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Detecting PM2.5’s Correlations 
between Neighboring Cities Using 
a Time-Lagged Cross-Correlation 
Coefficient
Fang Wang1,2, Lin Wang2 & Yuming Chen3

In order to investigate the time-dependent cross-correlations of fine particulate (PM2.5) series among 
neighboring cities in Northern China, in this paper, we propose a new cross-correlation coefficient, the 
time-lagged q-L dependent height crosscorrelation coefficient (denoted by pq(τ, L)), which incorporates 
the time-lag factor and the fluctuation amplitude information into the analogous height cross-
correlation analysis coefficient. Numerical tests are performed to illustrate that the newly proposed 
coefficient ρq(τ, L) can be used to detect cross-correlations between two series with time lags and to 
identify different range of fluctuations at which two series possess cross-correlations. Applying the 
new coefficient to analyze the time-dependent cross-correlations of PM2.5 series between Beijing 
and the three neighboring cities of Tianjin, Zhangjiakou, and Baoding, we find that time lags between 
the PM2.5 series with larger fluctuations are longer than those between PM2.5 series withsmaller 
fluctuations. Our analysis also shows that cross-correlations between the PM2.5 series of two 
neighboring cities are significant and the time lags between two PM2.5 series of neighboring cities are 
significantly non-zero. These findings providenew scientific support on the view that air pollution in 
neighboring cities can affect one another not simultaneously but with a time lag.

As a cost to rapid development of economics and progress of technology after World War II, the environmental 
pollution, particularly air pollution produced by industry exhaust, smoke dust, and coal combustion, has become 
a serious world-wide problem1. For instance, the Great Smog of 1952 took away 4,000 lives and led to more than 
100,000 people affected by respiratory diseases, which has been regarded as the most serious environmental 
disaster in British history2. Urban air pollution directly and indirectly caused by rapid urbanization and industri-
alization in China in the last three decades has become more and more severe. Despite the decrease in “traditional 
pollutants” (e.g. NO2, SO2), fine particulate matter with a diameter ≤2.5 μm (PM2.5) has become a major air 
pollutant that threatens human’s health, including morbidity and mortality, and decreases meteorological visibil-
ity3–13. Naturally, as a hot societal issue, study on air pollution has attracted enormous attention from researchers 
in economical modeling3–8, as well as statistical modeling9–13. With the advancement of modern statistic methods, 
it is of great importance to assess smog’s trend and propagation characteristics from statistical point of view. In this 
context, much of existing work in the literature has been focused on studying the correlations among various air 
pollution indicators such as, air pollution index (API), air quality index (AQI), PM2.5 concentrations, PM10 (par-
ticulate with a diameter ≤10 μm) concentrations, temperature, air pressure, rainfall, relative humidity, and wind 
speed9–13. It is a common sense that smog produced at one source place can spread to its surrounding areas6, 7.  
Hence, it is more practical to explore cross-correlations of the above air pollution indicators among neighbouring 
cities as this helps the authority further assess the causes of local smog.

To study cross-correlations between two series, several statistical methods have been proposed in the litera-
ture. The methods include the widely used detrended cross-correlation analysis (DCCA)14, 15, and its multifractal 
version (MF-DXA)16, detrended moving average cross-correlation analysis (DMXA)17 and MF-DMXA18, multi-
fractal cross-correlation analysis (MFCCA)19, multifractal height cross-correlation analysis (MF-HXA)20 and its 
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extension the analogous MF-HXA (AMF-HXA)21. Later, Podobnik et al.22, 23 developed some statistical tests to test 
the presence of power-law cross-correlation between series. Moreover, DCCA with partial-correlation technique 
has been shown to be a powerful tool to reveal the intrinsic correlations between the two studied series interfered 
by another identical series24–26. Associated with the above mentioned methods, several cross-correlation coeffi-
cients were proposed naturally21, 25–33. However, the majority of the existing work focused mainly on the synchro-
nous time series while only limited work considered the cross-correlations between two series with time lags34–37. 
In addition, the limited existing work in34–36, was established on the basis of the detrended fluctuation analysis 
(DFA)38, 39, and DCCA14, 15. The so-called time-lagged DCCA cross-correlation coefficient was proposed by Shen 
et al.36, which can be used to detect time-dependent cross-correlations between the API and wind speed but fails 
to recognize the range of fluctuation amplitudes that contributed to those cross-correlations. The q-dependent 
detrended cross-correlation coefficient proposed by Kwapień et al.33 has the flexibility to successfully detect range 
of cross-correlated fluctuations, but it is not applicable to series that are correlated with time lags. In this work, 
inspired by the paper33, we propose a time-lagged cross-correlation coefficient that can be used to identify the 
range of detrended fluctuation amplitudes for signals correlated with time lags.

Another motivation of this work is to explore if there are cross-correlations for the PM2.5 series between 
neighbouring cities. In this study, we focus our interest on the interaction of PM2.5 series of four cit-
ies in Beijing-Tianjin-Hebei (known as the Jing-Jin-Ji area) of China, namely, Beijing (39.93°N,116.39°E), 
Zhangjiakou(40.81°N,114.89°E), Tianjin (39.14°N,117.21°E), and Baoding (38.89°N,115.49°E). Zhangjiakou, 
Tianjin, and Baoding are surrounding Beijing and are about 160 km, 115 km, and 140 km away from Beijing, 
respectively. All four cities have been greatly affected by heavy smog in recent years. Real-time data of PM2.5 
series of these four cities from December 1, 2013 to November 30, 2016 are chosen for our consideration. The data 
are taken from the Ministry of Environmental Protection of the People’s Republic of China (http://datacenter.
mep.gov.cn) and are shown in Fig. 1.

Figure 1 clearly demonstrates that there is a huge difference in the PM2.5 concentrations between the summer 
and the winter. We recorded hourly data of severe pollution (PM2.5 concentration > 150 μg/m3) of the four cities 
in the whole studied time period. There are 1427, 272, 1439, and 3338 hours in the three winters, respectively, 
while there are only 303, 2, 58, and 279 hours in the three summers, respectively. We also note in Fig. 1 that PM2.5 
concentrations in the four cities follow similar trend. This indicates that cross-correlations among these series 
may exist.

To fully detect and quantify possible cross-correlations among the PM2.5 series mentioned above and uncover 
the potential time lags embedded in those cross-correlations, in this work, we propose a new cross-correlation 
coefficient by incorporating the time-lag factor and fluctuation information into the latest analogous height 
cross-correlation analysis (AHXA) coefficient ρ(L) introduced by Wang et al.21. The new coefficient, denoted by 
ρq(τ, L), will be referred to as the time-lagged q-L dependent height cross-correlation coefficient. Two numerical 
tests will be performed to assess the performance of the proposed ρq(τ, L). The first test is used to illustrate that 
the new coefficient ρq(τ, L) can accurately detect the cross-correlation between two series with certain time lags, 
while the second test is to show that the new coefficient is capable of distinguishing correlations between small 
and large fluctuation amplitudes. Applying the new coefficient to analyze the PM2.5 series recorded in Fig. 1 helps 
us understand the spreading characteristics of PM2.5 among neighboring cities in Northern China.

Results and Discussions
Performance of ρq(τ,L). The time-lagged q-L dependent AHXA coefficient ρq(τ,L) incorporates both time-
lagged covariance function and the q-th order (co-)variance function. The former allows us to detect correla-
tions between two series asynchronously while the latter makes the coefficient flexible to detect the range of 

Figure 1. PM2.5 series of the four chosen cities in Northern China during the period of Dec. 1, 2013 and Nov. 
30, 2016. The gray area refers to the winter season and the green area refers to the summer season of every year.
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cross-correlated fluctuations. In this section, we perform two numerical tests to illustrate the advantages and 
applicability of the proposed coefficient ρq(τ,L).

In our first numerical test, we generate a pair of artificial time series x1(t) = S1(t) + ε(t) and x2(t) = S2(t) + ε(t) 
for t = 1, 2, …, 10,000, where {ε(t)} is a white noise; {S1} and {S2} are two sinusoidal signals with the same period 
p = 200 and the same amplitude but different phases (they differ by one quarter of the period, as shown in Fig. 2a). 
Thus, {x1(t)} and {x2(t)} are two periodic sequences having the same noises (see Fig. 2b). Theoretically, the two 
series {x1(t)} and {x2(t)} should be perfectly correlated. But because of the difference in phases, the corresponding 
Pearson correlation coefficient is calculated to be 0.075 (very close to 0), which fails to detect any correlation 
between the two series {x1(t)} and {x2(t)}. However, we can calculate the time-lagged cross-correlation coefficients 
by setting τ as −100, −50, 0, 50 and 100, respectively. The obtained results with q = 2 are shown in Fig. 2c. As can 
be seen in Fig. 2c, when τ takes values −100, 0 and 100, the resulting coefficients are almost 0 and when 
τ = = 50p

4
, the two series exhibit perfect positive correlations. Perfect negative correlations are observed when 

τ = − = −50p
4

. Figure 2d depicts the proposed time-dependent correlation coefficients (when q = 2) as the 
time-delay τ varies from −200 to 200.

Our second numerical test aims to show that the new coefficient ρq(τ,L) is capable of identifying different cor-
relations at different fluctuation amplitudes. To this end, binomial multifractal series (BMFs), which can produce 
more different degrees of power-law for different fluctuation amplitudes, is employed in our test. Two series of 
{y1} and {y2} are constructed as

y p p k i(1 ) , 1, 2, , 2 , 1, 2 (1)i i
n n k

i
n k n[ 1] [ 1]= − = … = .− − −

Here parameters pi ∈ (0, 0.5) (i = 1, 2), n[k] denotes the number of digit 1 in the binary representation of the index 
k. In this test, we set p1 = 0.3 and p2 = 0.4. Each series is of length 215. To illustrate that the proposed ρq(τ,L) can 
provide more information about cross-correlations at different fluctuation amplitudes, the following two exper-
iments are carried out.

In Experiment I, we first locate the data points with small amplitudes satisfying y1 < 9 × 10−7 and y2 < 10−4, we 
then replace those data points by two sinusoidal signals G1 = 0.0004 sin ( )x2

200
π  and G2 = 0.00004 sin −π π( )x2

200 2
 

accordingly. In this way, two new series {y′1} and {y′2} are generated. Since the data in the original series with small 
fluctuations are replaced by the two sinusoidal signals, the correlation between the new series {y′1} and {y′2} at 
small fluctuations is dependent on {G1} and {G2} while the correlation preserves among large fluctuations. 
Numerical results are presented in Fig. 3a and b. In Fig. 3a, q = 0.5 refers to small fluctuation amplitude. The cal-
culated ρ0.5(τ,L) surface exhibits periodicity with period of 200, the same as the two sinusoidal signals. The 
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Figure 2. Numerical results of Test 1. (a) Sinusoidal signals S1 and S2; (b) Time series {x1} and {x2} generated by 
two sinusoidal signals with Gaussian noises; (c) Calculated time-lagged cross-correlation coefficients ρ2(τ,L); 
(d) Calculated ρ2(τ,L) surface.
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maximum of positive correlation coefficient reaches at τ = 50, which is exactly the phase difference between {G1} 
and {G2}. On the contrary, the maximum negative correlation coefficient appears at τ =  −50, which means the 
two series are exactly half a period apart. Figure 3b illustrates the results for large fluctuation amplitudes with 
q = 6. As expected, the shape of the ρ6(τ,L) surface is not affected by the periodic signals, thus, the maximum 
correlation coefficient is obtained when there is no time lag between the {y′1} and {y′2}, i.e., τ = 0. In Experiment 
II, We remove from the series {y1} all values which are larger than 5 × 10−4 and from the series {y2} those values 
larger than 10−4, and replace corresponding values by G3 = 0.004 sin π( )x2

200
 and G4 = 0.0004 sin −π π( )x2

200 2
, respec-

tively. Consequently, for the obtained new series, the cross-correlation at relative large fluctuations depends on 
the series {G3} and {G4} but the correlation preserves among the small fluctuations. Associated numerical results 
are presented in Fig. 3c and d. As can be seen from Fig. 3d, the maximum positive correlation coefficient appears 
at τ = 50 and τ =  −150 and the maximum negative correlation coefficient occurs when τ =  −50. These two 
experiments clearly illustrate that the proposed time-lagged q-L dependent AHXA coefficient ρq(τ,L) can capture 
not only fluctuation information but also potential time-delay in cross-correlations.

Application of ρq(τ,L) to PM 2.5 series. In this section, we apply our time-lagged cross-correlation coef-
ficient ρq(τ,L) to the PM2.5 series mentioned in the introduction to illustrate the applicability of ρq(τ,L). Three 
factors, namely, the season factor in Northern China, the fluctuation amplitudes of PM2.5, and the time interval 
used to calculate ρq(τ,L), are considered to explore the time-lagged correlations. For the data reported in Fig. 1, 
four seasons are classified as winter (December, January, and February), spring (March, April, and May), summer 
(June, July, and August), and fall (September, October, and November). Two representative fluctuation ampli-
tudes, i.e., small and large fluctuations, characterized by q = 0.5 and q = 6, respectively, are set for our considera-
tion. The time interval L is set to range from 24 hours to 720 hours with the step size 24. This means we only focus 
on the correlation of each series at day 1, day 2, up to day 30.

The calculated ρq(τ,L) surfaces of Beijing vs. Zhangjiakou for the four seasons with the two selected q’s are 
sketched in Figs 4 and 5. To help determine if the cross-correlation between PM2.5 series in the two cities is sig-
nificant, threshold surfaces ρ τ L( , )q

c  (colored in gray in those sub-figures) are also constructed in Figs 4 and 5 for 
each season and both q’s. These threshold surfaces are numerically constructed via the Monte-Carlo simulations 
proposed by Podobnik et al.23, where we used Gaussian series and repeated the calculations for 10,000 times at the 
95% significance level. Note that ρ τ ρ τ>L L( , ) ( , )q q

c  means that the cross-correlation is significant at the point 
(τ,L) and vice versa. For the small fluctuation amplitudes of original series (refers to q = 0.5, Fig. 4), except for the 
spring, the cross-correlations vary from small time intervals to large time intervals in all other three seasons. 
More specifically, the ρ0.5(τ,L) surfaces are above the threshold surfaces ρ τ L( , )q

c  for L < 288h (12d) ∼408 h (17d) 
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Figure 4. The time-lagged cross-correlation coefficient ρq(τ,L) with q = 0.5 of PM2.5 series between Beijing and 
Zhangjiakou. The threshold surfaces are colored in gray.
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approximately. This implies that the long-range correlation at small fluctuation amplitudes lasts up to 12∼17 days. 
This interesting finding explains that the PM2.5 of a relatively stable range in Beijing and Zhangjiakou can affect 
each other and the interaction will continue for almost 17 days in winter, summer, and fall. Meanwhile, in spring, 
this interaction lasts longer. However, as seen from Fig. 5, for the cross-correlation of PM2.5 with larger fluctua-
tions (refers to q = 6), the spreading is most significant in winter but is almost absent in summer and fall. This 
indicates that the smog spread between Beijing and Zhangjiakou is most serious in winter and is least serious in 
summer and fall. In addition, the interaction of heavy smog between Beijing and Zhangjiakou lasts about 312 h 
(13d) in spring, which is much less than the interaction time in winter. Similar patterns are also observed for the 
PM2.5 series of Beijing vs. Tianjin and Beijing vs. Baoding: the long-range correlation at small fluctuation ampli-
tudes lasts up to 15∼19 days in the winter and summer between Beijing and Tianjin while that lasts more days in 
spring and fall. Further, the long-range correlation at large fluctuation amplitudes can be found in all studied days 
in all seasons except for fall, while the correlation lasts for only 19 days in fall. For Beijing vs. Baoding: the 
long-range correlation at small fluctuation amplitudes lasts up to 22∼29 days in the winter and fall, and all 
observed days in spring and summer. Meanwhile, the long-range correlation at large fluctuation amplitudes lasts 
longer in spring and summer than in winter and fall.

Besides the difference due to the season factor and the fluctuation amplitudes acquired from the eight 
sub-figures, one can also obtain information about the time lags of PM2.5 series between two neighbouring cities. 
For illustration, we sketch the τ-L curves in Figs 6–8 for Beijing vs. Zhangjiakou, Beijing vs. Tianjin, and Beijing 
vs. Baoding, respectively. In each figure, τ is the time lag corresponding to the maximum of ρq(τ,L) for each L. 
When we record τ in calculating ρq(τ,L), we use x to stand for PM2.5 series of Beijing and y for that of the other 
three cities. In this setting, τ > 0 indicates that the largest ρq(τ,L) is obtained at the time point where Zhangjiakou’s 
(or Tianjin’s, or Baoding’s) PM2.5 lags are behind Beijing’s by τ hours. This implies that Beijing’s air pollution will 
affect the other three cities. Conversely, τ < 0 means that Beijing’s air pollution will be affected by the other three 
cities. Here we only report these τ’s obtained by the largest cross-correlation that is significant (ρ τ ρ τ≥L L( , ) ( , )q q

c ) 
in each figure. In addition, to eliminate the influence of the time intervals L, we average the ρq(τ,L) over every L 
and record the maximum together with its corresponding time lag τ. The results are listed in Table 1.

Based on Figs 6–8 and Table 1, we arrive at the following conclusions.

 1. The time lags obtained by ρq(τ,L) with larger fluctuation amplitudes (Figs 6b–8b) are longer than those 
with smaller fluctuation amplitudes (Figs 6a–8a) and the range of the former is also much wider. This 
indicates that severe smog produced by PM2.5 in one city would slowly affect the air quality in its neigh-
boring cities and the influence would last longer. For the PM2.5 of small fluctuation amplitudes, the 
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cross-correlations between Beijing and the other three neighboring cities are significant for all four seasons 
and smog in those cities influences one another since τ fluctuates around 0. This explains that the air quali-
ty in one city of Northern China cannot be irrelevant to that of its neighbouring cities.

 2. As shown in Fig. 6b and Table 1, most time lags are less than 0 in Beijing’s winters. This indicates that the 
air in Beijing was greatly influenced by the pollution from Zhangjiakou. In fact, due to the domination 
of the northwest wind from Siberia in Zhangjiakou’s winter, the pollution of Zhangjiakou (located in the 
northwest of Beijing) can easily spread to Beijing. Furthermore, there are about 50% of time during which 
the wind force is above level IV (the average wind speed is greater than 30 km/h) in Zhangjiakou’s winter, 
which drifts the polluted air to Beijing in less than 6 hours. This is consistent with the obtained lags for 
the significant cross-correlations between Zhangjiakou and Beijing. In addition, the cross-correlations of 
PM2.5 between Beijing and Zhangjiakou are insignificant in the other three seasons.

 3. Another source of heavy air pollution in Beijing’s winter is Baoding since the associated time lag τ < 0 (see 
Fig. 8b). Nevertheless, compared to winter and fall, the smog spreads in spring and summer mainly from 
Beijing to Baoding since τ > 0 during most time intervals and the spread is quite slow. Indeed, as seen from 
Table 1, the time lag corresponding to the maximum of mean ρq(τ,L) is 7–8 hours in spring and summer, 
and this number is 6 and 1 in winter and fall, respectively.

Season q

Beijing vs. Zhangjiakou Beijing vs. Tianjin Beijing vs. Baoding

ρ τ ρ τ ρ τ

winter
0.5 0.3898* −2 0.4533* 2 0.5373* −3

6 0.7181* −10 0.4822* −7 0.3184* −6

spring
0.5 0.6085* 2 0.7211* 0 0.7586* −2

6 0.2925 −1 0.7456* −4 0.5915* 7

summer
0.5 0.3576* 2 0.4725* −1 0.6365* 5

6 0.0795 8 0.7511* −1 0.6590* 8

fall
0.5 0.4533* −3 0.5913* 1 0.6216* 2

6 0.1583 −3 0.4353* 9 0.3676* −1

Table 1. The maximum of ρq(τ,L) averaged over the intervals L and the corresponding time lag τ of Beijing vs. 
the three neighboring cities in four seasons. *Denotes 95% confidence level.
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 4. Compared to Zhangjiakou and Baoding, heavy air pollution in Beijing and Tianjin has a greater impact on 
each other. This is due to the closer distance between the two cities. In the most severe smog of winter, it is 
clearly seen from Fig. 7b that the time lag τ < 0 when the interval L starts at 24 h (1d) and lasts up to 360 h 
(15d) while τ > 0 when L is beyond 15 days. This shows that the heavy smog in a winter of Tianjin would 
invade Beijing at a short time scale but Tianjin would be invaded by Beijing’s heavy smog in a longer time 
scale. Overall, as shown in Table 1, except for the fall, the severe smog in the other three seasons spreads 
mainly from Tianjin to Beijing.

Conclusions
In this work, by incorporating the time-lagged factor and the fluctuation amplitude information into the 
cross-correlation coefficient ρ(L) based on analogous height cross-correlation analysis, we have proposed the 
time-lagged q-L dependent AHXA coefficient ρq(τ,L). This newly proposed cross-correlation coefficient can be 
used to quantify the range of cross-correlated fluctuations with more flexibility for two time series with poten-
tial time lags. It has been shown via two tests that this new coefficient (i) can accurately capture time-lagged 
cross-correlations hidden between two time series; (ii) can precisely locate the time points at which the studied 
two series are perfectly correlated; (iii) can successfully quantify different ranges of cross-correlations between 
two series with different fluctuation amplitudes.

We applied this new cross-correlation coefficient to study the PM2.5 series of four neighboring cities in 
Northern China and found that different time lags exist in the PM2.5 series of Beijing and the other three neigh-
boring cities at different seasons and different fluctuation amplitudes. These findings provide very useful insights 
on understanding the pattern of smog’s propagation in Northern China and on accurately predicting future air 
pollution conditions. The idea can also be applied to many other fields for investigating time-dependent corre-
lations. One particular field might be the new field of network physiology40. Recently, the concept of time delay 
stability (TDS) among key organ systems has been used to quantify physiologic interaction and transitions across 
distinct functional states41, 42. It has been found that each physiologic state is characterized by a distinct network 
structure with different relative contribution from individual organ systems to the global network dynamics42. 
This shows the cross-correlation is sensitive to fluctuation amplitudes and time scale. Thus the proposed method 
might be applied to probe complex coupling among networks of dynamical systems and to characterize the emer-
gent functions.

Methods
Incorporating the time lag operator into the method of analogous multifractal height cross-correlation analysis 
(AMF-HXA) developed by Wang et al.21, we derive our time-lagged q-L dependent AHXA coefficient in this 

−48 −36 −24 −12 0 12 24 36 48

48

96

144

192

240

288

336

384

432

480

528

576

624

672

720

τ / hour

L
 / 

ho
ur

 (
q 

= 
0.

5,
 s

m
al

l f
lu

ct
ua

tio
n)

Beijing vs. Baoding

 

 

−48 −36 −24 −12 0 12 24 36 48

48

96

144

192

240

288

336

384

432

480

528

576

624

672

720

τ / hour

L
 / 

ho
ur

 (
q 

= 
6,

 la
rg

e 
fl

uc
tu

at
io

n)

Winter
Spring
Summer
Fall

a b

Figure 8. The τ-L curves of Beijing vs. Baoding in four seasons (The legends are the same as in Fig. 6).
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section. For two given time series {xt} and {yt}, t = 1, 2, …, N, the associated accumulated deviation series are 
computed by X t x x( ) [ ]i

t
i1= ∑ −= , Y t y y( ) [ ]i

t
i1= ∑ −= , where 〈⋅〉 denotes the mean value of the whole time 

signal. The cross-increment of the two accumulated series with time interval L is defined by

X t Y t X t X t L Y t Y t L( ) ( ) [ ( ) ( )] [ ( ) ( )], (2)L τ τ τ∆ + = − + ⋅ + − + +

where τ takes any integer within the range of the series.
In order to record the average fluctuation of cross-increment between {X(t)} and {Y(t + τ)}, inspired by ref. 19 

and ref. 21, we employ a symbolic operator to describe the real information of ΔLX(t)Y(t + τ) for every τ and L. 
Hence, the q-th order covariance between the {X(t)} and {Y(t + τ)} can be determined by

F L X t Y t X t Y t( ) sign( ( ) ( )) ( ) ( ) , (3)xy
q

L L
q/2τ τ= 〈 ∆ + ⋅ |∆ + | 〉

where t varies from 1 − τ to N − L when τ < 0 and from 1 to N − L − τ when τ ≥ 0. The sign(ΔLX(t)Y(t + τ)) 
denotes the sign of ΔLX(t)Y(t + τ). The preserved sign information of ΔLX(t)Y(t + τ) in F L( )xy

q  provides i) the 
fluctuation information as well as the sign information of the fluctuation function; ii) correct cross-correlated 
exponent (if correlated), and iii) true correlation of {x(t)} and {y(t)} with time-delay τ avoiding spurious correla-
tions. The F L( )xy

q  expresses different fluctuations through the different order q, which describes smaller fluctua-
tions with smaller q’s. In general, exponent q < 1 magnifies the contribution to F L( )xy

q  from small amplitude 
fluctuations and q > 2 magnifies the contribution from large amplitude fluctuations. Besides the q-th order covar-
iance, one can also obtain the q-th order variance for a single signal by letting xt = yt to arrive

= ∆F L X t( ) ( ) , (4)xx
q

L
q

where ΔLX(t) = |X(t + L) − X(t)|. Thereby, if (cross-)correlations exist, there will be power-law relationships 
between the above q-th fluctuation functions and the scale L and the corresponding scaling exponents can be 
derived from Wang et al.21 and Barabasi et al.43 as follows,

∝ ∝ .λ γF L L F L L( ) and ( ) (5)xy
q q q

xx
q q q( ) ( )xx

Here γxx(q) and λ(q) are the so-called generalized individual and bivariate Hurst exponents, respectively. The 
time interval L typically varies from 1 to a large positive integer N1 such that a good linear fit can be obtained in 
the double log plot.

If the cross-correlation is absent or not significant, then the power-law relation described by Eq. (5) no longer 
holds and the exponent λ(q) would be complex. To correctly quantify the level of cross-correlations, Wang et al.21 
proposed the so-called AHXA coefficient as follows,

ρ
τ τ

=
⋅

=
∆ + ⋅ ∆ +

∆ ⋅ ∆
.L

F L

F L F L

X t Y t X t Y t

X t Y t
( )

( )

( ) ( )

sign( ( ) ( )) ( ) ( )

( ) ( ) (6)

xy

xx yy

L L

L L

2

2 2 2 2

Here ρ(L) ∈ [−1, 1] with ρ(L) = 1 indicating a perfect positive correlation and ρ(L) =  −1 indicating a perfect neg-
ative correlation. However, ρ(L) can only describe the cross-correlations at specific fluctuation range for two syn-
chronous time series. To obtain more information on the amplitude of fluctuations contributed for the detected 
cross-correlations and to detect the range of cross-correlated fluctuations with potential time-delays, inspired by 
the idea of q-dependent DCCA coefficient proposed by Kwapień et al.33, we extend ρ(L) by incorporating both the 
time-lag factor and the fluctuation amplitude to arrive a new coefficient denoted by ρq(τ,L) as follows,

ρ τ
τ τ

τ
=

⋅
=

∆ + ⋅ ∆ +

∆ ⋅ ∆ +
.L

F L

F L F L
X t Y t X t Y t

X t Y t
( , )

( )

( ) ( )
sign( ( ) ( )) ( ) ( )

( ) ( ) (7)
q

xy
q

xx
q

yy
q

L L
q

L
q

L
q

/2

Clearly when q = 2 and τ = 0, ρq(τ,L) is exactly the AHXA coefficient ρ(L). In the case where τ = 0, our 
obtained coefficient is indeed an alternative of the q-dependent DCCA coefficient proposed by Kwapien et al. The 
advantage of our coefficient is that it allows us to identify the range of detrended fluctuation amplitudes that are 
correlated with time lags in two signals under study. Since ρq(τ,L) depends on three parameters, q, τ and L, we 
call ρq(τ,L) the time-lagged q-L dependent AHXA coefficient. For each fixed q, we can draw a ρq(τ,L) surface to 
examine cross-correlations between two series at each time lag τ and each time interval L.
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