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Finding disagreement pathway 
signatures and constructing 
an ensemble model for cancer 
classification
Qiaosheng Zhang1,2, Jie Li1, Dong Wang1 & Yadong Wang1

Cancer classification based on molecular level is a relatively routine research procedure with advances 
in high-throughput molecular profiling techniques. However, the number of genes typically far exceeds 
the number of the sample size in gene expression studies. The existing gene selection methods 
are almost based on statistics and machine learning, overlooking relevant biological principles or 
knowledge while working with biological data. Here, we propose a robust ensemble learning paradigm, 
which incorporates multiple pathways information, to predict cancer classification. We compare the 
proposed method with other methods, such as Elastic SCAD and PPDMF, and estimate the classification 
performance. The results show that the proposed method has the higher performances on most metrics 
and robust performance. We further investigate the biological mechanism of the ensemble feature 
genes. The results demonstrate that the ensemble feature genes are associated with drug targets/
clinically-relevant cancer. In addition, some core biological pathways and biological process underlying 
clinically-relevant phenotypes are identified by function annotation. Overall, our research can provide a 
new perspective for the further study of molecular activities and manifestations of cancer.

For the patient to receive appropriate therapy, accurate classification of cancer is crucial in disease treatment1, 2. 
Accurate classification of cancer is the initial and significant step for clinical management since different treat-
ment modalities exist. Traditionally, the classification of cancer is primarily based on the experience or histology. 
With advances in high-throughput sequencing techniques, the researchers can utilize the expression of tens of 
thousands of genes simultaneously. Cancer classification based on molecular level is now a relatively routine 
research procedure. However, the number of genes typically far exceeds the number of the sample size in gene 
expression studies. This situation is called high-dimensional and low sample size problem3.

To address the problem of high dimensionality, gene selection is one of the important steps for classification 
modeling. Gene selection is of fundamental and practical interest. To date, many types of gene selection methods 
were proposed. Guyon et al.4 proposed a SVM method of Recursive Feature Elimination (RFE) to gene selection 
by measuring the relative contribution of a gene. Li et al.5 employed maximum relevance minimum redundancy 
(mRMR) method based on Random Forest algorithm (RF) to predict protein cleavage sites. In Cai et al.’ work6 
the authors performed ensemble-based feature extraction method, which incorporates Multi-category Receiver 
Operating Characteristic (Multi-ROC), Random Forests (RFs) as well as Maximum Relevance and Minimum 
Redundancy (mRMR) methods, to select molecular signatures. For gene selection, an alternative technique is the 
regularization method, such as lasso7 1-norm support vector machine8 SCAD9 Elastic Net10 and Elastic SCAD11.

However, the above-mentioned gene selection methods are based on statistics and machine learning, sel-
dom do these methods involve relevant biological principles or knowledge while working with biological 
data. So, many gene selection methods are prone to over-fitting or poor biological interpretation when applied 
on biological high-dimensional data. To improve the discriminant capability of features, biological domain 
knowledge, such as pathways are more often referred to during cancer classification to give more robust and gen-
eralizable results12–19. Pathways, being a series of interactions among molecules (including genes, gene products 

1Harbin Institute of Technology, School of Computer Science and Technology, Harbin, 150001, P.R. China. 
2Heilongjiang Bayi Agricultural University, College of Science, Daqing, 163319, P.R. China. Qiaosheng Zhang and Jie 
Li contributed equally to this work. Correspondence and requests for materials should be addressed to J.L. (email: 
jieli@hit.edu.cn)

Received: 17 May 2017

Accepted: 7 August 2017

Published: xx xx xxxx

OPEN

mailto:jieli@hit.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 7: 10044  | DOI:10.1038/s41598-017-10258-5

and compounds etc.), yield stable sets of functional relationships related with molecular biological activities such 
as metabolic, signaling, protein interaction and gene regulation processes, which plays an important role in under-
standing the mechanisms of complex diseases, improving clinical treatment, discovering drug target and bio-
marker20. Pathway-based method not only reduces the number of dimensions and increases statistical power, 
but also helps scientists better understand biological mechanisms at the molecular level21. For example, Kim  
et al.19 proposed standardized pathway-based approach extracting multi-level hierarchical feature vectors, with a basic 
gene level as well as a second level of pathway markers, to biomarker analysis for discriminating cancer subtypes. Huang 
et al.17 developed a personalized pathway-based diagnostic modeling framework(abbreviated as PPDMF) which con-
verts omics-level features to pathway-level features using the non-parametric principle curve approach and subjects 
them to feature selection and machine learning classifications for differentiating different phenotypes.

What distinguishes this work from the above is our goal to construct an ensemble learning framework, which 
incorporates pathway information, to predict cancer classification. Firstly, screening of differentially expressed(DE) 
genes is performed on training set of gene expression profiles. We select differentially expressed genes of each path-
way to generate a group of base learners through training SVM, then, we rank all DE pathways with classification 
accuracy on training set. Secondly, the diversities of top 35 pathway-based base learners with higher accuracy are 
computed. Selecting classifiers into the ensemble from the top 35 pathway-based base classifiers according to diver-
sity(for details see algorithm 1). Finally, integrating the remaining classifiers into the final ensemble learning model22 
(see Fig. 1). Ensemble approach uses the final model in their decision making on testing dataset. Experimental 
results on different data sets in this paper indicate that our proposed method is very promising and robust.

Materials and Methods
Data.  To evaluate the predictive ability of the here presented model, three publicly available gene microar-
ray datasets are used to carry out analysis. For dataset GSE2506623 it is available via the Gene Expression Omnibus 
(ID = GSE25066) and includes 488 samples of breast cancer patients treated with NAC (antracyclines/taxanes) profiled 
with the U133A microarray. This dataset compared 99 pathologic complete response (pCR) samples and 389 residual 
disease (RD) samples (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25066). For dataset Liver24 it is one 
RNA-Seq data set from The Cancer Genome Atlas (TCGA) (https://gdc-portal.nci.nih.gov/legacy-archive/search/f). 
The Liver dataset consists of 421 samples obtained from comparing 371 liver cancer samples with 50 normal samples 
using the Agilent platform. For dataset GSE2019425 it is also a chemotherapy response data and comes from the Gene 
Expression Omnibus (ID = GSE20194). This dataset compared 56 pathologic complete response (pCR) samples and 
222 residual disease (RD) samples (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20194). Pathways are 
come from KEGG database (http://www.genome.jp/kegg/). The total number of known human pathways in the KEGG 
database is 307. We selected 298 pathways of these containing at least one gene.

Figure 1.  Overview of the proposed method. Dataset is randomly split into two separate groups, half for 
training and half for testing. The gene set of DE pathway is selected as features to train a certain SVM as a 
base classifier. The performance of each pathway-based classifier is tested on balanced training set using 5 
fold bootstrap cross-validation with 100 runs (100 × 5). Then, we rank base classifiers according to average 
accuracies and calculate the diversity matrix between top 35. Base classifiers are reordered according to overall 
diversity. Preliminary optimization: Base classifier is added into the ensemble one by one in each iteration step 
from top 35, the highest accuracy of the ensemble with m base classifiers was obtained. Second optimization: 
classifiers selection is made by taking both accuracy and diversity into account from m base classifiers. Finally, 
the remaining base classifiers are combined as ensembles.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25066
https://gdc-portal.nci.nih.gov/legacy-archive/search/f
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20194
http://www.genome.jp/kegg/
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Calculate differentially expressed genes.  Differentially expressed genes between different phenotypes are 
thought to be fertile sources of stable cancer biomarkers. Hence, filtering out genes that are differentially expressed 
between different phenotypes is an integral part of understanding the molecular basis of phenotypic variation in can-
cers26. In the paper, we performed an exact test on training set of gene expression profile data to find genes that are 
differentially expressed between different phenotypes. Genes are considered to be significantly differentially expressed 
if they obtain a p-value <0.05. Then, we obtained a list of genes that are differentially expressed from gene expression 
profile data. The next step was to map each pathway to the list of differentially expressed genes (called as DE pathway).

Rank base classifiers according to classification accuracy.  The differentially expressed genes of each 
pathway were selected as classification features for each base classifier, respectively. Since Support Vector Machine 
(SVM) has been successfully applied to cancer classification using gene expression data27 we took the selected feature 
sets as input and used SVM as base classifier to discriminate between the two classes of interest. In order to form a 
baseline measure, we used default parameter settings for all SVM tasks. Next, all experiments were repeated for 100 
runs on training set of gene expression profile data and the average accuracy of each base classifier was computed as 
the final results. Finally, base classifiers were ranked in descending order according to accuracy.

Calculate diversity of base classifiers.  It is well known that diversity among base classifiers plays an 
important role in ensemble learning. Ensembles tend to yield better results when there is a significant diversity 
among the base classifiers. There exist many measures of dependency between classifiers. The most commonly 
employed traditional measures of diversity adopt the zero-one loss (classification error) function, one of which is 
the disagreement measure. The disagreement measure estimates the diversity for a pair of classifiers in a form of a 
ratio between the number of samples for which classifiers disagreed, to the total number of observations. We car-
ried out our work based on the disagreement measure due to its easy interpretation for independence, positive/
negative dependences, and calculation28.

Let hi, hk represents two different base classifiers, respectively. L = {l1, l2, …, ln} be a labeled data set. 
= …y y y y{ , , , }i i i n i

T
1, 2, ,  represents the output of a base classifier hi, such that =y 1j i, , if hi recognizes correctly lj, 

0 otherwise. The diversity between two binary classifier outputs (correct/incorrect) hi, hk is
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where Nab is the number of elements lj of L for which =y aj i,  and =y bj k,  (see Table 1).
The diversities of top N base-learners with higher accuracy were computed by formula (1). Finally, a diversity 

matrix D with N rows and N columns, which is symmetric was obtained.

Dj correct (1) Dj correct (0)

Dj correct (1) N11 N10

Dj correct (0) N01 N00

Table 1.  Relationship between a pair of classifiers.

Figure 2.  The framework of ensemble learning.
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Optimize the ensemble based on diversity.  In the present study, genes of each DE pathway were used as 
features to train a certain SVM as a base learner. Since diversity plays an important role in ensemble learning, opti-
mal selection of base classifiers was made by taking both accuracy and diversity into account (for the pseudo-code 
see algorithm 1). Finally, the ensemble classifier was constructed by selected base learners (see Fig. 2).

Let S denotes ordered DE pathway sets corresponding to feature sets of top N base learners based on DE path-
ways with higher accuracy. In order to reduce the computational complexity, we defined overall diversity of the i 
th pathway-based base classifier as OD[i]. OD[i] was calculated as follow:

∑= +OD i D i j D j i[ ] ( [ , ] [ , ]) (2)j

where D is a diversity matrix, ∈ i N1 .
Among different voting strategies, the majority voting is considered as a simplest and effective scheme29, 30. A 

majority vote based classifier ensemble technique classifies a pattern by letting each member of the ensemble cast 
a single vote for the correct class and deciding according to democratic rules. In the paper, we combined different 
base classifiers based on DE pathways and used a majority vote rule. The ensemble decision will be correct if at 
least 


+ 


1T

2
 classifiers choose the correct class, where T denotes the number of base classifiers. Firstly, we calcu-

lated OD[i] of base classifier from S and reordered base classifiers of S as S* in descending order according to OD. 
Secondly, base classifier based on DE pathway was incrementally added into the ensemble one by one in each 
iteration step from S*. In each iteration, the average accuracy of each ensemble learning was obtained using 5-fold 
bootstrap cross-validation with 100 runs (100 × 5).Then, the highest accuracy of the ensemble with m base clas-
sifiers was obtained. Let S′ denotes ordered DE pathway set corresponding to top m base learners according to 
OD. Finally, the ensemble with m base classifiers was optimized according to algorithm 1. If the diversity of two 
base classifiers is smaller than the diversity threshold value θ, we think one of two base classifiers (or even two) is 
superfluous. Let S1 denotes that two base classifiers are not removed from S′, S2 denotes that one of the two base 
classifiers is removed from S′, S3 denotes that another one of the two base classifiers is removed from S′, S4 denotes 
that both of them are removed from S′. Then, we determined whether it can be removed through average classifi-
cation accuracy obtained using 5-fold bootstrap cross-validation with 100 runs (100 × 5). When the classification 
accuracy is equal, the priority option is S4 > S3 > S2 > S1. The procedure was repeated until all base classifiers 
which can be deleted were removed, and the optimized ensemble with base learners from S″ was finally obtained.

Results
Classification performance of the proposed ensemble method.  To verify our method, we con-
ducted computational experiments on Dataset GSE25066. We evaluated the performance of the proposed ensem-
ble method through five measures: accuracy, precision (Positive Predictive Value), sensitivity (True Positive Rate), 
specificity and F-score which are calculated below:
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accuracy TP TN
TP TN FP FN

precision TP
TP FP

sensitivity TP
TP FN

specificity TN
TN FP

F score TP
TP FP FN

2
2

where TP denotes true positive, TN denotes true negative, FP denotes false positive and FN denotes false negative. 
Firstly, the GSE25066 dataset was randomly split into two separate groups according to sample types, half for 
training (50 pCR vs. 195 RD) and half for testing (49 pCR vs. 194 RD). Limma31 is an R/Bioconductor software 
package that allows users to analyse both RNA-seq and microarray data with very similar pipelines. Among 
the methods evaluated for differential expression (DE) analysis in ref. 32 Limma performed robust under many 
conditions. Hence, we selected the gene set using Limma on training set,using a nominal p-value cutoff of 0.05. 
Finally, we obtained 1854 DE genes.

The DE genes of each pathway were selected as classification features of each base classifier. We took 
the selected feature sets as input and used SVM based on balanced training data sets (50 pCR vs. 50 RD) to 

Figure 3.  The classification accuracies of ensemble learning with respect to the number of base classifiers based 
on DE pathways selected from S*, ranging from top 3 to top 35.

Data Pathway ID Pathway name
Number of DE/original 
pathway genes Drug target

GSE20566

hsa03450 Non-homologous end-joining 4/13 NA

hsa04750 Inflammatory mediator regulation of 
TRP channels 10/99 HTR2A HRH1 PRKCE PRKCD 

PRKCA PRKCB PRKCG PRKCQ

hsa04060 Cytokine-cytokine receptor 
interaction 26/265 VEGFA TNFS11 PRLR EGFR

hsa04360 Axon guidance 16/176 PRKCA

hsa05168 Herpes simplex infection 21/185 JUN NFKB1

hsa04310 Wnt signaling pathway 20/144 JUN PRKCA PRKCB PRKCG

hsa04340 Hedgehog signaling pathway 7/48 BCL2

hsa04070 Phosphatidylinositol signaling 
system 15/99 PRKCA PRKCB PRKCG

hsa05220 Chronic myeloid leukemia 11/73 NFKB1 CDK4 CDK6

GSE20194

hsa00330 Arginine and proline metabolism 3/52 NA

hsa04974 Protein digestion and absorption 2/90 NA

hsa04810 Regulation of actin cytoskeleton 7/216 EGFR CHRM1 CHRM2 CHRM3 
CHRM4 CHRM5

hsa05010 Alzheimer’s disease 9/171 MAPT

hsa00010 Glycolysis/Gluconeogenesis 5/67 NA

Table 2.  Pathways corresponding to base classifiers of the ensemble in GSE20566 and GSE20194. Note: NA 
denotes not found.
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discriminate between the two classes of interest(random sampling 50 RD samples out of 194 RD). For sample 
type RD, 50 RD were randomly sampled from 194 RD in every run. The performance of each base classifier was 
tested on training set using 5-fold bootstrap cross-validation with 100 runs (100 × 5). The average accuracy of 
each base classifier was computed as the final results. The DE pathways were sorted in descending order according 
to accuracy. Then we selected top 35 DE pathways into S.

The pairwise functional diversities between TOP 35 base classifier based on DE pathways were calculated 100 
times with each other one. Taking the average, then, a diversity matrix was obtained. According to algorithm 1, 
we reordered DE pathways by overall diversity of each DE pathway and put it in S*. In the case where classifier 
based on DE pathway was added into ensembles one by one in each iteration step in order from S*. Each iteration 
employed 5-fold bootstrap cross-validation with 100 runs (100 × 5) and the average accuracy of each ensemble 
classifier was computed as the final results (see Fig. 3). After all iterations were completed, the highest accuracy 
with 0.7838 was obtained by the ensemble with 18 (m) base classifiers.

Then, 9 base classifiers with diversity threshold θ less than 0.15 were removed based on algorithm 1 and the 
remaining 9 base classifiers based on DE pathways were combined for ensemble learning (see Table 2).

In order to form a baseline measure, the performance of ensemble learning classifier with the remaining 9 base 
classifiers was tested on testing dataset using 5-fold bootstrap cross-validation for 100 runs (100 × 5). Finally, the 
accuracy, precision, sensitivity, specificity and F-score were computed for each run and then averaged over runs 
for ensemble classifier. The average accuracy, precision, sensitivity, specificity and F-score of the proposed method 
are 68.81%, 68.05%, 71.08%, 66.53%, 69.43% on Dataset GSE25066, respectively (see Fig. 4).

Comparison with other state-of-the-art methods in classification performance.  To assess the 
validity of the proposed approach, here, two latest methods: PPDMF and Elastic SCAD were investigated in 
parallel with the proposed method on the same public datasets. The PPDMF hypothesizes that pathway-based 
omics features can provide more information on biological functions for disease diagnosis. This method 
is a typical representative of pathway-based method for disease diagnosis. It converts omics-level data to 
pathway-level data by the pathifier algorithm33, 34. A pathway dysregulation score matrix in which each score 
measures the deregulation of a specific pathway for a specific sample is obtained. Then, correlation feature 
selection (CFS) is used for feature selection. To make this method comparable to our method, the SVM model 
is used for classification. For Dataset GSE25066, the transcriptomics-level data were firstly transformed to 
pathway-level data by the pathifier algorithm. Since 3 pathways out of 298 contain only one gene, their dysreg-
ulation scores could not be calculated. Hence, we obtained a pathway dysregulation score matrix with 488 rows 
(samples) and 295 columns (features).

The pathway dysregulation score matrix was also split randomly into two separate matrices according 
to sample types, half for training (50 pCR vs. 195 RD) and half for testing (49 pCR vs. 194 RD). CFS fea-
ture selection was applied with 10-fold cross-validation (10-fold CV) in the training matrix and kept the 
features that were selected ten out of ten times (100%)17. Then, 4 features were selected. A new testing data 
matrix with 243 rows and 4 columns was generated. Finally, we took the testing data matrix as input and 
used Support Vector Machine (SVM) to predict patient prognosis. Since dataset GSE25066 is unbalanced 
between two (RD and pCR) phenotypes in the testing matrix, we balanced the two classes for classification 
purposes by random sampling 49 samples from the larger collection of testing RD samples. The perfor-
mance of PPDMF was tested using 5-fold bootstrap cross-validation for 100 runs (100 × 5). Finally, the 
Accuracy, Precision, Sensitivity, Specificity and F-score were computed for each run and then averaged over 
runs. The results were obtained with average accuracy of 65.20%, precision of 64.01%, sensitivity of 70.29%, 
specificity of 60.12%, F-score of 66.64%(see Fig. 4).

The Elastic SCAD method is a typical representative of the regularization method for classification and feature 
selection tasks. It is a penalty function providing an automatic feature selection for SVM classification tasks com-
bining smoothly clipped absolute deviation penalty (SCAD) and ridge penalties. Elastic SCAD provides robust 
classifiers in sparse and non-sparse situations. For Dataset GSE25066, also since dataset GSE25066 is unbalanced 

Figure 4.  The performance metrics of each method on GSE25066.
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between two (RD and pCR) phenotypes in training dataset and testing dataset, we balanced the two classes for 
classification purposes with same process as our method in training dataset and testing dataset. In Elastic SCAD, 
we set the search interval for both parameters to λ λ = =− l[ , ] [2 , 2 ], 1, 2l min l max, ,

10 10 . The procedure of Elastic 
SCAD repeated 100 times, and then kept the features that were also selected 100 out of 100 times (100%), simi-
larly. The SCAD SVM reduced the number of features from 13236 to 33. Then we took the selected feature sets as 
input and used SVM to predict disease diagnosis. The performance of Elastic SCAD was tested in the balanced 
testing dataset using 5-fold bootstrap cross-validation for 100 runs (100 × 5). Finally, the accuracy, precision, 
sensitivity, specificity and F-score were computed for each run and then averaged over runs for this classification 
model (see Fig. 4).

Comparing the other two methods over dataset GSE25066, the results show that the proposed method has the 
higher performances and performed well on all metrics (see Fig. 4), with average accuracy of 68.81% compared 
with 64.62% in the Elastic SCAD and 65.20% in the PPDMF approach, and so on.

For further evaluation, we tested our proposed method on other datasets: Liver and GSE20194. We also com-
pared our proposed method with other prediction algorithms (Elastic SCAD and PPDMF) following the same 
evaluation strategy. In the proposed method, we obtained parameter m equal to 7 and 10 for Liver and GSE20194, 

Data Pathway ID Pathway name
Number of DE/original 
pathway genes Genes associated with liver

Liver

hsa05410 Hypertrophic cardiomyopathy 26/83 TPM2 TPM3 TPM1 CACNA1C

hsa04330 Notch signaling pathway 19/48 JAG1

hsa04512 ECM-receptor interaction 24/82
SDC4 LAMA4 LAMC1 THBS1 ITGA6 
TNXB VWF AGRN ITGA7 ITGA1 ITGA4 
LAMA5ITGA5 ITGB5 VTN ITGB4 FN1 SDC1

hsa05414 Dilated cardiomyopathy 25/90 ADRB1

hsa04115 p53 signaling pathway 39/69 IGFBP3

Table 3.  Pathways corresponding to base classifiers of the ensemble in Liver dataset.

Figure 5.  The performance metrics of each method on Liver.

Figure 6.  The performance metrics of each method on GSE20194.



www.nature.com/scientificreports/

8Scientific Reports | 7: 10044  | DOI:10.1038/s41598-017-10258-5

respectively. Finally, the remaining 5 base classifiers were combined for ensemble learning based on algorithm 1 
for the two datasets (see Tables 2 and 3).

Figures 5 and 6 give the comparison of performances for three methods. It is easy to see that the proposed 
method still shows better performance among most measures as shown in Figs 5 and 6. For GSE20194, the pro-
posed method performs worse than PPDMF and Elastic SCAD only on sensitivity and specificity, respectively. 
The reason is that the number of features from base classifiers of the ensemble is too few. For GSE25066 dataset, 
the performances of PPDMF are better than Elastic SCAD, but demonstrate the opposite on Liver dataset. This 
proofs that the two methods are not robust for different datasets. The reason is that data distributions maybe very 
different between various platforms. However, the proposed method has the highest performances and perform 
well on two datasets. Therefore, our algorithm has better robust performance.

Relationship between identified pathways and drug targets/cancer.  In GSE25066, samples are 
those with diagnosed breast cancer treated with chemotherapy including taxane and anthracycline. Similarly, 
paclitaxel, 5-fluorouracil, cyclophosphamide and doxorubicin in GSE20194. Response to chemotherapy is cat-
egorized as a pathological complete response (pCR) or residual invasive cancer (RD). There are many drugs, 
which have similar therapeutic mechanisms, for the treatment of breast cancer. To a certain extent, the therapeu-
tic mechanisms of these drugs can reflect the pathogenesis of breast cancer35. We believe that the feature genes 
from the ensemble should be related to the targets of these drugs. In this article, the feature gene set of each base 
classifier from ensembles was mapped to all breast cancer drug targets, which come from DrugBank (https://
www.drugbank.ca/). In GSE25066 and GSE20194, we found that pathways corresponding to base classifiers from 
ensembles were associated with drugs that are used to treat breast cancer, which reflects the pathogenesis of breast 
cancer. Then, some clinical breast cancer drug targets were identified in the pathways which were selected into 
ensembles (see Table 2) in GSE25066 and GSE20194. This illustrates our approach can provide very valuable 
insights and help in drug target selection, prioritization and validation. In Liver, some genes associated with 
liver cancer were also identified in the pathways which were selected into ensembles36 (see Table 3). Hence, our 
method can provide clues on potential biomarkers that can suggest novel combinatorial therapies to complex 
diseases.

Function annotation of identified module.  To better understand and dissect the complexities of the fea-
ture genes from the ensemble model underlying clinically-relevant phenotypes, all feature genes of the ensemble 

Figure 7.  The core biological pathways in network. Blue nodes are a gene set of Pathways in cancer, red nodes 
are a gene set of Wnt signaling pathway, yellow nodes are common genes for both pathways.

https://www.drugbank.ca/
https://www.drugbank.ca/
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for GSE25066 were mapped on HumanNet37 which is an extended gene functional interaction network for Homo 
sapiens. We find that most of the genes were either directly or indirectly connected to each other, forming some 
network modules (see Fig. 7). To explore the functionality of the module. Then, the gene list from the largest 
module was systematically and integratively analyzed using DAVID (https://david.ncifcrf.gov/conversion.jsp?V-
FROM=NA). This analysis demonstrates the power of the proposed method to identify cancer-related pathways, 
including Wnt signaling pathway, Pathways in cancer and so on (see Figs 7 and 8). These findings can help scien-
tist understand the disease mechanism and answer specific drug discovery questions, including target prioritiza-
tion, inhibitor simulations and co-drugging38. In addition, through functional annotation clustering, we found 
that the list of genes was also correlated with biological process of cancer, such as cell death, cell growth, cellular 
response to chemical stimulus, immune system development and positive regulation of cellular metabolic process 

Figure 8.  Relationship between the module and other cancer-related pathways.

Figure 9.  Relationship between the module and biological processes.

https://david.ncifcrf.gov/conversion.jsp?VFROM=NA
https://david.ncifcrf.gov/conversion.jsp?VFROM=NA
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(see Fig. 9). Taken together, these analyses demonstrate our approach can identify core biological pathways and 
biological process underlying clinically-relevant phenotypes, providing the ability to improve tumor classification 
to reveal more precise prognosis, or to predict response to chemotherapy drugs, driven by models that represent 
the complexity of the underlying biological activities.

Discussion
Integrating prior information of biology, like pathways from databases such as KEGG, has recently been proposed 
to overcome variability of prognostic signatures and improve their prognostic performance39, 40 With the rapidly 
increasing amount of pathway information databases, it enables researcher further opportunities to understand 
biological mechanisms of cancer and its phenotypes, connectivity of diseases, mechanisms of drug action at 
molecular level, etc. Now, the combination of pathway information and gene expression profiles is becoming a 
central branch of research for cancer classification. In this context, we propose a robust ensemble learning para-
digm, which incorporates pathway information, to predict cancer classification.

In conclusion, the results obtained in this study show that the proposed method presents the merit of acqui-
sition of more informative from pathways. The method has improved the classification performances of disease 
status and performs robust both when classifiers are trained on different datasets and within cross-validated sin-
gle dataset, comparing with PPDMF and Elastic SCAD. In addition, our method can provide clues on potential 
biomarkers, core biological pathways and processes that can help make true rational design a drug target selection 
method through the integration of experimental observations with underlying cellular regulation and signaling 
pathway.
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