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MicroRNA profile for health risk 
assessment: Environmental 
exposure to persistent organic 
pollutants strongly affects the 
human blood microRNA machinery
Julian Krauskopf1, Theo M. de Kok1, Dennie G. Hebels1, Ingvar A. Bergdahl2, Anders 
Johansson3, Florentin Spaeth4, Hannu Kiviranta  5, Panu Rantakokko5, Soterios A. 
Kyrtopoulos6 & Jos C. Kleinjans1

Persistent organic pollutants (POPs) are synthetic chemical substances that accumulate in our 
environment. POPs such as polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB) and 
dichlorodiphenyltrichloroethane (DDT) have been classified as carcinogenic to humans and animals. 
Due to their resistance to biodegradation humans are still exposed to these compounds worldwide. 
We aim to evaluate the miRNA and transcriptomic response of a human population exposed to POPs. 
The miRNA and transcriptomic response was measured in blood of healthy subjects by microarray 
technology and associated with the serum concentrations of six PCB congeners, DDE (a common 
DDT metabolite), and HCB. A total of 93 miRNA levels appeared significantly associated with the 
POP-exposure (FDR < 0.05). The miRNA profile includes four tumor suppressor miRNAs, namely miR-
193a-3p, miR-152, miR-31-5p and miR-34a-5p. Integration of the miRNA profile with the transcriptome 
profile suggests an interaction with oncogenes such as MYC, CCND1, BCL2 and VEGFA. We have shown 
that exposure to POPs is associated with human miRNA and transcriptomic responses. The identified 
miRNAs and target genes are related to various types of cancer and involved in relevant signaling 
pathways like wnt and p53. Therefore, these miRNAs may have great potential to contribute to 
biomarker-based environmental health risk assessment.

Persistent organic pollutants (POPs) are synthetic chemical substances that persist in the environment and accu-
mulate in high concentrations in fatty tissues. Throughout the 20th century these chemicals were widely used 
as pesticides, such as hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane (DDT), or as industrial 
chemicals as is the case for polychlorinated biphenyls (PCBs). Because of their resistance to biodegradation 
and environmental toxicity, these compounds have been banned (HCB and PCBs), or restricted (DDT) by the 
Stockholm Convention on Persistent Organic Pollutants in 20011. However, due to earlier use and biomagnifica-
tion of POPs in the food chain, humans are still exposed worldwide mainly as a consequence of dietary intake, 
and of exposure to air and water pollution2. This is of a major concern as PCBs have been classified as definite, 
HCB as probable and DDT as possible human carcinogens by the International Agency of Research on Cancer3. 
Several epidemiological studies suggest that PCB, but also organochlorine pesticides such as DDT and HCB levels 
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measured in peripheral blood, are related to increased risk of multiple types of cancer, including non-Hodgkin 
lymphoma and breast cancer4–6.

Several omics studies have been conducted to better understand the relationship between cancer risks and 
environmental exposure by investigating the transcriptomics, metabolomics and proteomics responses to expo-
sure to carcinogenic compounds, predominantly in peripheral blood samples. Recently, it has been shown that 
also the human microRNA (miRNA) machinery is altered in response to environmental carcinogens, interest-
ingly before the onset of cancer7. These small non-coding RNA sequences (~22 nucleotides), regulating gene 
expression at the posttranscriptional level, are involved in all fundamental processes such as development, 
growth, differentiation, immune reaction, and adaptation to stress8. This large regulatory potential widely impacts 
the development and progression of cancer upon exposure-induced modulation of gene expression9. Therefore, 
these key regulators of disease related molecular mechanisms may have great potential as novel biomarkers of 
exposure and cancer risks10.

In this study we establish the impact of environmental carcinogens on miRNA and transcriptomic profiles 
in buffy coats of healthy subjects drawn from the general population. The present study was conducted in the 
context of the EnviroGenomarkers project11. The samples were selected from –at that time- healthy subjects of 
the Northern Sweden Health and Disease Study (NSHDS) some of whom eventually developed lymphoma. For 
the present study we generated the miRNA and transcriptomic expression profiles from buffy coats. The exposure 
markers of POPs were measured in serum12. We applied a linear model to relate a combination of 6 PCB conge-
ners, HCB and DDE (a breakdown product of DDT) to the miRNA profile which was subsequently integrated 
with the transcriptome profile. To the best of our knowledge this is the first report on a population-based study 
showing that the miRNA machinery acts in concert with the transcriptome upon exposure to a combination of 
environmental carcinogens.

Results
We examined the impact of 6 PCB congeners, HCB and DDE on the blood miRNA machinery of a total of 207 
subjects. The individual levels of PCB153, PCB138, PCB156, PCB170, PCB180, HCB and DDE13 highly correlated 
with the cumulative Z-Score (correlation coefficient (r) between 0.81 and 0.98) (Fig. 1). Only PCB118, a congener 
that in contrast to the other congeners has a coplanar structure, showed a marginally lower correlation (r = 0.77). 
The median, mean and range of the individual POP exposure and the cumulative Z-Score for the selected indi-
viduals is shown in Table 1.

Regulation of miRNA expression by POPs. The linear model identified 93 out of the 543 observed 
miRNA expressions to be significantly associated with the cumulative Z-Score of POP exposure (FDR < 0.05). Of 
these miRNAs 53 were positively and 40 negatively correlated with the cumulative Z-Score (Fig. 2, Supplementary 
Table S1). To visualize the effect of the POP exposure on the miRNA expression we divided the cohort, based on 
the quantiles of the Z-Score of POPs’, into low, middle and high exposed subjects (54, 100 and 53 subjects; 1st, 
2nd + 3rd, 4th quantile respectively). Figure 3 shows the exposure-related intensity of the top 12 significantly asso-
ciated miRNAs (ranked by FDR).

We also applied the linear model to the individual POPs and observed for PCB138 84 associations, PCB153 
121 associations, PCB156 32 associations, PCB170 90 associations, PCB180 82 associations and for HCB 67 
associations. For PCB118 and DDE, we did not find any associations with a FDR < 0.05. The signature of the 

Figure 1. Pearson correlation among the eight POPs and the Z-Score. The individual levels of PCB153, 
PCB138, PCB156, PCB170, PCB180, HCB and DDE highly correlated with the cumulative Z-Score (r between 
0.81 and 0.98). Only PCB118 showed a marginally lower correlation (r = 0.77).
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Z-Score of POPs included between 70 and 100 percent of the individual POP associations (Supplementary 
Table S2). Furthermore, we applied the linear model of the cumulative Z-Score also to the stratified data for only 
males, females, smokers, non-smokers, future lymphoma cases and controls; however, after applying the correc-
tion for multiple testing only 32 associations were found for the subset of the non-smokers and 36 associations 
among the healthy controls. For only males, females, smokers and future cases no association had a FDR < 0.05 
(Supplementary Table S3).

Associations between miRNAs and the transcriptome. The experimentally validated microRNA- 
target interactions database miRTarBase found a total of 7175 target genes for the identified set of miRNAs. Upon 
calculating the Pearson-correlation of the identified miRNAs with the previously obtained transcriptomics data14 
we identified 217 target genes to be inversely correlated with their respective miRNA (r < −0.4 and FDR < 0.05). 
Using the gene set analysis of ConsensusPathDB we found that 20 KEGG pathways, including pathways in a range 
of human cancers, were associated with the list of inversely correlated target genes (q-value < 0.05) (Table 2). 
Furthermore, we observed an overrepresentation of 148 GO terms in the category of biological processes such as 
Wnt signaling pathway, apoptotic process, and regulation of cell cycle process (Supplementary Table S4).

We have also observed 253 positive correlations of a miRNA with its target gene (r > 0.4 and FDR < 0.05). For 
the positively correlated genes we found 6 KEGG pathways, including small cell lung cancer, p53 signaling path-
way and chronic myeloid leukemia, to be enriched (q-value < 0.05) (Table 3). Four out of these 6 also appeared 
among the pathways retrieved from inversely correlated genes. For the positively correlated genes we identi-
fied 57 overrepresented GO terms that included biological processes relevant to carcinogenesis (Supplementary 
Table S5). To validate the associations of the inversely and positively correlated genes with an independent tool, 
we also performed a gene set analysis using the Molecular Signatures Database15. Indeed, we observed signifi-
cant overlap with the hallmark and oncogenic gene sets from the Molecular Signatures Database (FDR < 0.05) 
(Supplementary Tables S6 and S7).

Potential interference of miRNAs in human cancer. Figure 4 presents the potential interference 
of the POP exposure-associated miRNAs with the inversely regulated gene targets that were derived from the 
cancer-related KEGG pathways (Table 2). The eight upregulated miRNAs (green) target 13 inversely regulated 
genes associated with cancer. The miRNA miR-29a plays a major role in this network as it inversely correlates 
with eight cancer-related gene targets. Furthermore, we detected nine downregulated miRNAs (red) inversely 
correlating with 11 cancer-associated genes (Fig. 4).

Median Mean Range

PCB118 105.32 142.62 8.45, 832.08

PCB153 968.81 1127.91 32.47, 4334.12

PCB138 522.07 605.18 10.97, 2675.35

PCB156 88.89 102.76 15.5, 394.89

PCB180 664.73 744.6 100.08, 2159.5

PCB170 336.3 378.07 50.39, 1211.85

HCB 202.51 229.84 64.52,706.61

DDE 1425.06 2228.92 16.4, 18041.58

Z-Score −1.82 0 −11.05, 38.03

Table 1. Median, mean and range of the exposure to the individual POPS and the cumulative Z-Score.

Figure 2. Volcano plot representing all identified miRNAs. For each miRNA identified in this study the volcano 
plot shows the fold change (gradient of the association with the cumulative Z-Score) against the –log P value. 
Statistically significant associated miRNAs are depicted as red dots.
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Discussion
In this study we investigated the impact of exposure to carcinogenic POPs on the miRNA and transcriptomic 
profiles in buffy coats of healthy subjects. We applied a linear model to relate a cumulative Z-Score of 6 PCB con-
geners, HCB and DDE (a breakdown product of DDT) to the miRNA profile which was subsequently integrated 
with the transcriptomic profile. Our study revealed a total of 93 miRNAs (53 positively and 40 negatively) to be 
significantly correlated with the exposure intensity (Z-Score) (Table 1). The top 4 positively correlated miRNAs, 
ranked by FDR (miR-193a-3p, miR-152, miR-31-5p and miR-34a-5p), have been described as tumor suppressor 
miRNAs16–19. We applied the same linear model to the individual POPs to see if the Z-Score of POPs represents 
the effects of all individual compounds. The analyses revealed that between 70 and 100 percent of the individual 
associations were also represented by the cumulative Z-Score of POPs (Supplementary Table S2).

Upon integration of the miRNA response with the transcriptomic profile we identified 217 significantly 
inverse regulated miRNA-gene pairs. The conducted gene-overrepresentation analysis of the inversely regulated 
genes revealed that mainly cancer-associated pathways, such as small cell lung cancer or chronic myeloid leu-
kemia, or signaling pathways, like the wnt signaling pathway, were affected. Interestingly, also the thyroid hor-
mone signaling and thyroid cancer pathways were affected (Table 2). The thyroid hormones are among the main 
suspects for human effects of POP exposure20.

Though unexpected, we have also observed 253 significantly positively correlated miRNA-gene pairs. The 
gene-overrepresentation analysis of the positively correlated genes revealed that mainly cancer-associated path-
ways, including chronic myeloid leukemia, or signaling pathways such as the p53 signaling pathway, were asso-
ciated (Table 3). This finding is in contradiction to the generally expected repressive effect of miRNAs on target 

Figure 3. Expression levels of the top 12 associated miRNAs in the defined exposure groups. To visualize the 
effect of exposure on the miRNAs we divided the cohort, based on the quantiles of the cumulative Z-Score, into 
low, middle and high exposed subjects (54, 100 and 53 subjects; 1st, 2nd + 3rd, 4th quantile respectively).
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expression. Nevertheless, positive correlations have also been described in earlier studies on miRNA gene interac-
tions, and thus the function of miRNAs may not be only repressive21. Since miRNAs are interwoven into complex 
regulatory networks, a suppression of a signaling mediator can lead to the transcription of a target gene, and con-
sequently, result in a positive correlation22. Further studies are needed to unravel these complex interactions to 
provide a better understanding of the signaling networks involved. As these intermediates are unknown or have 
not been measured in this study, we focused mainly on the inverse correlations.

Among the downregulated miRNAs, miR-484 showed the most inverse regulations with genes derived from 
the KEGG pathways. The downregulation of miR-484 appeared to activate the expression and translation of the 
target oncogene ABL1 and the Heat Shock Proteins HSP90AA1 and HSP90AB1. The Abelson tyrosine kinases 
of the family ABL have been identified as key drivers of leukemia in humans. Activation of the proto-oncogene 
ABL1, a gene involved in signaling pathways that control cell growth and survival, and heat shock proteins of the 
HSP90 family have been reported in many common cancer types23, 24.

We also found an increased expression in TBL1XR1, a gene playing an important role in the development of 
B-cell non-Hodgkin lymphomas25, in concordance with the downregulation of miR-501-3p and miR-502-3p. 
Furthermore, both miRNAs miR-320 and miR-486 have been reported to be downregulated in many types of 
cancer26, 27. In this study we observed miR-320 and 486-5p to be downregulated with the exposure and both 
activating the expression and translation of the forkhead box transcription Factor FOXP1. Increased abundance 
of FOXP1 is known to enhance wnt signaling and is a predictor of poor prognosis and resistance to therapy in 
diffuse large B cell lymphoma28.

These interactions of miRNAs and oncogenes seem to promote the expression and possibly translation of genes 
involved in the hallmarks of cancer. However, next to these cancer risk increasing interactions our results have 
also shown miRNA-mediated repression of cancer related genes and therefore protection from carcinogenesis.

The upregulated miRNA miR-29a, a well-known tumor suppressor miRNA, had the highest number of sig-
nificantly inverse correlations among the cancer-related gene targets29. In the present study this miRNA appears 
to repress a total of 8 gene targets, including the lymphoma-related genes CCND1, BCL2, IGF1 and VEGFA. The 
protein encoded by CCND1 (also known as BCL1) is a regulator of the cell cycle progression and plays an import 
role in cancer development. A recent study has shown that knocking down CCND1 resulted in cell cycle arrest 
and induction of apoptosis30. Upregulation of the anti-apoptotic regulator BCL2 was found in non-Hodgkin 
lymphoma and small cell lung cancer31, 32. Inactivation of BCL2 is known to induce apoptosis and protects from 
cancer progression33. The Insulin-like growth factor IGF1 is involved in cell proliferation, differentiation and 
apoptosis. High levels of IGF1 have been found in several common cancers34. The vascular endothelial growth 
factor VEGFA induces angiogenesis by stimulating cell survival and proliferation. In cancer cells this gene pro-
motes the formation of aggressive tumors35.

Furthermore, we observed an inverse correlation between the upregulated tumor suppressor miR-31-5p and 
its suppressed target, the proto-oncogene SRC. Elevations of the protein encoded by SRC have been described to 
induce cellular transformation, tumorigenicity, tumor progression, and metastasis36.

Altered expressions of miR-21 have been found in all common types of cancer and it has therefore been clas-
sified as an oncomir. Previous studies have shown that miR-21 plays a major role in the genesis of lymphoma37. 

KEGG Pathway Size Targets Targets contained q-value

Focal adhesion - Homo sapiens (human) 207 11 5.30% 0.000422

Ribosome - Homo sapiens (human) 137 9 6.70% 0.000422

Proteoglycans in cancer - Homo sapiens (human) 204 10 4.90% 0.00116

Pathways in cancer - Homo sapiens (human) 398 14 3.50% 0.00116

Wnt signaling pathway - Homo sapiens (human) 140 8 5.80% 0.00155

Hippo signaling pathway - Homo sapiens (human) 154 8 5.20% 0.00251

PI3K-Akt signaling pathway - Homo sapiens (human) 347 12 3.50% 0.00268

Small cell lung cancer - Homo sapiens (human) 86 6 7.00% 0.00272

Prostate cancer - Homo sapiens (human) 89 6 6.70% 0.00292

Bladder cancer - Homo sapiens (human) 41 4 9.80% 0.0071

Adherens junction - Homo sapiens (human) 73 5 6.80% 0.00726

Viral myocarditis - Homo sapiens (human) 58 4 6.90% 0.0214

Thyroid cancer - Homo sapiens (human) 29 3 10.30% 0.0214

Signaling pathways regulating pluripotency of stem cells - Homo sapiens (human) 142 6 4.20% 0.0214

Colorectal cancer - Homo sapiens (human) 62 4 6.50% 0.0222

HIF-1 signaling pathway - Homo sapiens (human) 103 5 4.90% 0.0229

Chronic myeloid leukemia - Homo sapiens (human) 73 4 5.50% 0.035

Thyroid hormone signaling pathway - Homo sapiens (human) 119 5 4.20% 0.0356

Protein processing in endoplasmic reticulum - Homo sapiens (human) 169 6 3.60% 0.0356

Bacterial invasion of epithelial cells - Homo sapiens (human) 78 4 5.10% 0.0375

Table 2. Associated KEGG pathways from inversely correlated target gene expressions. Cancer related 
pathways are marked in bold.
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In this study we identified both, miR-21-5p and miR-21-3p, to be upregulated with the intensity of exposure. 
The miRNA miR-21-5p showed a repressive effect on the anti-apoptotic BCL2, but also on the proto-oncogenes 
TIAM1 (T-cell lymphoma invasion and metastasis 1) and MYC. Previous studies have reported that TIAM1 mod-
ulates a number of cellular processes associated with tumor progression and overexpression of this gene has been 
found in various tumor types38.

The proto-oncogene MYC is strongly associated with lymphomas and adverse clinical outcomes related to 
B-cell malignancies. It is known to be the most commonly overexpressed oncogene in cancer and a robust prog-
nostic marker for B-cell lymphomas. Recent evidence showed that there is significant crosstalk between MYC 
and miRNAs, with MYC also controlling the expression of a group of miRNAs. Repression of miRNAs by MYC, 
including tumor suppressor miRNAs like miR-29 and miR-34a, has been shown to contribute to cellular survival 
by activating anti-apoptotic proteins such as CCND1 and BCL2. But also MYC-induced activation of miRNAs 
has been shown to promote cell cycle progression39. Our data showed a significant inverse correlation for the 
increased miR-21-5p and decreased MYC. However, In addition to the repressive effect of miR-21-5p on MYC, 
we observed five decreased miRNAs (let-7b-5p, miR-92a, miR-320b, miR-324-3p and miR-423-5p) to exhibit 
significant positive correlations with MYC. The roles of these miRNAs in carcinogenesis have not yet been fully 
understood. Nevertheless, these five decreased miRNAs could be suggested to have a potential stimulating role as 
regulators in the MYC-driven lymphomagenesis.

A recently published study demonstrated a signature of 128 miRNAs as potential novel diagnostic markers 
for B-cell lymphomas40. The herein presented exposure signature of 93 miRNAs showed an overlap of 28 (30%) 
miRNAs with the diagnostic lymphoma signature (including the tumor suppressor miRNAs mir-193, miR-152 
and miR-34a). This overlap of miRNAs suggests similar pathways to be affected by lymphoma and the POP 
exposure. To assess whether the future lymphoma cases had an enrichment of risk-increasing miRNAs over the 

KEGG Pathway Size Targets Targets contained q-value

Small cell lung cancer - Homo sapiens (human) 86 6 7.00% 0.0288

p53 signaling pathway - Homo sapiens (human) 68 5 7.40% 0.03

Chronic myeloid leukemia - Homo sapiens (human) 73 5 6.80% 0.03

Hippo signaling pathway - Homo sapiens (human) 154 7 4.60% 0.03

Viral myocarditis - Homo sapiens (human) 58 4 6.90% 0.0476

Pentose phosphate pathway - Homo sapiens (human) 29 3 10.30% 0.0476

Table 3. Associated KEGG pathways from positively correlated target gene expressions. Cancer related 
pathways are marked in bold.

Figure 4. Potential interference of miRNAs with human cancer genes upon environmental exposure to PCBs, 
HCB and DDE. Red color indicates a downregulation and green color an upregulation of a miRNA with the 
exposure intensity. Blue color indicates cancer related genes derived from the KEGG pathways. All interactions 
are inverse correlations (r < −0.4 and FDR < 0.05).
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healthy controls, we performed a stratified analysis on only the future lymphoma cases and the healthy controls 
separately (Supplementary Table S3). The 91 associations of the future cases showed 31 (34%) miRNAs and the 
128 associations of the healthy controls showed 54 (42%) miRNAs overlapping with the lymphoma signature. 
According to this overlap we did not see an overrepresentation of risk-increasing associations among the future 
lymphoma cases. A similar pattern was observed for the non-smokers showing 162 and the smoker with only 60 
associations. The lower number of associations among the future cases and smokers might be a result of a higher 
biological variability with respect to miRNA expression among the future cases. Possibly, an early cancer and 
smoking increases the miRNA variability.

To our knowledge we have demonstrated the first evidence of alternations in the miRNA machinery upon 
environmental exposure to POPs in a population-based study. Unlike conventional approaches in cancer risk 
assessment we have shown that these miRNAs respond to a mixture of environmental carcinogens. Furthermore, 
we have shown that the interplay of the affected miRNA profile with the transcriptome involves genes essential 
for carcinogenesis. The miRNA and transcriptomic response to environmental carcinogens revealed that mecha-
nisms are activated towards processes that possibly increase the risk of carcinogenesis, but also may be protective. 
Therefore, the observed miRNAs can be seen as key regulators of health and disease and have great potential to 
contribute to biomarker-based environmental health risk assessment.

Methods
Selection of the population. The Northern Sweden Health and Disease Study (NSHDS) comprises of 
94,630 sampling occasions from 74,690 unique individuals. Within the EnviroGenomarkers project archived 
blood samples and exposure/health data were derived from -at that time- healthy subjects, including 229 future 
cases of B-cell lymphoma and 327 controls of the prospective NSHDS. No subject was diagnosed with lymphoma 
within less than two years of blood sample collection. Cases were matched to healthy controls by gender, age (+/− 
2.5years), hospital and date of blood collection (+/− 6 months)11. For this study we randomly selected 226 buffy 
coat samples for integrated miRNA and transcriptome analysis (Table 4, Supplementary Figure S1). To determine 
the statistical power of the sample size we conducted a power calculation for microarray experiments using the R 
package “ssize.fdr”41. Accordingly, a minimum of 190 subjects were required to achieve 80% power. For the 207 
subjects that were analyzed in our study we calculated 84% power at the 5% significance level (FDR corrected).
The EnviroGenomarkers project and its associated studies and protocols were approved by the Regional Ethical 
Review Board of the Umea Division of Medical Research and all participants gave written informed consent. This 
study was conducted in accordance with the approved guidelines and regulations.

Internal exposure assessment. Serum concentrations of 6 PCB congeners (PCB118, PCB153, PCB138, 
PCB156, PCB170 and PCB180), DDE and HCB were determined by means of a Agilent 6890 gas chromato-
grapher connected to a Waters Autospec Ultima high resolution mass spectrometer as described in an ear-
lier study on the exposure data12, 13. Per subject we calculated a Z-Score(POPs) as a representative of the internal 
exposure to the mixture of POPs. The Z-Score(POPs) was defined as the sum of the Z-Scores for each compound: 
Z-Score(compound) = (X − μ)/σ (where X represents the value of the subject, μ the mean and σ the standard deviation 
of the population)42. Therefore, Z-Score(POPs) = Z-Score(PCB118) + Z-Score(PCB153) + Z-Score(PCB138) + Z-Score(PCB156)  
+ Z-Score(PCB170) + Z-Score(PCB180) + Z-Score(HCB) + Z-Score(DDE).

Analytical procedures. Total RNA extraction from buffy coats, analysis of miRNA (Agilent 8 × 60K human 
miRNA microarray) and transcriptome profiling (Agilent 4 × 44K human whole genome microarray), and the 
corresponding data quality assessment and preprocessing were performed as described in an earlier publication14. 
These analyses provided expression data for 547 miRNAs and 15,805 genes. Due to insufficient quality and miss-
ing values in exposure/health data 19 subjects were excluded leaving 207 subjects for the data analysis.

Statistical analysis. The miRNA and transcriptomic data was analyzed using the open-source software R 
(version 3.1.1) and Bioconductor43. The miRNA and transcriptomic raw signals were corrected for hybridization 
batch-effect as well as white blood cell counts (CD4, CD8, NK, B cells, monocytes, granulocytes) using ComBat 
(sva package version 3.18.0)44. The cell counts were derived from methylation data as described earlier14. We used 
a linear model provided by the R package limma (version 3.26.9) to determine miRNAs significantly associated 
with the exposure intensity (cumulative Z-Score) as described in the limma manual45. Within the analysis we 
additionally adjusted for the confounding variables sex, age, smoking status and future disease (future case or 
control). MicroRNAs were considered to be significantly associated with the Z-Score at a false discovery rate 
(FDR) below five percent46.

Data integration and pathway analysis. From the experimentally validated microRNA-target inter-
action database miRTarBase (release 6) all gene-targets per exposure associated miRNA were retrieved47. A 
matrix for each miRNA consisting of the microarray signals of that particular miRNA and the signals of all its 

Population Age, mean (SD)
BMI, 
mean (SD) Smoking status

Future 
lymphoma

Total Female Male Current Former Never Case Control

226 94 132 51.1 (7.6) 25.6 (5.3) 48 42 129 113 113

Table 4. Study population data.
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gene-targets was generated. Upon calculating the Pearson correlation using R package stats (version 3.2.2), all 
significantly correlating targets were selected for subsequent pathway analysis (r < −0.4 or > 0.4, FDR < 0.05). 
Pathway and Gene Ontology analyses of the target genes were performed by over-representation analysis in 
ConsensuthPathDB (Release 31)48 and gene set analysis using the Molecular Signatures Database (version 6.0)15. 
All genes linked to the KEGG pathways related to cancer were exported to Cytoscape (version 3.4.0) and visual-
ized with their miRNA interactions.
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