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Identification of isoliquiritigenin 
as an activator that stimulates 
the enzymatic production 
of glycyrrhetinic acid 
monoglucuronide
Xiaoxue Wang  1, Dong Wang1, Yixin Huo1, Dazhang Dai1, Chihua Li2, Chun Li1 & Guiyan Liu1

Glycyrrhetinic acid monoglucuronide (GAMG) is a great value-added and has considerable commercial 
interest due to its strong pharmacological activities and functional low-calorie sweetener. However 
GAMG is quite rare in natural plants, and it must be prepared from glycyrrhizin (GL) by hydrolysing one 
terminal glucuronic acid. β-Glucuronidase is the key enzyme in the biotransformation of GL to GAMG, 
but its activities need to be enhanced to facilitate the industrial large-scale production of GAMG. In 
this study, we identified that isoliquiritigenin (ISL), as one of chemical compositions from the total 
flavonoids glycyrrhiza (TFG), can significantly enhance β-glucuronidase activity in vitro. Measurements 
using high-performance liquid chromatography (HPLC) showed that the activity of β-glucuronidase 
could be increased by 2.66-fold via the addition of ISL to a β-glucuronidase solution that contained 
GL at a 3:10 molar ratio of ISL to GL. ISL was concluded to be an activator because ISL could reduce 
the Km and Ea of β-glucuronidase reacting with GL. This study sheds new light on the mechanism of β-
glucuronidase and helps to make industrial production of GAMG through fermentation feasible.

Glycyrrhizic acid (GL) is a major active ingredient in the herb medicine Glycyrrhiza1, but its bioavailabil-
ity is low. In the human body, GL takes effects via being transformed into glycyrrhetinic acid monoglucuro-
nide (GAMG) and glycyrrhetinic acid (GA) by intestinal microorganisms2. Compared with GL, GAMG has 
strongeranti-tumour, anti-allergy and anti-inflammatory pharmacological activities, and is easily permeates the 
cell membrane because of its weaker polarity3,4. GAMG also serves as an artificial functional low-calorie sweet-
ener; its sweetness is 941-fold greater than that of sucrose, and 5-fold more than that of GL5,6. However, GAMG 
is quite rare in natural plants and only can be produced by biosynthesis or hydrolysis of GL. It is very significant, 
therefore, to transform GL to GAMG with high efficiency.

Because of the similar reactivity of the O-glycosidic bond for the two glucuronides, it is not easy to direc-
tionally synthesize GAMG from GL by chemical methods. As an eco-friendly method with high specificity, mild 
reaction conditions and catalytic efficiency, the biotransformation of GAMG from GL is a preferred method 
(Fig. 1a). So far, all the β-glucuronidases that can convert GL to GAMG derive from enterobacteria2,7, fungi8–10 
and animal organisms11, which are limited by the low selectivity of the O-glycosidic bond, weak enzymatic activ-
ity and high production cost, respectively. Therefore, the industrial conversion of GL to GAMG is still in an early 
stage and is not a major contributor for the growing market. Previously, we reported that the fungus Penicillium 
purpurogenum Li-3 can produce β-glucuronidase with high chemical bond selectivity10. When grown in liquid 
media, it hydrolyzed GL to GAMG directly. However, the conversion ratio of GL was only 88.45% after 96 h of 
fermentation, indicating that the amount and activities of the enzymes were relatively low. Therefore, it is essential 
to figure out how to increase the enzyme activity of β-glucuronidase and reduce the production cost of GAMG.

GL is abundant in liquorice, accounting for 2% of the total weight12. The isolate of GL from liquorice is a mul-
tistep process. We speculated that the production cost of GAMG could be reduced by adding P. purpurogenum 
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Li-3 directly to the total extract of glycyrrhiza (TEG). However, we could not find any GAMG despite TEG having 
a high content of GL (7.3%). Interestingly, the activity of β-glucuronidase increased about threefold when an 
appropriate amount of TEG was added to a culture medium that contained GL as its carbon source13 (mass ratio 
of TEG to GL was 1:1).

In order to explore this phenomenon, we have done many studies in this paper. We separated the total fla-
vonoids of glycyrrhiza (TFG), the total triterpenoids of glycyrrhiza (TTG), and the total saccharides of gly-
cyrrhiza (TSG) from TEG and tested the effects of each component on the whole-cell enzymatic activity of 
β-glucuronidase from P. purpurogenumLi-3 by adding them into the media containing GL. The components that 
increased the enzymatic activities were further isolated and analysed via adding them into enzyme solution that 
contained the GL to determine the effective compound. The results indicated that isoliquiritigenin (ISL) greatly 
enhances the conversion of GL, which could potentially reduce the raw material cost during the fermentation 
process. We concluded that the ISL in the TFG enhances β-glucuronidase activity as an activator. Furthermore, 
the mechanism of the high activity of the β-glucuronidase was explored. Michaelis-Menten model calculations 
indicated that ISL promotes the affinity of β-glucuronidase for the substrate GL. The Km value decreased sig-
nificantly compared to the control, whereas the Vmax increased. A calculation based on the Arrhenius equa-
tion showed that ISL decreased the activation energy by 6.31%compared to the control, which indicated that 
adding ISL could effectively stabilize the enzyme-substrate transition state. The research flow chart is shown in 
Supplementary Fig. S1. The novelty of this report is that we identify ISL as the activator of β-glucuronidase, which 
has a promising future for the bioconversion GL to GAMG. Our work may also shed new light on the industrial 
production of GAMG.

Results
pH-dependent separation of active ingredients. Studies have focused on the efficient separation of 
the active ingredients from Glycyrrhiza. Fu et al.14 separated liquorice flavonoids and glycyrrhizic acid by using 
macroporous resins. However, the final purity was only 66% and the extraction was time-consuming. Sun et al. 
and Shen et al.15,16 studied the separation of glycyrrhizic acid and liquiritin by aqueous two-phase extraction with 
a non-ionic surfactant and three-liquid-phase extraction systems, respectively. However, the non-ionic surfactant 
that was used, Triton X-100, was costly, and the procedure of the latter method was complex. In our study, we 
found that pH had a significant effect on the extraction of the three components of Glycyrrhiza. Extraction by 
changing the pH of the solution twice offers the highest separation capacity for TFG, TSG and TTG with high 
extraction recovery, procedural simplicity and low cost. Moreover, the recovery (97%) is 5% higher than previ-
ously reported for other methods17. In addition, our method is patented18.

Figure 1. Reactions and structures. (a) Hydrolysis reaction of GL to GAMG catalyzed by β-glucuronidase. (b) 
The structures of the six compounds separated from TFG.
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As shown in Fig. 2a, pH had a great influence on TTG. Concentration of TTG that was in the organic 
decreased with the increase of the pH of the solution. When pH ≤ 4.0, TTG and all TFG was in the organic phase 
and changed little, but almost all TSG was in the aqueous phase. After separating the water layer, the organic layer 
was used to further determine how to separate TFG and TTG.

The effect of solution pH on the extraction of TFG and TTG is shown in Fig. 2b. The amount of TFG that was 
in the aqueous phase increased, and the amount of TTG in the organic phase decreased with an increase in the 
pH of the solution. When pH = 7.0, nearly all the TFG is in the organic phase, and the TTG was only detected in 
the aqueous phase. Thus, TFG and TTG can be effectively separated. The result of the separation of TFG, TTG 
and TSG is shown in Fig. 2c.

Effect of TTG, TFG and TSG on the production of β-glucuronidase enzymes in P. purpuroge-
num Li-3. As shown in Fig. 3a, the biomass of the P.purpurogenum Li-3 in the absence of TSG in the control 
group reached 0.22 mg/mL after 108 h of cultivation. The biomass of the identical strain in the presence of 0.5, 
1, and 2 times of TSG (1 time of a fraction is equal to content of TSG in 4 g/L TEG, namely TSG is 2.50 g/L) in 
the experimental group were 0.30 (+/−0.018), 0.34 (+/−0.019), and 0.38 (+/−0.025) after 108 h of cultivation, 
respectively. The results indicated that TSG could promote the growth of P. purpurogenum Li-3 (the composition 
of various medium are seen in strains cultivation method).

The whole-cell enzyme activity of β-glucuronidase that was produced in the absence of TSG in the con-
trol group was 94 U/mg dry biomass (mdb). The specific whole-cell enzyme activity of β-glucuronidase from 
whole-cell that was produced in the presence of 0.5 and 1 times of TSG in the experiment group increased were 
to 112 U/mdb and 120 U/mdb, respectively. The specific enzyme activity of β-glucuronidase that was produced 
in the presence of 2 times of TSG in the experimental group decreased to 80 U/mdb (Fig. 3b). These results indi-
cated that TSG could affect the specific enzyme activity of β-glucuronidase in a dose-dependent pattern in the 
fermentation culture medium containing BCM, GL and TSG.

This dose-dependent pattern was mainly attributed to the availability of the carbon sources. Proper amount 
of TSG can increase the growth of strains and then increase the amount of enzyme produced. The saccharides 
in TSG were consumed easily by P. purpurogenum Li-3 because these saccharides were mainly aldose that rather 
than uronic acid. When aldose was consumed, the strains have to consume GL that is the only carbon source. 
The GL will not be easy utilized if the culture media contained too much aldose. Therefore, it was limited that GL 
Induced P. purpurogenum Li-3 production of β-glucuronidase.

As shown in Fig. 3c, the biomass of P. purpurogenum Li-3 in the absence of TTG in the control group reached 
0.22 mg/ml after 108 h of cultivation. The biomass of the identical strain in the presence of 0.5, 1, and 2 times of 
TTG (1 time of a fraction is equal to content of TTG in 4 g/L TEG, namely TTG is 1.14 g/L) in the experimental 
group were 0.28 (+/−0.024), 0.29 (+/−0.020), and 0.30 (+/−0.017) mg/ml, respectively. The results indicated 
that TTG could increase the growth of P. purpurogenum Li-3.

The whole-cell enzymatic activity of β-glucuronidase that was produced in the absence of TTG in the con-
trol group was 94 U/mdb. The specific whole-cell enzyme activity of β-glucuronidase from whole-cell that was 
produced in the presence of 0.5, 1, and 2 times of TTG in the experimental group decreased to 91, 88 and 85 
U/mdb, respectively (Fig. 3d). The results indicated that TTG could inhibit slightly the enzyme activities of 
β-glucuronidase in a dose-dependent pattern in the fermentation culture media containing BCM, GL and TTG. 
This pattern could be explained by the existence of inhibitors in TTG, which can inhibit the enzyme activity of 
β-glucuronidase.

As shown in Fig. 3e, the biomass of the P. purpurogenum Li-3 in the absence of TFG in the control group 
reached 0.22 mg/ml after 108 hr of cultivation. The biomass of the identical strain in the presence of 0.5, 1, and 
2 times of TFG (1 time of a fraction is equal to content of TFG in 4 g/L TEG, namely TFG is 0.34 g/L) in the 

Figure 2. TLC of the TTG, TFG and TSG adapt to pH change and the results of separation. (0: the control 
of mixture of GA GAMG and GL, S: saccharide, T: triterpenoid, F: flavonoids: left is organic phase, right is 
aqueous phase. (a) TTG, TFG and TSG adapt to pH change. (b) TTG and TFG adapt to pH change. (c) The 
results of separation).
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experimental group were 0.26 (+/−0.030), 0.28 (+/−0.021), and 0.30 (+/−0.018) mg/ml, respectively. The 
results indicated that TFG could increase the growth of P. purpurogenum Li-3.

The whole-cell enzyme activity of β-glucuronidase that was produced in the absence of TFG in the control 
group was 94 U/mdb. The specific whole-cell enzyme activity of β-glucuronidase that was produced in the pres-
ence of 0.5, 1, and 2 times of TFG in the experimental group increased to 116, 134 and 145 U/mdb, respectively 
(Fig. 3f). The results indicated that TFG could increase the specific enzyme activities of β-glucuronidase signif-
icantly in a dose-dependent pattern in the medium containing BCM, GL and TFG. Therefore, it was clear that 
the activation effect of TEG on the whole-cell enzyme activity came from TFG. Further studies were needed to 
investigate which component in TFG increased the enzyme activity of β-glucuronidase.

Structural identification of flavonoids from Glycyrrhiza. In order to determine the exact chemical 
compositions that was enhancing the β-glucuronidase activity, six primary flavonoid compounds were isolated 
from the TFG, and their structures were identified by NMR and MS.

Compound I was obtained as yellow needle crystals (methanol), which appeared orange with the addition of 
10% H2SO4. The1H-NMR (see Supplementary Fig. S2) spectrum showed a typical chalcone signal at δ 7.77 (1 H, 
d, J = 4.2 Hz) and 7.76 (1 H, d, J = 4.2 Hz). Three of the fifteen distinct signals in the13C-NMR (see Supplementary 
Fig. S3) spectrum were observed at δ 192.0 (C = O), 117.9 (C-α) and 144.7 (C-β), which also exhibited typical 
characteristics of the chalcone signal. In addition, the1H-NMR also showed ABX and AA ‘XX’ coupling pat-
terns of two groups of aromatic protons; the former group was at δ 8.17 (1 H, d, J = 9.0 Hz), 6.42(1 H, dd, J = 9.0, 
2.3 Hz), and 6.29 (1 H, dd, J = 2.3 Hz), and the other was at δ 7.76 (2 H, d, J = 8.3 Hz) and 6.83 (2 H, d, J = 8.3 Hz). 
The compound’s molecular formula of C15H12O4 was established from the molecular ion peak at m/z 256 [M]+ 
in the EI-MS. Since all of the above data were consistent with those of the reference19, compound I was identified 
as isoliquiritigenin.

Compound II was colourless needle crystals (methanol) and appeared yellow with the addition of 10% 
H2SO4. It is similar to compound I; the ABX and AA ‘XX’ coupling patterns of aromatic protons also appeared in 
the1H-NMR (Fig. S4) spectrum. In addition, the pattern of peaks at δ 5.44 (1 H, dd, J = 13.0, 2.8 Hz), 3.13(1 H, dd, 
J = 16.8, 13.0 Hz) and 2.63 (1 H, d, J = 16.8, 2.8 Hz) were assigned to the three protons at H-2 and H-3. The typical 
dihydrogen flavonoid signals appeared in the13C-NMRspectrum (see Supplementary Fig. S5) at δ 190.6(C-4), 
79.4(C-2) and 43.6(C-3). The compound’s molecular formula of C15H12O4 was established from the molecular ion 
peak at m/z 256 [M]+ in the EI-MS. These data corresponded to those of the liquiritigenin in references19. Thus, 
it was identified as liquiritigenin.

Compound III was obtained as a yellow powder (methanol). Compared to compound 2, it showed an addi-
tional group of glucose signals in the13C-NMR (see Supplementary Fig. S7) spectrum at δ 100.7 (glc-l), 73.7 (glc-2),  
77.5 (glc-3), 70.2 (glc-4), 77.0 (glc-5) and 61.1 (glc-6). Its molecular formula was established as C21H22O9 on the 
basis of the molecular ion peak at m/z 441 [M+Na]+ by ESI-MS analysis. It was identified as isoliquiritin20.

Compound IV was a white power (methanol). With the exception of having glucose features, its13C-NMR (see 
Supplementary Fig. S9) spectrum was the same as that of Compound 1. Its molecular formula was established as 
C21H22O9 on the basis of the molecular ion peak at m/z 441 [M+Na]+ in ESI-MS. It was identified as liquiritin19.

Figure 3. Effects of the three compounds on the biomass and specific activity of β-glucuronidase (n = 3).
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Compound V and VI were named isoliquiritin apioside and liquiritin apioside, respectively21.These name 
were given because their13C-NMR (see Supplementary Fig. S11, 13) spectra included a group of apiose signals 
thatcompounds4 and 3 did not have, and EI-MS indicated a molecular formula of C26H30O13 for both of them.

Influence of the primary compounds from TFG on the β- glucuronidase activity. To validate the 
influences of the 6 primary compounds from TFG on the enzymatic activities of β-glucuronidase, the compounds 
were added respectively into the enzyme solutions containing the 2.4 mmol/LGL. As shown in Supplementary 
Table S1, only the addition of compound I (ISL) could increase the activity of β-glucuronidase, and the activation 
effect became more significant with the increase of the concentration of ISL. According to Table 1, the production 
rate of GAMG in the control group was 2.63 μmol/(L·min). When the addition amount of ISL was at molar con-
centration ratio 3: 10 of ISL to GL, the production rate of GAMG rose to 7.01 μmol/ (L.min), which is 2.66 times 
that in the control group. Further addition of ISL did not increase evidently.

In previous studies, we attempted to enhance the enzyme activity of β-glucuronidase to optimize the reaction 
that was induced by P. purpurogenum Li-3 and to improve the enzyme expression level. For example, Song et al. 
integrated the β-glucuronidase gene into an E. coli BL21 (PGUS-E) expression system to enhance the expression 
level of PGUS-E. However, the selectivity of PGUS-E for the two O-glycosidic bonds of GL was weakened, pro-
ducing a GA by product in the final GAMG product22. He et al. used anionic liquid to improve catalytic environ-
ments to enhance the chemical bond selectivity of PGUS-E to a level that is comparable to that of the wild-type 
fungus, but the high cost of the ionic liquid made it impractical for industrial production23. In this study, we 
showed that adding ISL is a simple but feasible method to increase the activity of β-glucuronidase.

Effect of ISL on the reaction. To determine further whether ISL is the substrate of β-glucuronidase, just 
like GL, the results of ISL before and after reaction were analyzed using thin-layer chromatography (TLC). ISL 
did not change into other ingredients after reaction and the concentration of ISL remained unchanged at the 
end of the reaction (Fig. 4b), indicating that ISL was not the reaction substrate of β-glucuronidase. In addition, 
the amount of GAMG in the reaction system that contained ISL was significantly larger than that in the control, 

Item

Serial

0 1 2 3 4 5 6 7

Buffer (mL) 0.2 0.194 0.188 0.176 0.152 0.12 0.04 0

18 mmol/L ISL (mL) 0 0.006 0.012 0.024 0.048 0.08 0.16 0.2

18 mmol/L GL (mL) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

β-D-glucuronidase 
solution (mL) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

GAMG (mmol/L) 0.63 ± 0.02 0.79 ± 0.01 0.93 ± 0.02 1.2 ± 0.03 1.68 ± 0.04 1.71 ± 0.03 1.72 ± 0.01 1.71 ± 0.01

v (μmol/L·min) 2.63 ± 0.07 3.29 ± 0.04 3.86 ± 0.07 4.99 ± 0.1 7.01 ± 0.15 7.13 ± 0.13 7.16 ± 0.02 7.11 ± 0.03

ISL (mmol/L) 0 0.09 0.18 0.36 0.72 1.2 2.4 3

Table 1. The relationship between concentration of ISL and reaction rate*(n = 3). *v = c/t, where c is the 
concentration of GAMG, t is the reaction time. The reaction was conducted at 170 rpm and 40 °C for 4 h. The GL 
concentration of the control group is 2.4 mmol/L and no ISL added.

Figure 4. TLC results of effects of ISL on reaction (a) the picture of the 254 nm, developing solvent: 
chloroform-ethyl acetate-acetic acid-water (1.5: 4.0: 2.0: 1.0). (b) The picture of the 365 nm which treated by 
10% sulfuric acid, developing solvent: chloroform-ethyl acetate-methanol (5.0: 4.0:0.4). 1. GL control; 2. GAMG 
control; 3. after transformation in GL reaction system; 4. after transformation in GL reaction system which 
added ISL; 5. before transformation in ISL system which added ISL; 6. after transformation in r ISL system 
which added ISL; 7. ISL control).
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indicating that ISL could greatly enhance the conversion rate (Fig. 4a). Hence, we concluded that the ISL in TFG 
could enhance β-glucuronidase activity as an activator.

Effect of ISL on the expression of β-glucuronidase. Inducers and activators are the two common 
effectors capable of improving enzyme activity. For β-D-glucuronidase, GL was reported to act as an inducer10 in 
improving β-glucuronidase enzyme activity. However, it was still unknown how ISL improves the enzyme activity.  
Therefore, BCM + GL (GL as carbon source) + P. purpurogenum Li-3 was set as experimental group 1, and 
BCM + ISL (ISL as carbon source) + P. purpurogenum Li-3 was set as experimental group 2. The mycelia were col-
lected after 72 h of fermentation. We broke the cells and extracted the enzyme protein for SDS-PAGE analysis24.

From the results shown in Fig. 5, ISL did not induce P. purpurogenum Li-3 to produce β-glucuronidase, 
which suggested that ISL was not an inducer. Therefore, we came to the conclusion that ISL was an activator 
of β-glucuronidase. Currently, the majority of studies on enzyme activators are on medicines25–27, with few on 
sweeteners. In our study, ISL was first presented as an activator of β-glucuronidase, not only providing an inno-
vative method for the production of GAMG but also enriching the application of enzyme activators in the field 
of food science.

Influence of ISL on the reaction kinetic parameter and apparent activation energy. Using to 
the double reciprocal treatment of the Michaelis-Menten model (Fig. 6a), the kinetic parameters of GL and GL 
supplemented with isoliquiritigenin (1 mmol/L) could be calculated (Table 2). These results indicated that ISL 
promoted the affinity of β-glucuronidase for GL since the Km value decreased significantly compared to the con-
trol; in contrast, the Vmax increased.

The Arrhenius law, which is based on empirical observations, is commonly used for estimating the relation-
ship between reaction rate constants and temperature28. To explain the increased reaction rate, we studied the 

Figure 5. SDS-PAGE of β-glucuronidase produced from P. purpurogenum Li-3. (1. Maker; 2. β-glucuronidase; 
3. the experimental group Containing GL; 4. the experimental group Containing ISL).

Figure 6. Michaelis-Menton plots of the promotion kinetics and Arrhenius plot method calculated the 
apparent activation energy of β-glucuronidase when added ISL. (a) Control group: GL, Experimental group: 
GL + ISL, 2 h reaction at 40 °C in crude β-glucuronidase solution. (b) Control group: GL; Experimental group: 
GL + ISL).
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reaction rate o f β-glucuronidase in reaction systems that had and did not have ISL (control). The apparent acti-
vation energy for the catalysis of GL was calculated (Fig. 6b, Table 3) using the Arrhenius equation. The results 
showed that ISL decreased the activation energy by 6.31%, which indicated that adding ISL could effectively stabi-
lize the transition state of the enzyme-substrate complex and result in the higher catalytic activity of the enzyme.

Discussion
In this study, we determined that ISL as an activator to stimulates the enzymatic production of glycyrrhetinic acid 
monoglucuronide. Then how does ISL work? We explored the mechanism of its action as follows.

The β-glucuronidase from P. purpurogenum Li-3 is an apparent 69.72 KDa dimer with an unknown crystal 
structure at present29; thus, we can only infer the mechanism of the ISL activation effect on the β-glucuronidase. 
After the formation of an enzyme-substrate complex (ES) from the substrate and enzyme, only a fraction of the 
ES could be converted to the proper product (P). Part of the ES could reversibly and conformationally change to 
form an inactive enzyme-substrate complex (ES2) that induces substrate inhibition effects on enzyme activity. 
Previously, Pesheck, P. et al.30 observed that t-butanol could increase the activity of β-glucuronidase by 9-fold. 
Although t-butanol could increase the Vmax of the conversion from ES to P, the activation of β-glucuronidase 
by t-butanol is mainly due to a decrease in the inactive form ES2, which reduces the substrate inhibition effect. 
Solvents such as chloroform exhibit paradoxical activation effect on the activities of β-glucuronidases from 
bacteria and mammalian cells. Although chloroform, as a protein-denaturing agent, has strong denaturing and 
harmful effects on both bacteria and mammalian β-glucuronidases, the addition of chloroform in the reaction 
system could significantly increase the conversion rate of the corresponding β-glucuronidase-dependent reac-
tion. Therefore, apparently, chloroform is an activator of β-glucuronidase. Michael T. proved that the mech-
anism of this paradoxical effect is that chloroform could serve as an emulsifier to increase the surface area of 
the liquid-liquid interface31. As an emulsifier, chloroform increased the collisions and interactions between 
β-glucuronidase and substrates, eventually increasing the substrate conversion rate and other activity parameters.

In our study, the TFG have an activation effect on β-glucuronidase. We further isolated six compounds from 
the TFG. Among them, ISL, as a chalcone, has the lowest polarity and could be categorized as a water repellent 
compound. Therefore, we hypothesized that ISL might function as an activator through both mechanisms. First, 
as a non-polar compound, ISL is likely to be able to bind β-glucuronidase and stabilize the conformation of 
β-glucuronidase. This interaction could increase the formation of active ES, reduce the conversion from active 
ES to inactive ES2, and eventually increase the conversion from ES to P. Other isolated compounds have no such 
effect due to the steric hindrance. Second, ISL, with similar character as organic solvents, has the potential to 
increase the specific surface area of the contact between β-glucuronidase and its substrate, therefore increas-
ing the rate of substrate conversion to its corresponding products by β-glucuronidase. Taken together, in this 
study, we found that ISL, a compound that was isolated from the TEG, is a very efficient activator of the enzyme 
β-glucuronidase. ISL could greatly enhance the conversion of GL, which could potentially reduce raw material 
costs during the fermentation process.

Although the dry weight of the TTG is 17% of the TEG and GL is the major compound of the TTG (40%), 
the conversion of the raw material GL to GAMG by P. purpurogenum Li-3 fermentation is limited by the low 
activity of β-glucuronidase. To identify the activator of β-glucuronidase to potentially decrease the industrial 
production cost, we added a variety of compounds that were isolated from the TEG into the in vivo fermentation 
or in vitro enzymatic assay systems. We concluded that ISL could enhance the enzymatic activities of PGUS. ISL 
remained unmodified and could be utilized repeatedly. Therefore, the total cost of the production process could 
be potentially significantly reduced because the steps to purify GL from the TEG could be removed. This study 
sheds new light on the mechanism of β-glucuronidase and helps to make the industrial production of GAMG 
through fermentation feasible.

Methods
Materials and reagents. The P. purpurogenum Li-3that was used in this work was preserved in the China 
General Microbiological Culture Collection Center (CGMCCNo.5446) for patent protection in China. The 
Glycyrrhiza uralensis Fisch was purchased from the Xinjiang Tianshan Pharmaceuticals Industry Co., Ltd., and 
the glycyrrhizin (purity ≥ 98%) was purchased from the Tongtian Biotech Co., Ltd. The liquiritin, isoliquiritin, 
liquiritigenin, isoliquiritigenin, liquiritin apioside, and isoliquiritin apioside were self-purified to purities ≥ 98%. 
The β-glucuronidase that was used was purified using our previously reported method29. Other common analyt-
ical grade reagents were purchased commercially.

Preparation of TEG. 100 g of rhizomes of Glycyrrhiza uralensis Fisch was cut into slices approximately 3 
mm thick and mixed with deionized water three times (1 h for each time). The V: M ratios of deionized water and 
medical materials were 10, 8 and 6 for the first, second, and third time, respectively. The three extractions were 
mixed, vacuum and dried to produce 25 g of TEG that contained 7.3% GL.

System Km (mmol) Vmax (mmol·h−1) Vmax/Km (h) Ea (kJ·mol−1)

Experiment 0.26 1.05 4 52.53

Control 0.41 0.45 1.1 56.07

Table 2. Apparent kinetic parameters and activation energy of the hydrolysis of GL catalyzed by β-
glucuronidase.

http://3
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Separation of TFG, TTG and TSG. 25 g of TEG was dissolved in 250 ml of deionized water. In total, 90 mL 
of the solution was divided into 9 groups, and 10 ml of organic solution was added to each group and mixed by 
a magnetic stirrer. For each group, the pH was adjusted by acid and base to the desired pH value. After mixing, 
10 ml of solution was transferred into a separatory funnel. The organic and aqueous phases were analysed by 
thin-layer chromatography (TLC) to determine the suitable extraction pH value. Then, the extraction solution 
was obtained to determine the conditions for reverse extraction. After separation, 80 ml of the solution was drawn 
from the organic layer and divided into 8 groups. For each group, 10 ml of double-distilled water was added, and 
the solutions were analysed by the method described above.

Preparation of the TFG, TTG, and TSG. 15 g of TEG was dissolved in 150 ml of deionized water. The pH 
was adjusted to the desired value. (pH adjusted to 4), followed by the addition of 150 ml of organic solution. A 
total of 8.34 g of TSG was obtained from the solution in the lower layer. The top layer (the organic solution) was 
transferred to a new separatory funnel. The solution was adjusted again to desired pH value, and mixed with 
150 ml of organic solution. A total of 1.26 g of TFG was isolated from the organic solution in the secondary top 
layer, and 3.99 g of TTG was isolated from the lower layer. The ratio of TFG:TTG: TSG was 3:10:22.

Isolation of flavonoid compounds. The TEG was extracted three times from 5 kg of the dried roots of 
Glycyrrhiza uralensis Fisch with ethanol. The extraction solution was vaporized in vacuo and then suspended 
in water. The pH was adjusted to the desired value. After adding organic solution, 112 g of TFG was obtained 
from the organic solution in the top layer. Then, two compounds were isolated from each of the three frac-
tions by Sephadex-LH-20 and C18 chromatography. These six compounds (compounds I-VI) were identified 
using thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), NMR and MS to be 
isoliquiritigenin, liquiritigenin, isoliquiritin, liquiritin, isoliquiritin apioside, and liquiritin apioside, respectively 
(Fig. 1b).

Strains cultivation method. Base culture medium (BCM) consisted of base inorganic salts3.00 g/LNaNO3, 
0.50 g/L K2HPO4, 0.50 g/L MgSO4•7H2O, 0.50 g/L KCl, and 0.01 g/L FeSO4•7H2O. The seed culture medium 
contained of BCM and glucose (5 g/L). The Enzyme produced culture medium that was optimized for enzyme 
production contained of BCM and GL (4 g/L). Fermentation culture media consisted of BCM and different dos-
ages of TFG, TTG, and TSG. Culture medium and containers were sterilized at 118 °C for 15 min. The P. purpuro-
genum Li-3 was grown in a seed culture medium (100 ml) at 170 rpm and 30 °C for 72 h. The fungal mycelia were 
inoculated into different types culture medium and were cultured at 170 rpm and 30 °C for 120 h.

Measurement of whole-cell enzyme activity. The whole-cell enzyme activity was measured as pre-
viously reported32,33. At the end of fermentation, 100 ml of individual fermentation broth was centrifuged, and 
the supernatant was removed. The fungal strain were washed with sodium acetate buffer (pH 5.0) three times 
and then mixed with 100 ml of 4 g/L GL solution at 170 rpm and 37 °C for 12 h. The concentration of GAMG 
was analysed by HPLC. One activity unit (U) of the whole-cell enzyme was defined to be the amount of enzyme 
(whole-cell biomass) that releases1 μmol of GAMG per hour under certain conditions. The specific activity  
(U/mg) was defined as the enzyme activity units that were exhibited by 1 mg of dry fungal strain under certain 
conditions.

The specific activities of whole-cell enzymes in the presence of the TFG, TTG and TSG. Since 
TEG was a complex mixture, it was separated into three fractions (TSG, TFG and TTG). We added 0.5, 1, and 2 
times of each fraction (1 time of a fraction is equal to its content in 4 g/L TEG), into the BCM + GL + P. purpuro-
genum Li-3. The biomass and specific activity of β-glucuronidase were measured every 12 h after the first 24 h of 
cultivation.

Preparation of enzyme solution of β-glucuronidase. We prepared the enzyme solution by liquid 
nitrogen freezing and grinding with mortar and pestle34,35. The fungal mycelia of P. purpurogenum Li-3, which 
were collected by centrifugation at the end of the fermentation, were washed with 0.1 M sodium acetate buffer 
(pH 5.0) three times. The samples were then frozen in liquid nitrogen and ground to a fine powder for 20 min 
in a prefrozen mortar and pestle with a small amount of quartz sand. The powder was transferred to 0.1 M 
sodium acetate buffer (pH 5.0) and centrifuged, and the supernatant was collected as the enzyme solution of 
β-glucuronidase. The β-glucuronidase was obtained by ammonium sulfate fractionation and DEAE-cellulose 
chromatography.

Measurement of β-glucuronidase enzyme activity. In total, 400 μl of the β-glucuronidase enzyme was 
added to 200 μl of sodium acetate buffer (pH 5.0) that contained 2.4 mg/ml GL. After shaking in a water bath at 
40 °C for 4 h, the enzyme was heat-inactivated. Then, 100 μl of the mixture was diluted to 1 ml with methanol, and 
the concentration of GAMG in the solution was measured by HPLC. One activity unit (U) of the β-glucuronidase 
enzyme was defined as the amount of enzyme capable of releasing 1 μmol of GAMG per minute under the above 
conditions.

HPLC analysis. The concentrations of GL and GAMG were measured with HPLC using an ODS column 
(Shim-pack, VP-ODS, 4.6 mm × 250 mm, Shimadzu Corporation, Kyoto, Japan) and a UV detector. The wave-
length was set at 254 nm. A flow rate of 1.0 ml/min and an injection volume of 10 μl were used. The mobile phase 
was a mixture of 0.6% (v/v) acetic acid (pH 2.85) and methanol at a ratio of 19:81 (v/v). The retention times of GL 
and GAMG were approximately 7.5 and 15.9 min, respectively.
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Statistical analysis. Results are presented as the mean ± S.D. and analysed by the analysis of variance. All 
tests were two-sided with P < 0.05 indicating significant differences.

References
 1. Cinatl, J. et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361, 

2045–2046 (2003).
 2. Kim, D. H., Lee, S. W. & Han, M. J. Biotransformation of glycyrrhizin to 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide by 

Streptococcus LJ-22, a human intestinal bacterium. Biol Pharm 22, 320–322 (1999).
 3. Mizutani, K., Kambara, T., Masuda, H., Tamura, Y. & Lkeda, T. Glycyrrhetic acid monoglucuronide (MGGR): biological activities. 

Int Congress Ser 1157, 225–235 (1998).
 4. Tang, W. J., Yang, Y. A., Xu, H., Shi, J. B. & Liu, X. H. Synthesis and discovery of 18α-GAMG as anticancer agent in vitro and in vivo 

via down expression of protein p65. Sci Rep 4, 7106–7106 (2014).
 5. Baltina, L. A. Chemical Modification of Glycyrrhizic Acid As A Route to New Bioactive Compounds for Medicine. Curr med chem 

10(117), 155–171 (2003).
 6. Mizutani, K. et al. Sweetness of glycyrrhetic acid 3-O-β-D-monoglucuronide and the related glycosides. Biosc Biotechnol Biochem 

58, 554–555 (1994).
 7. Akao, T. Competition in the metabolism of glycyrrhizin with glycyrrhetic acid mono-glucuronide by mixed Eubacterium sp. GLH 

and Ruminococcus sp. PO1-3. Biol Pharm 23, 149–154 (2000).
 8. Kuramoto, T., Ito, Y., Oda, M., Tamura, Y. & Kitahata, S. Microbial production of glycyrrhetic acid 3-O-mono-β-D-glucuronide from 

glycyrrhizin by Cryptococcus magnus Mg-27. Biosc Biotechnol Biochem 58(3), 455–458 (1994).
 9. Kuramoto, T., Ito, Y., Oda, M., Tamura, Y. & Kitahata, S. Microbial Production of Glycyrrhetic Acid 3-O-Mono-β-D-Glucuronide 

from Glycyrrhizin by Cryptococcus magnus MG-27. Biosc Biotechnol Biochem 58, 455–458 (2014).
 10. Feng, S., Li, C., Xu, X. & Wang, X. Screening strains for directed biosynthesis of β-D-mono-glucuronide-glycyrrhizin and kinetics 

of enzyme production. J Mol Catalys B Enzym 43, 63–67 (2006).
 11. Lu, D. Q., Li, H., Dai, Y. & Ouyang, P. K. Biocatalytic properties of a novel crude glycyrrhizin hydrolase from the liver of the domestic 

duck. J Mol Catalys B Enzym 43, 148–152 (2006).
 12. hui, Z. R. G. w. s. b. y. d. w. y. Pharmacopoeia of the people’s republic of china (English Edition): A. (People’s Medical Publishing House, 

2015).
 13. Wang, D., Huang, S., Dazhang, D., Li, C. & Liu, G. Y. Promoting effect of licorice extract on induction of β-glucuronidase in 

Penicillium purpurogenum Li-3. J. Beijing Ins Technol 23, 138–142 (2014).
 14. Fu, B. et al. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid. J ChromatogrA 1089, 

18–24 (2005).
 15. Shen, S. et al. Separation of glycyrrhizic acid and liquiritin from Glycyrrhiza uralensis Fisch extract by three-liquid-phase extraction 

systems. SepPurif Technol 53, 216–223 (2007).
 16. Sun, C., Xie, Y., Tian, Q. & Liu, H. Separation of glycyrrhizic acid and liquiritin from licorice root by aqueous nonionic surfactant 

mediated extraction. Colloids & Surf A 305, 42–47 (2007).
 17. Tan, T., Huo, Q. & Ling, Q. Purification of glycyrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase 

system. Biotechnol Letters 24, 1417–1420 (2002).
 18. Liu, G. Y. et al. A method for isolating total triterpenoids licorice, licorice and licorice total flavonoids total polysaccharides. CN 

patent CN 103285074 B (2014).
 19. Chang, X. R., Qing-He, X. U., Zhu, D. Y., Song, G. Q. & Ren-Sheng, X. U. The isolation and structural elucidation of liconeolignan 

from G. uralensis. Yao xue xue bao=Acta pharmaceutica Sinica 18, 45–50 (1983).
 20. Yang, S. & Liu, Y. Chemical Constituents of Glycyrrhiza inflata Bat. Acta Botanica Sinica 30, 176–182 (1988).
 21. Yahara, S. & Nishioka, I. Flavonoid glucosides from licorice. Phytochemistry 23, 2108–2109 (1984).
 22. Song, Z., Wang, X., Chen, G. & Li, C. Cloning and prokaryotic expression of β-glucuronidase from Penicillium purpurogenum Li-3. 

J Chem Ind Eng (China) 12, 023 (2008).
 23. He, D. M. et al. Biosynthesis of glycyrrhetic acid 3-O-mono-β-D-glucuronide catalyzed by β-D-glucuronidase with enhanced bond 

selectivity in an ionic liquid/buffer biphasic system. Process Biochem 45, 1916–1922 (2010).
 24. Shuping, Z., Shen, H., Imdad, K. & Chun, L. N-Glycosylation enhances functional and structural stability of recombinant 

β-glucuronidase expressed in Pichia pastoris. J Biotechnol 164, 75–81 (2013).
 25. Simone, B., Heike, S., Anke, B., Sara, L. & Sigurd, L. Additive activation of glucokinase by the bifunctional enzyme 6-phosphofructo-

2-kinase/fructose-2,6-bisphosphatase and the chemical activator LY2121260. Biochem Pharmacol 83, 1300–1306 (2012).
 26. Elaheh, K. A., Bagher, L. & Azadeh, E. H. Neohesperidin dihydrochalcone: presentation of a small molecule activator of mammalian 

alpha-amylase as an allosteric effector. FEBS Letters 587, 652–658 (2013).
 27. Rogers, M. A. et al. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as 

activators. J Steroid Biochem MolBiol 151, 102–107 (2014).
 28. Abdelmoez, W., Nakahasi, T. & Yoshida, H. Amino Acid Transformation and Decomposition in Saturated Subcritical Water 

Conditions. Int J Chem Rea Eng 8, 5286–5294 (2007).
 29. Zou, S., Liu, G., Kaleem, I. & Li, C. Purification and characterization of a highly selective glycyrrhizin-hydrolyzing β-glucuronidase 

from Penicillium purpurogenum Li-3. Process Biochem 48, 358–363 (2013).
 30. Pesheck, P. S. & Lovrien, R. E. Cosolvent control of substrate inhibition in cosolvent stimulation of beta-glucuronidase activity. 

Biochem Biophys ResCommun 79, 417–421 (1977).
 31. Ryan, M. T. & Mavrides, C. A. Glucuronidase activation: enzyme action at an interface. Science 131, 101 (1960).
 32. Zheng, G. W. et al. An efficient bioprocess for enzymatic production of L-menthol with high ratio of substrate to catalyst using whole 

cells of recombinant E. coli. J Biotechnol 150, 108–114 (2010).
 33. Zhang, Y. et al. Enzymatic conversion of Baicalin into Baicalein by β-glucuronidase encapsulated in biomimetic core-shell structured 

hybrid capsules. J Mol Catal B: Enzym 57, 130–135 (2009).
 34. Karakousis, A., Tan, L., Ellis, D., Alexiou, H. & Wormald, P. J. An assessment of the efficiency of fungal DNA extraction methods for 

maximizing the detection of medically important fungi using PCR. J MicrobiolMeths 65, 38–48 (2006).
 35. Wong, S. F., Mak, J. W. & Pook, P. C. K. New mechanical disruption method for extraction of whole cell protein from Candida 

albicans. Southeast Asian J Med Public Health 38, 512–518 (2007).

Acknowledgements
The authors are grateful for the financial support from the National Science Foundation of China (NO. 21276024, 
21276025), and National High-Tech Research and Development Program of China (NO. 2012AA02A704).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7: 12503  | DOI:10.1038/s41598-017-10154-y

Author Contributions
G.L. designed the study; G.L., Y.H., D.D. and C.L. directed the study; X.W. and D.W. conducted the study and 
collected date; X.W. and G.L. performed analyses and wrote the main manuscript text; Y.H., D.D., G.Y., X.W. and 
C.L. reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-10154-y
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-10154-y
http://creativecommons.org/licenses/by/4.0/

	Identification of isoliquiritigenin as an activator that stimulates the enzymatic production of glycyrrhetinic acid monoglu ...
	Results
	pH-dependent separation of active ingredients. 
	Effect of TTG, TFG and TSG on the production of β-glucuronidase enzymes in P. purpurogenum Li-3. 
	Structural identification of flavonoids from Glycyrrhiza. 
	Influence of the primary compounds from TFG on the β- glucuronidase activity. 
	Effect of ISL on the reaction. 
	Effect of ISL on the expression of β-glucuronidase. 
	Influence of ISL on the reaction kinetic parameter and apparent activation energy. 

	Discussion
	Methods
	Materials and reagents. 
	Preparation of TEG. 
	Separation of TFG, TTG and TSG. 
	Preparation of the TFG, TTG, and TSG. 
	Isolation of flavonoid compounds. 
	Strains cultivation method. 
	Measurement of whole-cell enzyme activity. 
	The specific activities of whole-cell enzymes in the presence of the TFG, TTG and TSG. 
	Preparation of enzyme solution of β-glucuronidase. 
	Measurement of β-glucuronidase enzyme activity. 
	HPLC analysis. 
	Statistical analysis. 

	Acknowledgements
	Figure 1 Reactions and structures.
	Figure 2 TLC of the TTG, TFG and TSG adapt to pH change and the results of separation.
	Figure 3 Effects of the three compounds on the biomass and specific activity of β-glucuronidase (n = 3).
	Figure 4 TLC results of effects of ISL on reaction (a) the picture of the 254 nm, developing solvent: chloroform-ethyl acetate-acetic acid-water (1.
	Figure 5 SDS-PAGE of β-glucuronidase produced from P.
	Figure 6 Michaelis-Menton plots of the promotion kinetics and Arrhenius plot method calculated the apparent activation energy of β-glucuronidase when added ISL.
	Table 1 The relationship between concentration of ISL and reaction rate*(n = 3).
	Table 2 Apparent kinetic parameters and activation energy of the hydrolysis of GL catalyzed by β-glucuronidase.




