP
NADP K3,NADP

ATP
ATP K3,ATP

Vmax,G6PDH = 7.62 × 10−5 
K3,ATP = 1.03 × 10−12 
K3,G6P = 1.32 × 10−6 
K3,NADP = 10−12

4 =
+

V VEP max,EP
R5P

R5P K4,R5P

Vmax,EP = 6.74 × 10−5 
K4,R5P = 10−6

5 =
+ +

V VTK max,TK
X5P

X5P K5,X5P

R5P
R5P K5,R5P

Vmax,TK=3.37 × 10−5 
K5,R5P = 10−6 K5,X5P = 10−6

6 =
+ +

V VPFK max,PFK
F6P

F6P K6,F6P

ATP
ATP K6,ATP

Vmax,PFK = 3.42 × 10−4 
K6,ATP = 1.03 × 10−12 
K6,F6P = 2.83 × 10−7

7 =
+ + +

V VPGK max,PGK
GAP

GAP K7,GAP

NAD
NAD K7,NAD

ADP
ADP K7,ADP

Vmax,PGK = 7.35 × 10−3 
K7,ADP = 4.75 × 10−10 
K7,GAP = 10−6 
K7,NAD = 10−8

8 =
+ +

V VPK max,PK
PEP

PEP K8,PEP

ADP
ADP K8,ADP

Vmax,PK = 9.79 × 10−4 
K8,ADP = 4.75 × 10−10 
K8,PEP = 4.20 × 10−7

9 =
+ +

V VLDH max,LDH
PYR

PYR K9,PYR

NADH
NADH K9,NADH

Vmax,LDH = 9.99 × 10−4 
K9,NADH = 9.86 × 10−6 
K9,PYR = 1.65 × 10−12

10 =
+ +

V VPDH max,PDH
PYR

PYR K10,PYR

NAD
NAD K10,NAD

Vmax,PDH = 1.87 × 10−1 
K10,NAD = 10−8 
K10,PYR = 1.48 × 10−2

11 =
+ +

V VCS max,CS
OAA

OAA K11,OAA

ACCoA
ACCoA K11,ACCoA

Vmax,CS = 5.00 × 10−5 
K11,ACCoA = 10−10−4 
K11,OAA = 10−4

12 =
+ +

V VCITS max,CITS
CIT

CIT K12,CIT

NAD
NAD K12,NAD

Vmax,CITS = 9.33 × 10−6 
K12,CIT = 1.22 × 10−5 
K12,NAD = 10−8

13 =
+ +

V VAKGDH max,AKGDH
AKG

AKG K13,AKG

NAD
NAD K13,NAD

Vmax,AKGDH = 1.14 × 10−5 
K13,AKG = 2.77 × 10−7 
K13,NAD = 10−8

14 =
+ +

V VSCOAS max,SCOAS
SCOA

SCOA K14,SCOA

ADP
ADP K14,ADP

Vmax,SCOAS = 2.45 × 10−6 
K14,ADP = 2.00 × 10−7 
K14,SCOA = 4.77 × 10−5

15 =
+ +

V VSDH max,SDH
SUC

SUC K15,SUC

NAD
NAD K15,NAD

Vmax,SDH = 4.59 × 10−3 
K15,NAD = 10−8 
K15,SUC = 1.27 × 10−2

16 =
+

V VFUM max,FUM
FUM

FUM K16,FUM

Vmax,FUM = 5.03 × 10−6 
K16,FUM = 3.44 × 10−6

17 =
+ +

V VMLD max,MLD
MAL

MAL K17,MAL

NAD
NAD K17,NAD

Vmax,MLD = 4.70 × 10−6 
K17,MAL = 3.01 × 10−6 
K17,NAD = 10−12

18 =
+ +

V VME max,ME
MAL

MAL K18,MAL

NADP
NADP K18,NADP

Vmax,ME = 8.01 × 10−7 
K18,MAL = 9.01 × 10−8 
K18,NADP = 10−12

19 =
+ +

V VPC max,PC
PYR

PYR K19,PYR

ATP
ATP K19,ATP

Vmax,PC = 1.23 × 10−5 
K19,ATP = 10−12 
K19,PYR = 1.03 × 10−5

20 =
+ +

V VAlaTA max,ALATA
PYR

PYR K20,PYR

GLU
GLU K20,GLU

Vmax,AlaTA = 10−6 
K20,GLU = 10−4 
K20,PYR = 10−12

21 =
+ +

V VGLNT max,GLNT
EGLN

EGLN K21,EGLN

ATP
ATP K21,ATP

Vmax,GLNT = 6.83 × 10−5 
K21,ATP = 6.59 × 10−6 
K21,EGLN = 1.14 × 10−8

22 =
+ +

V VGluT max,GLUT
GLU

GLU K22,GLU

ADP
ADP K22,ADP

Vmax,GluT = 2.90 × 10−2 
K22,ADP = 3.05 × 10−6 
K22,GLU = 4.43 × 10−1

23 =
+

V VGLNase max,GLNase
GLN

GLN K23,GLN

Vmax,GLNase = 1.27 × 10−3 
K23,GLN = 7.16 × 10−1

24 =
+ +

V VGLDH max,GLDH
GLU

GLU K24,Glu

NAD
NAD K24,NAD

Vmax,GLDH = 1.21 × 10−6 
K24,GLU = 3.51 × 10−3 
K24,NAD = 10−8

Continued



www.nature.com/scientificreports/

6SCiEntifiC REPORTS | 7: 9850  | DOI:10.1038/s41598-017-10464-1

Number Equation Parameter values

25 =
+ +

V VASTA max,ASTA
OAA

OAA K25,OAA

GLU
GLU K25,GLU

Vmax,ASTA = 10−6 
K25,GLU = 10−5 
K25,OAA = 10−12

26 =
+ +

V VAspT max,ASPT
EASP

EASP K26,EASP

ATP
ATP K26,ATP

Vmax,ASPT = 7.01 × 10−5 
K26,ATP = 10−12 
K26,EASP = 6.85

27 =
+ +

V VAsnT max,ASNT
EASN

EASN K27,EASN

ATP
ATP K27,ATP

Vmax,ASNT=3.23 × 10−6 
K27,ATP = 10−12 
K27,EASN = 4.97 × 10−8

28 =
+ +

V VAsnS max,ASNS
ASP

ASP K28,ASP

ATP
ATP K28,ATP

Vmax,ASNS = 1.10 × 10−5 
K28,ATP = 10−12 
K28,ASP = 1.46 × 10−5

29 =
+

V VAsnase max,ASNase
ASN

ASN K29,ASN

Vmax,ASNase = 2.32 × 10−2 
K29,ASN = 7.36 × 10−1

30 =
+ +

V VArgT max,ARGT
EARG

EARG K30,EARG

ATP
ATP K30,ATP

Vmax,ARGT = 3.84 × 10−3 
K30,ATP = 10−12 
K30,EARG = 2.42 × 102

31 =
+

V VASL max,ASL
AS

AS K31,AS

Vmax,ASL = 2.00 × 10−6 
K31,AS = 10−5

32 =
+

V VArg1 max,ARG1
ARG

ARG K32,ARG

Vmax,ARG1=4.00 × 10−6 
K32,ARG = 10−4

33 =
+ +

V VOTC max,OTC
CP

CP K33,CP

ORN
ORN K33,ORN

Vmax,OTC = 1.10 × 10−6 
K33,CP = 10−12 
K33,ORN = 10−5

34 =
+ +

V ViNOS max,iNOS
ARG

ARG K34,ARG

NADP
NADP K34,NADP

Vmax,iNOS = 10−6 
K34,ARG = 10−5 
K34,NADP = 10−12

35 =
+ + +

V VASS max,ASS
CTR

CTR K35,CTR

ASP
ASP K35,ASP

ATP
ATP K35,ATP

Vmax,ASS = 3.00 × 10−6 
K35,ATP = 10−12 
K35,ASP = 10−5 
K35,CTR = 10−5

36 =
+ +

V VCPS max,CPS
NH4

NH4 K36,NH4

ATP
ATP K36,ATP

Vmax,CPS = 2.43 × 10−6 
K36,ATP = 10−12 
K36,NH4 = 4.13 × 10−8

37 =
+

V VPrAMP max,PrAMP
R5P

R5P K37,R5P

Vmax,PrAMP = 6.11 × 10−7 
K37,R5P = 8.90 × 10−10−7

38 = −
+ + + +

V V VCK max,CK
f PCr

PCr K38,PCr

ADP
ADP K38,ADP max,CK

r Cr
Cr K38,Cr

ATP
ATP K38,ATP

Vf
max,CK = 10−6 

Vr
max,CK = 10−7 

K38,ADP = 10−12 
K38,ATP = 10−12 
K38,PCr = 10−5 K38,Cr = 10−7

39 =
+

V VNADPHox max,NADPHox
NADPH

NADPH K39,NADPH

Vmax,NADPHox = 1.39 × 10−4 
K39,NADPH = 6.49 × 10−7

40 =
+

V Vleak max,leak
NADH

NADH K40,NADH

Vmax,leak = 2.95 × 10−3 
K40,NADH = 10−5

41 =
+ +

V VResp max,Resp
NADH

NADH K41,NADH

ADP
ADP K41,ADP

Vmax,Resp = 5.00 × 10−5 
K41,ADP = 10−12 
K41,NADH = 10−5

42 = −
+ +

V V VATPase max,ATPase
f ATP

ATP K42,ATP max,ATPase
r ADP

ADP K42,ADP

Vf
max,ATPase = 1.29 × 10−3 

Vr
max,ATPase = 8.51 × 10−1 

K42,ADP = 5.11 × 10−2 
K42,ATP = 2.04 × 10−5

43 = −
+ + +

V V VAK max,AK
f AMP

AMP K43,AMP

ATP
ATP K43,ATP max,AK

r ADP
ADP K43,ADP

Vf
max,AK = 1.55 × 10−5 

Vr
max,AK = 2.31 × 10−6 

K43,ADP = 2.68 × 10−8 
K43,AMP = 8.31 × 10−10 
K43,ATP = 6.18 × 10−8

44 =
+ + + +

V VNAT max,NAT
R5P

R5P K44,R5P

X5P
X5P K44,X5P

EGln
Cr K44,EGln

ATP
ATP K44,ATP

Vmax,NAT = 1.81 × 10−7 
K44,R5P = 10−12 
K44,X5P = 1.12 × 10−5 
K44,EGln = 1.02 × 10−2 
K44,ATP = 5.12 × 10−6

45 = −
+ + + +

V V VNHG max,NHG
f NAD

NAD K45,NAD

ATP
ADP K45,ATP max,NHG

r NADP
Cr K45,NADP

ADP
ADP K45,ADP

Vf
max,NHG = 4.19 × 10−7 

Vr
max,NHG = 1.84 × 10−8 

K45,ADP = 10−6 
K45,ATP = 1.05 × 10−5 
K45,NAD = 10−6 
K45,NADP = 10−6

46 =
+ + + +

V Vgrowth max,growth
G6P

G6P K46,G6P

R5P
R5P K46,R5P

EGLN
EGLN K46,EGLN

ATP
ATP K46,ATP

Vmax,growth = 4.23 × 10−3 
K46,EGLN = 3.20 × 10−1 
K46,G6P = 10−12 
K46,R5P = 10−12 
K46,ATP = 10−12

Table 2. Equations of kinetic fluxes and parameter values. Vmax in mmol.10−6 cells.h−1 and and Km in 
mmol.10−6 cells and in mM for intracellular and extracellular concentrations respectively.
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above-mentioned UPLC-MS/MS system with a Hypercarb column (Thermo Fisher, Ontario, Canada). Mobiles 
phases were 20 mM amoonium acetate at pH 7.5 and 10% (v/v) methanol in water.

Model Development and Calibration. The construction steps while building the structure of the met-
abolic model presented in this study is based on previous models describing the central carbon metabolism of 
plant16, 17 and CHO cells10, 11, 18 where it showed satisfactory results simulating experimental data. The global pro-
cedure for model development is described as Supplementary material. Briefly, we have here developed a model 
integrating metabolic pathways known to be expressed in MDSCs, by applying a modelling approach thus previ-
ously validated with eukaryotic cells. Basically, the network of biochemical reactions was first built including cen-
tral carbon metabolism as well as biochemical reactions known to be of major importance in MDSCs. Metabolic 
flux kinetics and regulation mechanisms were then described, based on literature on MDSCs when available, or 
on previous works on animal cells. The model was then describing known metabolic network in MDSCs as well 
as it was anchored specifically onto MDSCs by performing model structure calibration and parameters value 
identification thanks to experimental in vitro metabolomic data with these cells.

The model metabolic network (Fig. 1) (see nomenclature in Table S1) represents the main biochemical pathways 
in mammalian cells including glycolysis, glutaminolysis, pentose phosphate pathway, TCA cycle, cell energetics and 
oxidative phosphorylation (i.e. respiration) (Fig. 1A). In addition, the urea cycle (Fig. 1B) was added in order to 
model the reactions involving the L-arginine metabolism, which is specifically active in the MDSCs immunosup-
pressive phenomenon3. Furthermore, the catabolic pathways related to the amino acids metabolism (notably alanine, 
asparagine and aspartate) were also considered since these are known to contribute as carbon source. Therefore, the 
model describes major inputs, such as major nutrients, and outputs, such as cell growth and the management of 
cell metabolites from the immunosuppressive phenomenon. This biosystem network is thus highly simplified but it 
considers the major set of interlinked biochemical reactions allowing to describe MDSCs behaviour.

Moreover, the modelling strategy is based on the following considerations/assumptions:

•	 Flux kinetics consider the effect of substrates as well as co-factors (i.e. energetic and redox nucleotides).
•	 Except for the amino acids alanine, asparagine, aspartate, glutamine and glutamate, all other extracellular 

metabolite concentrations are considered higher that the affinity constants of associated cell membrane trans-
porters19. Therefore, intra- and extracellular metabolites that are consumed or secreted were taken as being at 
the same concentration across the cell membrane; a reliable assumption we have demonstrated in past works 
dealing with similar models10, 11, 16–18.

•	 The reactions of the adenylate kinase and ATPase enzymes are used to balance the time evolution of AMP, 
ADP and ATP energetic shuttles, with the synthesis of AMP being described.

•	 The model assumes non-constant energetic metabolites concentration: NAD+, NADH and NADP+, NADPH. 
NAD+ synthesis is thus described, from which NADP is synthesized.

Metabolite Initial concentration Metabolite Initial concentration

ACCoA 1.54 × 10−8 mmol 10−6 cells F6P 10−7 mmol 10−6 cells

ADP 3.74 × 10−7 mmol 10−6 cells FUM 10−6 mmol 10−6 cells

AKG 6.85 × 10−7 mmol 10−6 cells G6P 10−8 mmol 10−6 cells

ALA 10−6 mmol 10−6 cells GAP 4 × 10−8 mmol 10−6 cells

AMP 8.25 × 10−8 mmol 10−6 cells Gln 4 × 10−3 mmol 10−6 cells

ARG 1.4 × 10−3 mmol 10−6 cells Glu 5.625 × 10−4 mmol 10−6 cells

AS 10−8 mmol 10−6 cells MAL 4.1 × 10−7 mmol 10−6 cells

ASN 6.45 × 10−4 mmol 10−6 cells NAD+ 10−6 mmol 10−6 cells

ASP 3.83 × 10−4 mmol 10−6 cells NADH 10−6 mmol 10−6 cells

ATP 2.57 × 10−6 mmol 10−6 cells NADP+ 2 × 10−6 mmol 10−6 cells

CIT 2 × 10−7 mmol 10−6 cells NADPH 1.26 × 10−7 mmol 10−6 cells

CO2 2 × 10−5 mmol 10−6 cells NH4 0.1287 mmol 10−6 cells

CP 10−8 mmol 10−6 cells OAA 1.5 × 10−8 mmol 10−6 cells

Cr 3.9 × 10−5 mmol 10−6 cells ORN 10−8 mmol 10−6 cells

CTR 10−8 mmol 10−6 cells PCr 2 × 10−5 mmol 10−6 cells

EARG 0.669 mmol L−1 PEP 1.25 × 10−7 mmol 10−6 cells

EASN 0.313 mmol L−1 PYR 3.97 × 10−5 mmol 10−6 cells

EASP 0.184 mmol L−1 R5P 10−7 mmol 10−6 cells

EGLC 9.843 mmol L−1 SCoA 4 × 10−7 mmol 10−6 cells

EGLN 2.07 mmol L−1 SUC 3.3345 × 10−6 mmol 10−6 cells

EGLU 0.27 mmol L−1 X5 P 9.25 × 10−8 mmol 10−6 cells

ELAC 0.5033 mmol L−1 X 0.2 106 cells mL−1

ENH4 0.12 mmol L−1

Table 3. Metabolites initial concentration.
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•	 Enzymatic activity of the NADPH oxidase and the mitochondrial proton leak phenomenon are employed to 
balance the time evolution of NADP+/NADPH and NAD+/NADH, respectively.

•	 The stoichiometry of the reaction describing cell division and growth was based on average cell composition 
for CHO cells, since this information for MDSCs was not available9.

The final (i.e. after performing sensitivity analysis – model parameter values optimization cycle) dynamic 
model includes 44 reactions (Table 1) and mass balances (Table 2), with a total of 136 kinetic parameters (Table 2). 
The stoichiometric coefficients of the respective biosynthetic equations listed in Table 1 were taken from litera-
ture20. The fluxes are modeled by multiplicative Michaelis-Menten type equations and a factor of non-competitive 
inhibition is added when metabolites show inhibitory effects. Nutrients and metabolites as well as cell initial 
concentration (i.e. at t = 0) are presented in Table 3.

Using the parameter values determined in a previous work on CHO cells11 (and from references therein), a 
first sensitivity analysis was performed on the resulting model, aiming to identify the most critical (i.e. sensitive) 
parameters. In brief (see the Supplementary material for details), because of the large number of parameter values 
to be determined, an iterative procedure including manual trials on sub-groups of parameters and a model simu-
lation global error minimization step, allowed identifying optimal model parameter values. Sensitivity analysis of 
model parameters on the model acuity to simulate experimental reality was performed as follow. Values of model 
parameters were changed by ±5 or 10%, once at a time, from their optimal value, and the normalized 
sum-squared differences were calculated as described below. A model sensitivity analysis on initial conditions has 
also been performed to evaluate the effect of measurement errors. X mea and Xsim  are respectively the experimen-
tal data and simulated values for each state variable m and time k, and the weight is the inverse of the variance of 
the experimental data for each state variable, −varm

1.

Model parameter Optimal value minimizing simulation error

95% Confidence intervals

Lower bound Upper bound

Vmax,HK 5.08 × 10−4 4.92E-04 5.79E-4

Vf
max,PGI 3.53 × 10−4 1.62E-04 4.43E-04

Vmax,G6PDH 7.62 × 10−5 6.12E-05 7.38E-05

Vmax,EP 6.74 × 10−5 3.81E-05 1.09E-04

Vmax,TK 3.37 × 10−5 1.39E-05 4.28E-05

Vmax,PFK 3.42 × 10−4 3.12E-04 3.96E-04

Vmax,PK 9.79 × 10−4 9.70E-04 1.00E-03

Vmax,CITS 9.33 × 10−6 9.06E-06 1.14E-05

VAKGDH 1.14 × 10−5 1.14E-05 1.30E-05

Vmax,FUM 5.03 × 10−6 4.61E-06 5.10E-06

Vmax,PC 1.23 × 10−5 1.06E-05 2.15E-05

Vmax,ASNS 1.10 × 10−5 1.10E-05 1.10E-05

Vmax,ASNase 2.32 × 10−2 9.97E-03 2.79E-02

Vmax,OTC 1.10 × 10−6 9.77E-07 1.28E-06

Vmax,iNOS 10−6 8.90E-07 1.16E-06

Vmax,ASS 3.00 × 10−6 2.94E-06 3.07E-06

Vmax,PrAMP 6.11 × 10−7 6.02E-07 6.19E-07

Vf
max,AK 1.55 × 10−5 1.53E-05 1.56E-05

Vr
max,AK 2.31 × 10−6 2.27E-06 2.49E-06

Vf
max,ATPase 1.29 × 10−3 8.38E-04 1.53E-03

Vmax,NADPHox 1.39 × 10−4 1.29E-04 1.35E-04

Vmax,growth 4.23 × 10−3 4.23E-03 4.42E-03

K1,ATP 1.08 × 10−5 1.05E-05 1.38E-05

K4,R5P 10−6 3.19E-07 2.00E-06

K5,R5P 10−6 4.95E-08 1.42E-06

K28,ASP 1.46 × 10−5 1.41E-05 1.51E-05

K29,ASN 7.36 × 10−1 6.91E-01 7.82E-01

K35,CTR 10−5 9.21E-06 1.07E-05

K37,R5P 8.90 × 10−7 8.66E-07 9.15E-07

K42,ATP 2.04 × 10−5 1.03E-05 2.55E-05

Table 4. Model sensitive parameter optimal values and confidence intervals. (Vmax in mmol.L−1.h−1 and and Km 
in mM).
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Finally, the 95% confidence intervals on the estimated model parameters were computed, using the Matlab 
functions “nlinfit.m”, “nlparci.m” and “nlpredci.m”. Following the parameter estimation step (“nlinfit.m”), the 
confidence intervals were computed for the estimated model parameters (“nlparci.m”). The 30 most sensitive 
parameters (Table 4) have been used in the computation of the confidence intervals.

Results and Discussion
The Kinetic-Metabolic Model Simulates MDSCs Metabolic-Time Profile. The resulting metabolic 
model has then been used to simulate metabolites concentration with time, supported (Fig. 2) or not (Fig. S2) 
with experimental data. The time-evolution of metabolites concentration were thus either compared to experi-
mental data (when available) and to range of values found in literature, and thus confirmed the biologic relevance 
of the set of parameters as well as of the metabolic model structure.

The sensitivity analysis (Fig. 3A) procedure allowed to rank the parameters from their decreasing influence, 
and to remove parameters that were not contributing to model sensitivity from further optimization cycles, keep-
ing them at their optimal values. Only the sensitivity analysis results for the final model (i.e. no more improve-
ment of the simulation error) are shown here. Interestingly, most of the parameters (102 on 131) reveal to be 
non-sensitive with a WSSRES value lower than 0.1. This lack of sensitivity may partially come from the large 
number of parameters to be optimized, the low number of experimental data, and the important error bars. 
These non-sensitive parameters are within biologically relevant values and describe existing active pathways and 
enzymatic reactions, but they may require an expanded experimental space out of the current one to be solicited. 
Moreover and of interest, we have previously showed that the sensitive parameters are the ones needing to be 
changed while describing a modified genetic expression10, 11. Taking all of the above, the model structure was not 
reduced.

Specifically, the model reveals to be primarily sensitive to parameters of glycolysis and energetic reactions, 
partially to TCA cycle and pentose phosphate pathway, and to a lesser extent to urea cycle and amino acids catab-
olism. The maximum specific glucose uptake rate (νmaxHK) and the maximal ATPase (νmaxATPase) reaction rate as 

Figure 3. Sensitivity analysis of the model. Analysing most sensitive (A) parameters and (B) initial conditions. 
The computed value is log WSSRES and the distance is among −10%, −5%, + 5% and + 10%.
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well as its affinity constant (K ATP42, ) showed to strongly affect simulation error. This result is particularly interest-
ing since cell energetics plays a major role on the regulation of central carbon metabolism fluxes18. In comple-
ment, we also observed that the model is less sensitive to errors on initial conditions (Table 3) (Fig. 3B), only 
showing here the ones with the highest effect on the global error. This result is of interest since this type of 
dynamic model only requires initial conditions, together with kinetic parameters, to simulate a cell population 
behavior with time. Indeed, it is interesting to note that the high simplification level of the proposed model is not 
resulting in high level of simultation errors when challenged from either parameters value or initial concentration 
conditions. Expanding the amount of biochemical reactions would require, in a further work, expanding the 
amount of quantified metabolites to support the according increase of model parameters. The model has thus 
been used to perform a dynamic metabolic flux analysis (dMFA), analysing the results as new data per se as well 
as to further validate model simulations validity.

MDSCs Exhibit Warburg Effect During their Maturation Process. Dynamic metabolic flux analysis 
confirms MDSCs mimick tumour cells metabolic profile. Indeed, model simulation of experimental data confirm 
that BM-derived MDSCs exhibit a high glycolytic activity level as revealed by the continuous increase of the flux 
through pyruvate kinase (Fig. 4A). Moreover, up to 95% of the ATP generated in MDSCs are glycolysis-dependent 
(Fig. 4B), with thus an expected reduced oxygen consumption rate. This result correlates with previous findings 
where BM-derived MDSCs were shown to decrease their oxygen consumption, and consequently the oxidative 
phosphorylation -dependent ATP production, by 60% during their maturation process8. This behavior is typi-
cal to tumor cells. In fact, tumour cells are known to be metabolically heterogeneous12, 13 with a high glycolytic 
metabolism and a reduced, but not completely suppressed, oxidative phosphorylation21. A high aerobic metab-
olism was also shown to support highly proliferative tumors cells whereas a less efficient electron transfer chain 
in mitochondria is associated to ROS production22. This result is of utmost interest since despite the abundance 
of oxygen in in vitro culture condition, a glycolytic metabolism is favored in BM-derived MDSCs, a behaviour 
reported in some tumour cells. This metabolic profile may represent another mechanism of immunosuppres-
sion. In fact, in the tumour microenvironment, anti-tumour immune effector cells will compete with tumour 
cells and MDSCs that both exhibit high glucose uptake rates. Whereas, immune cells do not have any metabolic 
elasticity to acclimatize to low oxygen tension and limited glucose availability, and these conditions may trigger 
immune cell dysfunction and death, which can indirectly lead to tumour escape and progression. In a previ-
ous work on BM-derived MDSCs and also on a MSC-1 immortalized cell line8, we observed several similarities 

Figure 4. Time-evolution of glycolysis. (A) Glycolytic flux (νPK) in . .− −mmol cells h10 6 1. (B) Glycolysis 
contribution to ATP production + + + + + + + +v v v v v v v v v v( )/( 4 )PGK PK PGK PK SCOAS resp GluT CK

f
AK
r

ATPase
r . 

(C) Comparison of pyruvate producing (v v/PK ME) and consuming (v v/PDH PC) fluxes. (D) Ratio of pyruvate 
entering the TCA cycle ( +v v v/( )PDH PK ME ). All results obtained from the same model simulation than that of 
Fig. 2.
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between MDSCs and tumor cells metabolic behavior, such as a glycolytic metabolism, high glucose and glutamine 
uptake rates, reduced oxygen consumption rate but a high TCA cycle activity. It is known that MDSCs are getting 
fully activated and matured in the tumor microenvironment by means of tumor-derived factors (TDFs such as 
GM-CSF, TGF, IL-6, etc). These TDFs indirectly induce a similar metabolic behavior to tumor cells and this is 
further confirmed in this work from the dynamic metabolic flux analysis (dMFA) performed using our model.

Figure 5. Pentose phosphate pathway and glutaminolysis modulation in BM-derived MDSCs. (A) G-6-P 
branch point (v v/G PDH HK6 ). (B) Recirculation of glucose-derived carbon from pentose phosphate pathway into 
glycolysis (v v/TK G PDH6 ). (C) NADPH-to-NADP ratio. (D) Contribution of L-glutamine to TCA cycle 
intermediates replenishment ( + + + +v v v v v v/( )GLDH GLDH PC PDH AlaTA

f
AspAT
r ). All results obtained from the 

same model simulation than that of Fig. 2.

Figure 6. Energetics supporting MDSCs immunosuppressive activity. (A) Percentage of NADPH consumed by 
L-arginine metabolism, iNOS and ARG1 activities and L-arg uptake and endogenous synthesis. (B) Percentage 
of ATP consumed by L-arginine metabolism. All results obtained from the same model simulation than that of 
Fig. 2.
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Most of the Glucose-Derived Carbon Enters the TCA Cycle. A dMFA study at the pyruvate branch 
point revealed that pyruvate is mainly produced through the pyruvate kinase enzyme, with a flux of ~700-fold 
than that through the malic enzyme. This result suggests that pyruvate is principally derived from glucose 
than recirculated from the TCA cycle (Fig. 4C). Likewise, the comparison of the fluxes allowing the entry of 
glucose-derived carbon into the TCA cycle showed that the flux through pyruvate dehydrogenase was higher 
(up to 50-fold), and kept increasing with time, than the flux through pyruvate carboxylase (Fig. 4C). Moreover, 
the percentage of glucose-derived carbon entering the TCA cycle was increasing (from 50 to 80%) during the 
BM-derived MDSC maturation process (Fig. 4D). These anaplerotic/cataplerotic reactions are known to be 
important to the replenishment of TCA cycle intermediates23. The high glycolysis-TCA cycle activity is proba-
bly associated to the acquisition of the immunosuppressive phenotype, and the maintenance of inflammatory 
environment at the tumour edge, by supporting enzyme and surface markers expression, cytokine/chemokine 
synthesis, etc. In addition, some of the TCA cycle intermediates have roles other than being a carbon source. 
For instance, the accumulation of fumarate and succinate stabilizes hypoxia induction factor 1α22, 24 that was 
shown to be expressed in MDSCs to adapt to low oxygen tension in tumour25. Since BM-derived MDSCs 
exhibit a low growth rate during the 96 hours of the study, a longer culture period or the analysis of flux dis-
tribution in in vivo generated MDSCs is required to confirm if this behavior, i.e. high TCA cycle activity, is 
associated to proliferative purposes as previously reported in cancer cells22. Moreover, the analysis of the G6P 
branch point shows that only 20% of the glucose-derived carbon enters the pentose phosphate pathway, since 
the ratio of the flux through G6PDH to the one through HK was kept constant at 20% (Fig. 5A). A total of 30% 
of the carbon that enters the pentose phosphate pathway is recirculated to glycolysis (Fig. 5B). This metabolic 
behavior occurs when both NADPH and ATP are needed, but only sparsely ribose-5-phosphate, which is 
coherent with the low growth rate observed8. Glycolytic carbons are then shunted into the oxidative phase of 
the pentose phosphate pathway, and consequently in the non-oxidative phase leading to re-entering glycoly-
sis26. This was confirmed by the NADPH-to-NADP ratio (Fig. 5C) which increased (up to 9) rapidly for the 
last 30 hours, where BM-derived MDSCs were fully mature and active. Furthermore, as we discussed above, 
glycolysis was mainly responsible for ATP production, which is thus confirming then that MDSCs have the 
ability to modulate their central carbon metabolism to ensure the proper bioenergetics state required for their 
maturation and activity.

MDSCs Immunosuppression Machinery is not Energetically Costly. Contrarily to glucose-derived 
carbon, which is mainly entering into the TCA cycle to sustain its high activity, L-glutamine (GLN in the model) 
only contributes sparsely to the replenishment of TCA cycle intermediates (Fig. 5D). However, the fate of 
GLN-derived carbon in MDSCs is ambiguous and requires further investigation using 13C-labelled GLN, but our 
results clearly show it is likely used in the endogenous synthesis of L-arginine to support cells immunosuppres-
sive potential27. As BM-derived MDSCs exhibit a high GLN consumption rate, immune effector cells will also 
compete with MDSCs in addition to tumour cells for GLN, a phenomenon that is crucial for their proliferation.

Interestingly, the dMFA study showed that the L-arginine metabolism (including its uptake, its metabo-
lism by the inducible Nitric Oxide Synthase and Arginase 1 and its endogenous synthesis) do not use consid-
erable quantities of ATP and NADPH. In fact, the percentage of NADPH used by the L-arginine metabolism 
is decreasing from 5 to 1% (Fig. 6A). This decrease is associated to a higher flux through NADPH oxi-
dase during BM-derived MDSCs maturation process. However, NADPH oxidase co-produces NADP+ and 
superoxide (O2

−), the latter being a precursor for the generation of immunosuppressive species ROS and 
RNOS28. A similar decreasing trend from 6 to 1% was simulated for the percentage of ATP consumed by the 
L-arginine metabolism (Fig. 6B). These findings support the hypothesis that L-arginine metabolism is not 
energetically costly but further investigation is still required to verify the energetic needs of complemen-
tary immunosuppressive mechanisms that are not modelled in this work, such as tryptophan metabolism, 
expression of messenger molecules, etc. Interestingly, there are only 30 sensitive parameters (Table 4) on the 
136 parameters of the model, which cover all metabolic sub-networks, and especially including those that 
define specific functions of MDSCs.

Conclusion
This work on model simulation of MDSCs maturation, used a wide set of experimental data for extra- and 
intracellular metabolites concentration to develop a descriptive and predictive dynamic metabolic model. The 
model then enabled performing a dMFA study, which results allowed highlighting the carbon distribution 
dynamics during MDSCs maturation and also in fully mature and active cells. Mainly, MDSCs revealed to be 
dependent on the glycolysis and the glucose-derived carbon to ensure high central carbon metabolism activity 
and sustained production of ATP. Pentose phosphate pathway and oxidative phosphorylation showed being 
active at the minimal level allowing to replenish the NADPH pool and anabolic precursors. This metabolic 
behaviour was not justified by specific requirements of MDSCs immunosuppression machinery neither at the 
carbon intermediate or energy level. However, this metabolic profile indirectly favors tumour invasiveness and 
shall be considered as a target for anti-cancer immunotherapy. In this work, the interpretation of carbon flux 
distribution simulated by the model leads to the identification of the specific metabolic signatures of mature 
MDSCs that are directly associated to the immunosuppression phenotype. This in silico platform thus allows 
prospecting MDSCs dynamic behaviour under stimulation or inhibition conditions, as well as it represents 
a complementary tool to existing tools for studying the immunosuppression phenomenon29. Cell metabolo-
mic studies provide new and complementary insights enabling to better understand the immunosuppression 
phenomenon, and such dynamic model may be useful to the identification of novel biomarkers as well as to 
define therapeutic strategies to modulate this phenomenon. The validation of the predictive capacity of the 
model will, however, be possible with the accumulation of large experimental data sets, as well as further 
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implementing the metabolic network. This first modelling work on MDSCs thus brings a basic framework for 
the study of the immunosuppression phenomenon, with the most sensitive parameters as keys of further model 
development.
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