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Dopaminergic Modulation of 
Biological Motion Perception in 
patients with Parkinson’s disease
Tingting Liu1,2,3, Panpan Hu1,2,3, Ruihua Cao4, Xing Ye5, Yanghua Tian1,2,3, Xianwen Chen1,2,3 & 
Kai Wang1,2,3,6

Parkinson’s disease (PD) is a progressive neurodegenerative disorder pathologically characterized by 
a selective loss of dopaminergic neurons in the substantia nigra. In previous studies, greater attention 
was paid to impairments in motor disturbances in contrast to impairments of cognitive function in PD 
that was often ignored. In present study, a duration discrimination paradigm was used to assess global 
and local biological motion (BM) perception in healthy controls(HCs) and PD patients with and without 
dopamine substitution treatment (DST). Biological motion sequences and inanimate motion sequences 
(inverted BM sequences) were sequentially presented on a screen. Observers were required to verbally 
make a 2-alternative forced-choice to indicate whether the first or second interval appeared longer. 
The stimuli involved global and local BM sequences. Statistical analyses were conducted on points of 
subjective equality (PSE). We found significant differences between untreated PD patients and HCs as 
well as differences between global and local BM conditions. PD patients have a deficit in both global 
and local BM perception. Nevertheless, these two BM conditions can be improved under DST. Our 
data indicates that BM perception may be damaged in PD patients and dopaminergic medication is 
conducive to maintain the BM perception in PD patients.

Biological motion (BM) perception is a multi-level phenomenon that requires bottom-up integration of signals 
from basic visual motion perception along with top-down social cognition1. It consists of both global and local 
processes. While the global process is informed by the display’s spatiotemporal organization2, the local process relies 
predominantly on the motion signals of the individual dots3, 4. Studies of the visual perception of BM generally use 
point-light stimuli that are created by attaching point-lights to a person’s body and head and then recording the per-
son’s movements so that only the point-lights are visible5. These stimuli are easily manipulated and typical observers’ 
can readily gather considerable social information including the actor’s identity6, 7, gender8, actions9, emotion10, 11, 
and intentions12. However, when the point-light displays are inverted, the perception of BM is strongly impaired. 
This phenomenon is called the “inversion effect”13–15and it is caused by an impairment in the spatial configuration of 
BM sequences. In addition, there is a second inversion effect that relies on local motion16.

Recently, Jiang and colleagues showed that BM signals could prolong their perceived temporal duration, inde-
pendent of global configuration and without the observer’s subjective awareness of their biological nature17. They 
adopted a duration discrimination paradigm and found that an upright BM sequence was perceived for a signif-
icantly longer period of time compared to the inverted, inanimate sequence of the same physical duration. This 
temporal dilation could be extended to spatially scrambled biological sequences that only involve information 
from local biological motion. However, this effect completely disappears when critical BM characteristics are 
removed. This additional control experimental sequence might suggest that the differences in temporal dila-
tion found between groups were specific to BM signals. Studies have shown that observers with lesions in the 
human premotor or motor system are impaired in their ability to perceive human movements18, 19. PD patients 
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are typically impaired in movement execution. The dopaminergic cells in the basal ganglia system are also heavily 
involved in motor programming processes, such as the preparation, initiation, and execution of movement and 
also for maintaining a readiness for action20. Thus, PD provide an ideal model to explore the BM perception.

Parkinson’s disease (PD) is a neurodegenerative disease characterized by tremor, rigidity, bradykinesia, and 
postural abnormalities and has led to a significant loss of mobility in daily life. The frequency of the disorder is 
about 1.3 cases per 100,000 people younger than 45 years of age, 3,100 per 100,000 in those aged 75–85 years, 
and 4,300 per 100,000 in those older than 85 years21. It is well accepted that PD is caused by the depletion of 
dopamine (DA)-producing neurons in the substantia nigra pars compacta22. Besides motor impairment, dopa-
mine depletion can also result in cognitive impairment and social behavior disorder, even in early-stage disease 
without dementia23, 24. Accumulating evidence suggests that individuals with PD eventually develop impairments, 
not only in memory and visuospatial function, but also in attention and executive function25–27. Moreover, PD 
patients have been found to show deficits in visual scanning abilities, “theory of mind” (TOM)28 and facial emo-
tion recognition29. It is generally argued that disorders of facial emotion recognition in PD result from a loss of 
dopaminergic neurons leading to dysfunctional frontosubcortical systems30–32.

Cao and colleagues found that temporal dilation effect was significantly reduced for PD patients in both intact 
and scrambled BM conditions33. Besides, a new research suggested that PD patients have deficit in perceiving bio-
logical motion, which is independent of gait dysfunction and low-level vision changes34. Thus, we think that there 
is a BM perception deficit in PD. But, whether the dopaminergic transmitter system are also involved in the BM 
perception is remain unknown. In the current study, we have used the duration discrimination paradigm to assess 
the effects of animate motion signals on time perception. Time perception was used as an implicit measure of the 
dynamic properties of apparent human movement. We applied two duration discrimination tasks to compare 
temporal expansion effect of BM signals between healthy controls and PD patients (with and without dopamine 
substitution treatment (DST)). In two tasks, intact and scrambled point-light walkers, with their inverted stimuli 
as opposite inanimate motions, were presented sequentially. The intact BM stimulus contains local motion signals 
and global form signals, while the scrambled stimulus contains only local motion signals. Here, we investigated 
the potential role of dopamine neurotransmitter system in BM perception in PD patients and HCs.

Results
Demographic Data, PD-Related clinical characteristics, and Neuropsychological Findings.  
There were 25 PD patients (16 male and 9 female) and 25 healthy controls (19 male and 6 female) participating 
in the study in total. As normally distributed data, age (t (48) = 0.55, P > 0.05, by independent samples T-tests) 
and educational (t (48) = 0.40, P > 0.05, by independent samples T-tests) levels were not significantly different 
between the two groups. As a non-normally distributed data, gender was not significantly different between the 
two groups too (Z = 0.92, P > 0.05, by Mann-Whitney U tests) (see Table 1).

As normally distributed data, the MMSE scores did not vary significantly between the two groups (t 
(48) = 0.79, P > 0.05, by independent samples T-tests), while VFT (t (48) = 2.89, P < 0.05, by independent sam-
ples T-tests) scores were significantly different between the two groups. As non-normally distributed data, the DS 
(DS [f] (Z = 2.38, P < 0.05, by Mann-Whitney U tests) and DS [b](Z = 3.05, P < 0.05, by Mann-Whitney U tests)) 
scores were significantly different between the two groups (see Table 1).

Disease severity was assessed using the Hoehn–Yahr Scale35, a commonly used system for describing how the 
symptoms of PD progress and the relative level of disability, ranging from stages, 1–5.

A paired-sample T-test revealed that the UPDRS III scores were significantly different between the PD patients 
with (22.76 ± 7.65) and without (29.48 ± 8.24) DST (t (24) = 2.99, P < 0.05).

PD HCs

Number 25 25

Age (years) 61.96 ± 7.92 60.60 ± 9.49

Gender (M/F) 16/9 19/6

Education Background (year) 7.76 ± 4.24 7.32 ± 3.60

Disease duration (years) 3.70 ± 1.93 —

onset side (left/right) 14/11 —

Hoehn and Yahr stage

 Stage 1.5 8 —

 Stage 2.0 10 —

 Stage 2.5 4 —

 Stage 3.0 3 —

MMSE score (out of 30) 27.92 ± 1.50 27.56 ± 1.73

VFT* 11.56 ± 1.58 13.12 ± 2.19

DS(f)* (out of 8) 5.56 ± 0.71 6.12 ± 0.93

DS(b)* (out of 7) 3.52 ± 0.65 4.20 ± 0.87

Table 1. Demographic Data, Clinical characteristics and Neuropsychological Findings of PD and HCs 
(Mean ± Standard Deviation). PD = Parkinson’s Disease; HCs = Health controls; DS (b) = Digital Span 
(backward); VFT = verbal fluency task; DS (f) = Digital Span (forward); MMSE = mini-mental state 
examination. *Indicates a significant effect of group (p < 0.05).
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Duration discrimination task findings between the PD and control groups. The PSEs and DLs for 
PD patients (with and without DST) and HCs in the intact and scrambled BM conditions are shown in Table 2 
(they are all normally distributed data). Figure 1 represents the task used in the present study. The results of 
PD patients and HCs from this duration discrimination task were fitted with a Boltzmann sigmoid function 
(Equation 1).

In experiment 1 for the scrambled biological motion condition, both the PD patients and HCs reported that 
they were unaware of a human figure (upright or inverted) when observing the stimuli. A one-sample t-test 
revealed a significant negative PSE in HCs (t (24) = −5.29, P < 0.001), indicating that the temporal dilation effect 
of BM stimuli can be induced, on its own accord by the local motion signals. That is to say, the temporal dilation 
effect was caused by the BM signals rather than the familiarity of the upright global figures. For PD patients 
without DST, there was no significant negative PSE (t (24) = −1.37, P = 0.182), suggesting that temporal dilation 
effect of scrambled BM stimuli was impaired in PD patients. However, we were surprised to find that there was 
a significant negative PSE in PD patients with DST. One-way ANOVA revealed significant differences between 
PD patients without DST, PD patients with DST and HCs (F (2, 72) = 3.89, P < 0.05). There were also significant 
differences between PD patients without DST and HCs (P < 0.05), and between PD patients with and without 
DST (P < 0.05). There was no significant difference between PD patients with DST and HCs (P = 0.79). After 
Bonferroni correction, there was significant differences between PD without DST and HCs (P < 0.05), but no 
significant difference between PD with and without DST (P = 0.08). Moreover, the observers’ temporal discrim-
ination sensitivities (difference limen) were not significantly different between the three groups (F (2, 72) = 0.02, 
P > 0.05, by One-way ANOVA). The fitted summary of psychometric functions are shown in Fig. 2. The temporal 
dilation effect are shown in Fig. 3.

In experiment 2 for the intact biological motion condition, PD patients and HCs reported that they could 
recognize both the inverted and upright walking human figures when observing the stimuli. A one-sample t-test 
revealed a significant negative PSE in HCs (t (24) = −5.69, P < 0.001), suggesting the presence of a temporal 
dilation effect for the upright intact BM stimuli compared to the inverted figure of identical temporal dura-
tion. For PD patients without DST, there was no significant negative PSE (t (24) = −0.02, P = 0.988), suggest-
ing that temporal dilation effect of intact BM stimuli was impaired in these patients. In contrast, we found that 
there was a significant negative PSE in PD patients with DST. One-way ANOVA revealed significant differences 
between PD patients with and without DST and HCs (F (2, 72) = 10.06, P < 0.001). There were also significant 
differences between PD patients without DST and HCs (P < 0.01) and between PD patients with and without 
DST (P < 0.001). There was no significant difference between PD patients with DST and HCs (P = 0.65). After 
Bonferroni correction, there were significant differences between PD without DST and HCs (P < 0.01) and 
between PD with and without DST (P < 0.001) too. Moreover, the observers’ temporal discrimination sensi-
tivities (difference limen) were not significantly different between the three groups (F (2, 72) = 1.5, P > 0.05, by 
One-way ANOVA). The fitted summary of psychometric functions are shown in Fig. 4. The temporal dilation 
effect are shown in Fig. 5.

Condition Group PSE DL

Intact BM

PD without DST −0.31 ± 97.60* 542.73 ± 202.32

PD with DST −99.97 ± 81.46 532.26 ± 205.74

HCs −88.92 ± 78.09 630.16 ± 247.80

Scrambled BM

PD without DST −14.18 ± 51.63* 681.17 ± 319.02

PD with DST −54.72 ± 78.40 664.06 ± 275.17

HCs −59.53 ± 56.28 672.69 ± 318.46

Table 2. Point of subjective equality (PSE) and difference limen (DL) for Parkinson’s disease(with and without 
DST) (PD; n = 25) and HCs (n = 25) across intact and scrambled BM conditions (Mean ± Standard Deviation). 
*In comparison with PD without DST and HCs: P < 0.05.

Figure 1. Scrambled point-light walkers, and intact point-light walkers were used in the present study, 
including upright and inverted stimuli.
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Correlation analysis. To determine whether the PSEs of the PD patients both on and off DST were related 
to any psychosocial factors, we used Pearson correlation analyses and found that PSEs were not related to age, 
disease duration, Hoehn and Yahr stage, or MMSE, VFT, DS (DS (f) and DS (b) (all P > 0.05, see Table 3).

Discussion
The results of this study showed that there is a negative PSE for both the global BM signals and local ones in PD 
patients with regular DST and healthy controls. However, the PSE of PD patients without DST (after overnight 
withdrawal of dopamine substitution treatment) for both global and local biological motion signals were either 
positive or close to a positive. Our results showed that a negative PSE indicated temporal dilation in healthy con-
trols and PD patients with DST, an effect confirmed by Wang and Jiang17. Specifically, the BM signals implicated 
in the stimulus prolonged their perceived temporal duration.

Although the PSE of PD patients with DST for local BM signals have no statistic difference with PD patients 
without DST. There is a relative negative PSE of PD patients with DST for local BM signals. Thus, we inferred 
from these observations that PD patients showed deficits in both global and local BM perception, whereas these 
BM perception deficits can be restored by dopamine administration. Our results agrees with a previous study 
that demonstrated impairments in perception natural movements relative to unnatural movements in PD. Their 
perception of unnatural movements is not different from healthy controls36. We suspected that the observed effect 
from our study was probably specific to BM signals.

The definition of the BM perception is an observer recognizing a biological entity executing a decipherable 
activity37. There is a perceptual advantage of perceiving human biological motion compared to non-biological 
motion38, an increased BOLD response to an upright as compared with an inverted walker was also reported over 

Figure 2. Psychometric function for observers in scrambled BM condition with a standard duration of 1000 ms. 
The vertical solid-line arrow and long dash-line arrow show a significant negative PSE in HCs and PD patients 
with regular DST. However,the vertical short dash-line arrow shows there was no significant negative PSE in PD 
patients without DST. The horizontal arrows indicate the DL.

Figure 3. Duration discrimination results from experiment 1. The temporal dilation effect (i.e., minus PSE) of 
the upright biological motion stimuli was significantly larger than that of the inverted biological motion stimuli. 
The PSE of the scrambled biological motion stimuli in PD without DST and HCs were significantly different, 
but the PSE in PD with and without DST were not significantly different (*P < 0.05; n.s., not significant). Error 
bars show standard errors.



www.nature.com/scientificreports/

5Scientific REPORTS | 7: 10159  | DOI:10.1038/s41598-017-10463-2

the frontal cortices39, which lends strong support to the study of Wang and Jiang17. That is, relative to the inverted 
walker, the upright walker which carried BM information generated increased response over frontal cortices. 
A lot of studies have found that the posterior superior temporal sulcus (pSTS) plays a key role in the process of 
BM, other brain areas involved include premotor, inferior frontal region and so on40, 41. Among these, the mir-
ror neuron system is one of the hotspots of research in the neuromechanism of BM perception. Mirror neuron 
system was first identified in area F5 of the monkey premotor cortex and it was shown to be activated by both 
executing and observing a particular action42–44. Studies depending on the electrophysiological methods (e.g. 
EEG) and brain imaging (fMRI, PET) support the existence of a mirror neuron network in the human brain45. 
A set of brain areas involving the inferior and superior parietal lobules, the anterior intraparietal sulcus, and the 

Figure 4. Psychometric function for observers in intact BM condition with a standard duration of 1000 ms. The 
vertical solid-line arrow and long dash-line arrow show a significant negative PSE in HCs and PD patients with 
regular DST. However,the vertical short dash-line arrow shows there was a positive PSE in PD patients without 
DST. The horizontal arrows indicate the DL.

Figure 5. Duration discrimination results from experiment 2. The temporal dilation effect (i.e., minus PSE) of 
the upright biological motion stimuli was significantly larger than that of the inverted biological motion stimuli. 
The PSE of the intact biological motion stimuli in PD without DST and HCs were significantly different, the PSE 
in PD with and without DST were also significantly different (*P < 0.05; n.s., not significant). Error bars show 
standard errors.

Correlation

Age Disease duration H-Y stage MMSE VFT DS(f) DS(b)

r P r P r P r P r P r P r P

PSE (Intact BM)
on −0.01 0.98 −0.24 0.25 0.03 0.90 0.13 0.54 −0.01 0.97 0.19 0.36 0.09 0.66

off 0.07 0.75 −0.05 0.80 −0.06 0.77 0.39 0.06 −0.07 0.73 0.22 0.30 0.05 0.83

PSE (Scrambled BM)
on 0.24 0.26 0.24 0.24 0.24 0.26 0.27 0.20 −0.06 0.78 0.14 0.50 0.05 0.82

off 0.28 0.17 0.32 0.12 0.33 0.11 0.19 0.37 −0.28 0.17 −0.17 0.41 −0.13 0.55

Table 3. The correlation between PD patients (both with and without DST) with various factors. “on” stands for 
with DST; “off ” stands for without DST.
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inferior frontal gyrus (IFG) has been dubbed the “mirror system” in humans46. Recently, local field potential 
(LFP) indicated that the basal ganglia was also involved in the activity of mirror neuron system47, 48. Given that 
point-lights BM sequence activated human mirror neuron system46, we suggest that basal ganglia maybe related 
to the BM perception.

The progressive degradation of the dopaminergic cells in the basal ganglia system is known to result in the 
occurrence of Idiopathic PD. Patients with PD show impairments in performing various cognitive tasks that 
primarily rely on the frontal lobes49. And dopamine depletion is explicitly linked to the dysfunction of prefrontal 
cognitive areas through three different frontostriatal circuits: the dorsolateral, orbital, and the anterior cingulate 
circuits50. Studies have shown that the basal ganglia system plays an active role in the motor planning processes 
that includes maintaining a readiness for action, preparing, initiating, and executing a particular action20. By 
administering the basal ganglia with dopamine, the information that used to perform a decisive action (such 
as reaching for a static object) has been successfully passed between cortical and subcortical structures51. Thus, 
we conclude that the frontal cortices, basal ganglia and dopamine were essential to the motor programming 
processes.

The main finding of our study is that there is a temporal expansion effect for BM signals in healthy controls 
and PD patients with regular DST. In addition, when PD patients went through an overnight withdrawal of dopa-
mine substitution treatment (without DST), the temporal expansion effect were impaired. From these observa-
tions, we suggest that both BM perception and PD were highly related to the basal ganglia and frontal cortices. 
Our conclusions are consistent with the observed results.

In the present study, we applied the duration discrimination paradigm to test the effects of BM signals on 
time perception. Time perception was used as an implicit method to evaluate the dynamic properties of dis-
tinct human movement. Whether or not time perception was impaired in PD patients was remain controversial. 
While some studies claim that it was impaired52, 53, others don’t54, 55. Previous findings have suggested that the 
sub-second intervals are probably processed by a motor circuitry consisting of the primary sensorimotor cortex 
and cerebellum, the supra-second intervals more likely activate DLPFC and parietal cortices which are associ-
ated with cognitive functions56. Our experiment only involved sub-second time processing. From the above, we 
thought that PD patients may be not impaired in cognitive sub-second time processing. The duration discrimi-
nation test, used in the present study is easy to understood and there is no need for attention processes. Besides, 
we found that the observers’ temporal discrimination sensitivities (difference limen, DL) were not significantly 
different between PD patients (with and without DST) and HCs, which may support the speculation that deficits 

Regular DST
Time 
since last 
medicine 
intake (h)

Levodopa + Benserazide 
(mg/d)

Other anti-parkinsonian medicine L-dopa 
Equivalent 
Dose62 (mg/d)DA agonist (mg/d)

MAOB inhibitors 
(mg/d) Amantadine (mg/d)

250 — 10 (selegiline) 300 600 16

500 50 (piribedil) — — 450 16

375 100(piribedil) — — 400 17

— — — 300 300 20

500 100(piribedil) — — 500 18

125 — — 300 400 18

187.5 — — — 150 17

250 — — 300 500 15

187.5 — — 200 350 15

187.5 150(piribedil) — — 300 15

375 — — 300 600 18

375 — 20 (selegiline) 200 700 15

250 — — — 200 16

625 — — 300 800 15

375 — — 200 500 18

250 — — 300 500 15

500 100(piribedil) — 300 800 15

250 50(piribedil) — — 250 17

125 — — 200 300 18

187.5 — — — 150 16

500 — — 300 700 18

187.5 — — 200 350 24

500 0.75(pramipexole) — 300 775 16

375 — — — 300 20

187.5 — — 200 350 18

Table 4. PD patients with and without DST in details.
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in time perception per se, were minimal in our experiments. The absence of a non-BM stimuli and a truly time 
perception paradigm are main limitation of our study.

To summarize, we conclude that PD patients have a deficit in BM perception (both global and local ones) and 
this deficit can be restored by administering regular dopamine substitution. These results provide evidence that 
basal ganglia and frontal cortices are all linked to BM perception and dopamine plays an important role in the 
processes of BM perception. Future studies should utilize neuroimaging techniques to further confirm the role of 
dopamine in the BM perception.

Methods
subjects. Twenty-five early to moderately affected patients with PD (16 males, 9 females; all right-handed) 
and twenty-five HCs (19 males, 6 females; all right-handed) participated in the study (see Table 1). PD patients 
were recruited from outpatients who were diagnosed and regularly treated at the First Hospital of Anhui Medical 
University, Anhui Province, China. All participants fulfilled Parkinson’s Disease Society Brain Bank clinical cri-
teria for definite PD57. Disease severity was graded according to the motor score on Section III of the Unified 
Parkinson’s Disease Rating Scale (UPDRS III)58 and the Hoehn and Yahr rating scale35.Exclusion criteria for 
PD patients included: (1) patients who had a history of neurological or psychiatric illnesses other than PD, such 
as depression, cerebral infarction or migraine; (2) dementia based on clinical examination or a Mini Mental 
State Examination (MMSE) score ≤ 2459; (3) use of active central nervous system therapies other than levodopa, 
amantadine and dopamine agonists, alcohol or other substance abuse or dependence and, (4) deficits in vision 
and hearing. Exclusion criteria for the HCs included: (1) the presence of psychiatric or neurological illness, such 
as depression, cerebral infarction or migraine; (2) dementia on the basis of clinical examination or a MMSE 
score ≤ 24; (3) the use of medication with central nervous system effects. The study was approved by the Ethics 
Committees of Anhui Medical University and executed in agreement with the Declaration of Helsinki. All sub-
jects provided written informed consent.

Neuropsychological Assessment. The following neuropsychological tests were administered to all par-
ticipants and compared between the PD and the HCs group: (1) the MMSE score measures global cognitive 
functions; (2) the Hamilton Depression Scale measures the presence of depressive states; (3) verbal fluency (num-
ber of words per minute) measured frontal functions; (4) the Digit Span test estimated short-term memory and 
executive functions including forward and backward spans.

Experimental stimuli generation. Stimuli were generated and displayed using MATLAB (Mathworks) 
and the Psychophysics Toolbox extension60. The intact point-light BM videos were adopted from Vanrie and 
Verfaillie61. These videos were generated by videotaping the walking gait of an actor and then, encoding the joint 
positions in the digitized videos. In the scrambled BM sequences, where the local motion cues were preserved, the 
starting position of each point was randomly displaced from its vertical position about a central axis within a sim-
ilarly sized region as the intact BM sequences. Only the global configuration information was entirely disrupted, 
so that the familiar limb sequences were harder to identify. Inverted BM counterparts (intact and scrambled) were 
derived by vertically mirror-flipping all the motion sequences.

Experimental Procedure. Stimuli were white on a gray background and observers viewed them from 
approximately 80 cm away. In each trial, two stimuli (e.g., an upright and an inverted intact BM sequence) were 
sequentially presented in the center of the screen, such that the dots subtended approximately 4.0° × 6.8° in visual 
angle. One of the stimuli (upright or inverted figure) was randomly selected to be presented for 1000 ms; the 
other was displayed for 100 ms, 400 ms, 700 ms, 1000 ms, 1300 ms, 1600 ms, or 1900 ms, resulting in a total of 
7 test conditions. Therefore, the difference between the presentation duration of the two stimuli (upright vs. 
inverted) was −900 ms, −600 ms, −300 ms, 0 ms, 300 ms, 600 ms, or 900 ms. Between the two stimuli displays, 
a blank interval with a randomized duration of 400–600 ms was inserted to avoid a potential interference effect. 
Furthermore, the presentation order of the two stimuli and the initial frame of the point-light display for each test 
stimulus was randomized across trials. Observers were required to verbally make a 2-alternative forced-choice to 
judge as accurately as possible which interval (first or the second) was longer, regardless of the type of stimulus 
shown. Participants were explicitly told not to count aloud or sub-vocally and that neither the stimulus order nor 
its content were predictive of the stimulus presentation duration. The next trial started only after observers made 
their choice for the previous one.

Experiment 1 adopted a scrambled BM sequence (upright and inverted) and experiment 2, an intact one 
(upright and inverted). In order to keep every observer naive as to the nature of the scrambled sequences, all 
the observers were assigned experiment 1 before initiating experiment 2, since the intact BM sequence might 
introduce the concept of a human figure and have an impact on the scrambled BM sequence. After completion of 
both experiments, each subject was asked what he or she could recognize from the sequences. Each experiment 
consisted of 70 trials, with 10 trials for each test condition so that each observer performed a total of 140 trials. A 
rest period was included, after every 20–30 trials.

PD patients performed the experiments in the presence of regular dopamine substitution treatment (DST) 
and in the absence of DST (after overnight withdrawal of DST). Patients were also clinically examined by a motor 
disorder specialist, according to UPDRS III. Initially, 12 of the PD patients were tested without DST subsequent to 
an examination with DST the following month. The experimental protocol was switched around for the rest of the 
13 patients; DST first and then without DST the following month (see Table 4)62. Their regular DST was resumed 
after completion of the experiments.
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Analysis. The results of each individual observer from this 2-alternative forced-choice task were fitted with 
a Boltzmann sigmoid function (Equation 1), in which the X-axis showed the difference between the resentation 
durations of the 2 stimuli (upright vs. inverted), ranging from −900 ms to + 900 ms and the Y-axis showed the 
proportion of the “long” responses to the upright stimuli. The statistical analyses were conducted for the point 
of subjective equality (PSE) and difference limen (DL). PSE refers to the point at which the observers’ perceived 
the 2 stimuli equal in terms of the presentation duration and it was estimated by the midpoint of the Boltzmann 
function:

= + − ωf(x) 1/(1 exp[(x x0)/ ]) (1)5

A negative PSE meant that when the observers’ perceived the 2 stimuli at the same duration time, the upright 
stimulus was presented for less time than the inverted counterpart in physical duration (i.e., temporal expansion), 
whereas a positive PSE indicated the reverse (i.e., temporal compression). DL was calculated by estimating the 
interquartile range of the fitted function, and it was used to measure the temporal discrimination sensitivity63 (In 
the Boltzmann function f(x) = 1/(1 + exp[(x  − x0)/ω]), x0 stands for PSE, w stands for DL). Figures 2, 4 depicts 
this function.

Statistical analyses were carried out with the SPSS software version 17.0 for Windows. The 
Kolmogorov-Smirnov test was used to determine the normality of the data. For normally distributed data, par-
ametric tests were used (t-test for independent samples, analysis of variance with repeated measures: ANOVA). 
For non-normally distributed data, nonparametric tests (Mann-Whitney U tests) were used. To examine potential 
relations between variables in the PD group, we calculated Pearson correlations. The level of significance for all 
statistical tests was set at P = 0.05.
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