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Unveiling the signals from 
extremely noisy microseismic 
data for high-resolution hydraulic 
fracturing monitoring
Weilin Huang  1,2, Runqiu Wang1, Huijian Li  3 & Yangkang Chen4,5

Microseismic method is an essential technique for monitoring the dynamic status of hydraulic fracturing 
during the development of unconventional reservoirs. However, one of the challenges in microseismic 
monitoring is that those seismic signals generated from micro seismicity have extremely low amplitude. 
We develop a methodology to unveil the signals that are smeared in the strong ambient noise and thus 
facilitate a more accurate arrival-time picking that will ultimately improve the localization accuracy. 
In the proposed technique, we decompose the recorded data into several morphological multi-scale 
components. In order to unveil weak signal, we propose an orthogonalization operator which acts 
as a time-varying weighting in the morphological reconstruction. The orthogonalization operator 
is obtained using an inversion process. This orthogonalized morphological reconstruction can be 
interpreted as a projection of the higher-dimensional vector. We first test the proposed technique using 
a synthetic dataset. Then the proposed technique is applied to a field dataset recorded in a project in 
China, in which the signals induced from hydraulic fracturing are recorded by twelve three-component 
(3-C) geophones in a monitoring well. The result demonstrates that the orthogonalized morphological 
reconstruction can make the extremely weak microseismic signals detectable.

It has been shown that microseismic monitoring has a significant potential to characterize physical processes 
related to fluid injections and extractions in hydrocarbon and geothermal reservoirs1,2. In general the micro-
seismicity is recorded by downhole or shallow surface geophone arrays, which offers the significant advantages 
of being sufficiently close to the fracture and being unaffected by the free surface3. There are two main physical 
processes involved in hydraulic fracturing: 1) penetration of the injected fluid into the pre-existing cracks and 
pore spaces when the injection pressure is lower than the minimum compressive stress, and 2) opening of new 
fractures when the injection pressure is high enough. The events generated during injection and also after injec-
tion can occur over hours4. Localization of the associated microseismic events enables imaging of the fracture 
network. This technique has been widely studied and applied in petroleum and gas exploration1,5–11, and min-
ing engineering12–15. However, an inevitable problem existing in the microseismic monitoring is that the energy 
stimulated from the hydraulic fracturing is extremely weak, compared with the background noise16. The weak 
signal is easily masked, resulting in loss of microseismic events. A poor signal-to-noise ratio (S/N) can lead to 
unauthentic arrival time-picks17 and localization of microseismic events18. All of these will negatively affect the 
performance of microseismic monitoring and resulted fracture imaging19, as well as solving source mechanisms20.  
Improving the S/N will ultimately improve the microseismic event detection. In microseismic monitoring, the 
most commonly used method for attenuating background noise and detecting weak signal is frequency filtering21.  
However, frequency filtering typically fails in separating noise and signal when they share the same fre-
quency band. Researchers put a lot of effort into the noise suppression problem22, and developed different 

1State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing, 
102249, China. 2Modeling and Imaging Laboratory, Earth and Planetary Sciences, University of California at Santa 
Cruz, Santa Cruz, 95064, California, USA. 3SINOPEC Exploration and Production Research Institute, Beijing, 100083, 
China. 4Jackson School of Geosciences, The University of Texas at Austin, University Station, Box X, Austin, TX, 
78713-8924, USA. 5Present address: National Center for Computational Sciences, Oak Ridge National Laboratory, 
Oak Ridge, TN, 37831-6008, USA. Correspondence and requests for materials should be addressed to Y.C. (email: 
chenyk2016@gmail.com)

Received: 6 April 2017

Accepted: 28 July 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0003-1692-4868
http://orcid.org/0000-0001-5725-2944
mailto:chenyk2016@gmail.com


www.nature.com/scientificreports/

2SCIENtIfIC REPORTS | 7: 11996  | DOI:10.1038/s41598-017-09711-2

techniques using different approaches such as: median filtering23, various kinds of mathematical transform based 
approaches24–26, and matrix completion based approaches27,28. In addition, Kong et al. develop ed a nonlinear sig-
nal detector, which passes only signals showing spatial coherence and having slowness within an allowed range. 
Schimmel and Paulssen30 use d an instantaneous phase based amplitude-unbiased coherency measure, weighting 
the samples of an ordinary, linear stack, to detect weak signals in global seismology. Gibbons and Ringdal31 illus-
trated the power of an array-based waveform correlation approach by detecting the low magnitude seismic events 
in the 1997 August 16 Kara Sea event. Mousavi et al.32 proposed a simultaneous microseismic denoising and 
onset detection technique based on the synchrosqueezed continuous wavelet transform and custom threshold-
ing of single-channel data. Mousavi and Langston33 designed fast algorithm for noise level estimation and noise 
reduction of micro-seismic data, using minimally controlled recursive averaging and neighborhood shrinkage 
estimators.

The denoising approach of this paper is based on mathematical morphological decomposition and recon-
struction34,35. Mathematical morphology is a nonlinear methodology for the analysis and processing of geomet-
rical structures. Matheron34 describe d the random set integral geometry theory and topological logic theories 
thoroughly and set up a consistent foundation for mathematical morphology. Later on, Serra35 suggested the 
theory and method of mathematical morphology which was widely applied in two-value image processing. Then, 
Koskinen et al.36 introduce d the soft mathematical operations, which can maintain most of the properties of 
standard morphological operations. Sinha and Dougherty37 developed a generalization of binary mathematical 
morphology based on fuzzy set theory, in which images are modeled as fuzzy subsets of the Euclidean plane or 
Cartesian grid, and the morphological operations are defined in terms of a fuzzy index function. The mathemat-
ical morphological filtering (MMF) was first introduced into seismic data processing by Wang et al.38. Unlike 
traditional methods in seismic data processing, the basis of MMF are logical operation and set theory, which can 
provide us a tool to process signal over the complete frequency bandwidth, improving the S/N and maintaining 
the resolution. Later, this method rapidly developed and was widely applied in seismic data processing. For exam-
ple, Li et al.21 proposed a compound top-hat filter (CTF) extracting the large-scale information by combining 
opening and closing operations, and subsequently subtracting it from the microseismic data.

In this paper, we further develop a seismic application of the mathematical morphology and propose a 
multi-scale morphological decomposition based method to unveil weak signal in microseismic monitoring. 
In order to unveil weak signal, an orthogonalization operator is proposed and introduced into the process of 
multi-scale morphological reconstruction. The mathematical nature of the proposed orthogonalization operator 
is a projection operator that projects the input signal on a sub-space spanned by several selected morphological 
basis vectors. The assumption for this approach is that the weak signal is orthogonal to the background noise. 
Unlike the traditional morphological reconstruction approaches, the orthogonalized morphological recon-
struction transforms the reconstruction problem into an inversion problem. However, like most of the inversion 
problems in geophysics, this inversion problem is ill-posed. A regularization (or a penalty) term is necessary to 
optimally stabilize the objective function. In this study we use the shaping regularization approach39 that is more 
convenient for solving the inversion problem in orthogonalized morphological reconstruction compared to other 
regularization technique such as Tikhonov’s method40. In the following sections, after explaining the methodol-
ogy we first conducts synthetic data experiments to test the performance of the proposed orthogonalized mor-
phological reconstruction approach. Then the proposed approach is applied to a real 3-C microseismic data set. 
Compared with the state-of-the-art algorithms, the proposed approach demonstrates a superior performance.

Morphological Decomposition
Mathematical morphology34,35, is a well known nonlinear image processing method, which was originally moti-
vated from the research of the relation between the penetrability of a porous medium and its lamination. It starts 
as a set theoretical approach for the analysis of geometrical structures but can also deal with both function and set 
in the Euclidean space. A morphological operation is the interaction of an objective set or function with another 
set or function called structuring element (SE). The morphological scale of the SE determines the scale informa-
tion of the signal that is extracted under such an operation. The morphological scale can be conceptually under-
stood as the relative structure. Let d be a seismic trace and ⊆f  be a set of amplitude values. The value of a 
sample t in d is represented by ∈d t f( ) . The morphological dilation φ d( )b  and erosion φ d( )b  are the morphological 
operations that process d with the SE τb( ) as41:

φ τ τ= ∨ + −
τ

b d td( ) ( ) ( ), (1)b

ϕ τ τ= ∧ − −
τ

b d td( ) ( ) ( ), (2)b

where ∨ denotes supremum, and ∧ denotes infimum. Both t and τ are samples. It can be seen that the morpholog-
ical dilation is an operation that “grows” or “thickens” the object, while the morphological erosion is an operation 
that “shrinks” or “thins” the object. The sequential combination of the morphological erosion (or dilation) and 
morphological dilation (or erosion) creates the morphological opening χ d( )b  (or closing ψ d( )b ) as:

χ φ ϕ=d d( ) ( ( )), (3)b b b

ψ ϕ φ= .d d( ) ( ( )) (4)b b b
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We now use morphological opening and closing to represent data d. Consider χ d{ ( )}bk
, ∈k K[1, ] and ψ d{ ( )}bk

, 
∈k K[1, ], two indexed families of morphological opening and closing, respectively. Typically, the index k denotes 

the morphological scale. Whereupon, d can be represented as:

∑ χ ψ χ ψ χ ψ= − +
=

− −
d d d d[ ( ( )) ( ( ))] ( ( )),

(5)k

K

b b b b b b
1

k k k k K K1 1

or

∑ ψ χ ψ χ ψ χ= − + .
=

− −
d d d d[ ( ( )) ( ( ))] ( ( ))

(6)k

K

b b b b b b
1

k k k k K K1 1

Equations (5) and (6) can also be written as:

∑

ψ χ χ ψ

χ ψ χ ψ ψ χ ψ χ

= +

= +

+ − + − .
=

− − − −

d d d

d d

d d d d

1
2

( )

1
2

{ ( ( )) ( ( ))

[ ( ( )) ( ( )) ( ( )) ( ( ))]}
(7)

b b b b

k

K

b b b b b b b b
1

K K K K

k k k k k k k k1 1 1 1

So far, the initial data d is represented by an additive decomposition with K + 1 scales. Figure 1 gives an 
example of the morphological decomposition of a Ricker wavelet with 7 scales. The 1st trace (scale 0) is the initial 
wavelet. The 2nd–8th traces are the 7 scale components.

Traditional morphological reconstruction
For convenience, let:

χ ψ χ ψ ψ χ ψ χ

ψ χ χ ψ
=











− + − ∈

+ = +

− − − −
k K

k K
c

d d d d

d d

1
2

{ ( ( )) ( ( )) ( ( )) ( ( ))]}, [1, ],

1
2

{ ( ( )) ( ( ))}, 1,
(8)

k
b b b b b b b b

b b b b

k k k k k k k k

K K K K

1 1 1 1

where ck, ∈ +k K[1, 1], are the morphological multi-scale components. The value of a sample t in ck is repre-
sented by ∈c t f( )k . The nature of the multi-scale morphological decomposition is to decompose the discrete data 
set d into a series of primary subsets ck, which satisfies that:

∪=
=

+
d c ,

(9)k

K

k
1

1

 (10)

where ∅ denotes empty set. The reconstruction of data by ck can be represented as:

Figure 1. Multi-scale morphological decomposition of a Ricker wavelet.
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∑ σ =
∈

c d[ ] ,
(11)

k k
c Ek

where E is a subset of ∈c{ }k k K[1, ], that ⊂ ∈E c{ }k k K[1, ]. Constant σ ∈ [0, 1]k  is the weighting coefficient that controls 
energy from different scale components. This decomposition allows for full reconstruction of the original data, 
when = ∈E c{ }k k K[1, ] and σ ≡ 1k .

Orthogonalized morphological reconstruction
In traditional morphological reconstruction, the weighting coefficient σk is chosen manually, which makes the 
reconstruction subjective. In addition, it is difficult to choose an appropriate weighting coefficient, and the choos-
ing process costs a lot of time and manual endeavor. For weak signal detection, we define the orthogonalized 
morphological reconstruction, by changing σk from simple constant to a more flexible operator, in other words, 
allowing σk to change with t:

∑ σ −
σ ∈

t c t d targmin ( ) ( ) ( ) ,
(12)t

k k F
c E( )

2

k k

where ⋅ F
2  represents the squared Frobenius norm of a function. Equation (12) can be also represented as:

∑ Σ −
Σ ∈

c dargmin ,
(13)

k k F
c E

2

k k

where Σk is a diagonal matrix composed by σ t( )k : Σ σ= diag t( ( ))k k . Thus, the orthogonalized morphological 
reconstruction holds as:

∑ Σ = .
∈

dc[ ]
(14)

k k
Eck

The geometrical nature behind equation (13) is a projection of the higher-dimensional vector, i.e., the initial 
data d, on a lower-dimensional space spanned by several selected morphological basis vectors. Figure 2 gives a 
diagrammatic drawing. Vector →c  is on the line l. Operation Σ is a stretching transformation acting on vector →c . 
Equation (13) is actually to find the projection of vector 

→
d  on line l in the least-squares sense. Thus, an orthogonal 

decomposition of 
→
d  holds as:

Σ Σ
→

= → +
→

− →d c d c( ), (15)

Σ Σ
→

= → ⋅
→

− →0 c d c( ), (16)

where ⋅ denotes Hadamard (or Schur) product. Hence, we name Σ orthogonalization operator. If we consider Σ→c  
as signal →s , and accordingly Σ

→
− →d c  as background noise →n , equations (15) and (16) become the classical 

models used in42–45,

→
= → + →s nd , (17)

→
= → ⋅ →.0 s n (18)

Therefore, if we assume the weak signal is orthogonal to the background noise in microseismic monitoring, 
Σ→c  is an estimation of the weak signal.

Solution of orthogonalization operator
The inversion problem in equation (13), however, is ill-posed. To stabilize the optimization, an extra regulariza-
tion term is necessary to solve equation (13):

Figure 2. A geometrical interpretation of the orthogonalization operator.
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∑ Σ Σ− +
Σ ∈

c dargmin [ ( )],
(19)

k k F k
c E

2

k k

where  represents the regularization operator. For convenience, we rewrite equation (19) as:

∑ σ σ− +
σ ∈

C dargmin [ ( )],
(20)

k k F k
c E

2

k k

where Ck is a diagonal matrix composed by c t( )k : = diag c tC ( ( ))k k . σk is a column vector composed by σ t( )k : 
σ σ= t[ ( )]k k

T. Note that Σ σ σ= = ⋅c C ck k k k k k.
One of the most commonly used regularization approaches is Tikhonov’s regularization40, in which one addi-

tionally attempts to minimize the norm of σT k, where T is the regularization operator39. The regularized problem 
can be expressed as:

∑ εσ σ− +
σ ∈

C d Targmin [ ],
(21)

k k F k F
C E

2 2 2

k k

where ε is a scalar scaling parameter. The formal solution has the well-known form,

εσ = + .−C C T T C d( ) (22)k k
T

k
T

k
T2 1

where σk present a least-squares estimate of σk. Tikhonov’s regularization can be interpreted as a roughening 
approach. Although Tikhonov’s regularization is effective, the parameter ε and regularization operator T are 
typically difficult to choose, from the user perspectives46,39 proposed a particularly convenient shaping regulari-
zation approach, in which, a triangle shaping operator Γ is proposed and introduced into the iterative inversion 
as a fundamental operation. The relation between regularization operator T and shaping operator Γ can be 
expressed as39:

εΓ = + −I T T( ) (23)T2 1

Combining equation (22) and (23), we have:

σ Γ Γ= + − .−I C C I C d[ ( )] (24)k k
T

k k
T1

By introducing scaling of A by λ1/  in equation (24), we can rewrite it as:

λ λσ Γ Γ= + − .−I C C I C d[ ( )] (25)k k
T

k k
T2 2 1

where λ is an introduced parameter controlling the physical dimensionality and enabling fast convergence when 
inversion is implemented iteratively27.

Implementation of the orthogonalized morphological reconstruction
The SE plays an important role in the morphological decomposition and reconstruction. The SE has three param-
eters: shape, height (the amplitude of SE), and width (the width of definitional domain of SE). Generally speaking, 
the shape of SE can be a semicircle, a triangle, or a straightline. The SEs with different parameters has different 
scales. When the shape of a SE is fixed, its scale increases as the height decreases (or as the width increases). A SE 
with a large (or small) scale indicates that it has a fat (or slim) structure (i.e., its shape is close to the shape of a 
constant (or δ) function). The comparison of scale among the three shapes is as follow:

> > .Scale straightline Scale semicircle Scale triangle( ) ( ) ( ) (26)

In the morphological decomposition, we need a series of SE with different scales to obtain the different morpho-
logical information of the input data. For a specific morphological decomposition, a commonly used strategy to 
produce the SE family bK is that we fix the shape of the SE and gradually increase both its height and width to 
produce different SEs. The rate of increase determines the performance of decomposition. Another more conven-
ient strategy is that the i th SE bi can be produced by −i 1 times self morphological dilation:

φ φ φ= ... .

−
� ������ ������

b b( ( ( )))
(27)

i b b b

i times1

11 1 1

An iterative optimization can greatly improve efficiency in solving an inverse problem when the computa-
tional scale is large. We choose the classical conjugate gradient method47 to iteratively implement the orthogonal-
ized morphological reconstruction approach. The conjugate gradient algorithm requires symmetric positive 
definite operators. So the shaping operator splits into two matrices, Γ = HHT. Equation (25) can then be written 
as:

λ λσ = + − .−H I H C C I H H C d[ ( ) ] (28)k
T

k
T

k
T

k
T2 2 1

The estimated weak signal s by the orthogonalized morphological reconstruction can be represented as:
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∑ σ≈ .
∈

s C[ ]
(29)

k k
c Ek

Efficiency and effectiveness analysis of the orthogonalized morphological reconstruction
The proposed technique first decomposes the input data into a series of components with different morphological 
features, and then reconstructs the signal by several selected components with an orthogonalization operator. 
Decomposition with a higher order can obtain a more careful multi-scale morphology analysis of the input data, 
and accordingly is easier to separate signal and noise. Unfortunately, a large number of decompositions will pose a 
very expensive computational cost. Our experience shows that 4–10 decomposed components are appropriate for 
most seismic data sets, taking the compromise between efficiency and effectiveness into consideration. Figure 3 
demonstrates an experimental analysis of the proposed orthogonalized morphological reconstruction method. 
Figure 3(a,b) show the computing time costs and denoising performance analysis varying with different numbers 
of decomposition of the input data. We can observe that, as the decomposition number increases, the computa-
tional time increases. The denoising performance of the proposed technique is reinforced as the decomposition 
number increases within a relatively small value (2–6), but maintains relatively stable when the decomposition 
number is greater than 6. Figure 3(c) shows the denoising performance varying with different input S/Ns.

Test of the orthogonalized morphological reconstruction
A synthetic signal is used to test our proposed method in this section. The first experiment is shown in Fig. 4. The 
synthetic signal is a Ricker wavelet with 100 Hz dominant frequency and π/2 initial phase, as shown by the 1st 
trace. The synthetic noise is broadband Gaussian noise as shown in the 2nd trace. The 1st trace is added with the 

Figure 3. Efficiency and effectiveness analysis of the orthogonalized morphological reconstruction.
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Figure 4. The first synthetic example. From left to right: the 1st trace: signal, the 2nd trace: Gaussian noise, 
the 3th trace: signal + Gaussian noise (input data), the 4th–10th traces: seven multi-scale components, 
the 11th trace: orthogonalized morphological reconstruction, the 12th trace: conventional morphological 
reconstruction, the 13th trace: result using band-pass filtering with trapezoidal band 10–20–180–190 Hz, 
the 14th trace: result using band-pass filtering with trapezoidal band 70–80–120–130 Hz, the 15th trace: 
result using band-pass filtering with trapezoidal band 60–70–170–180 Hz, the 16th–20th traces: errors of two 
reconstructions and three filtered results.
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2nd trace as the input data (the 3th trace). The S/N of the input data is − .11 6971 dB and the definition of S/N is 
shown below48:

=S N s
n

/ 10 log ,
(30)

F

F

2

2

where s is the true signal and n denotes the added noise. We can see that the signal is masked by the strong 
background noise and hardly to detect. For detection of the masked signal, the input data is decomposed into 
seven multi-scale morphological components as shown in the 4th–10th traces. It can be observed that most 
energy of noise is decomposed into the 1st and 2nd multi-scale components (the 4th and 5th traces) and the 
signal can be followed more or less in the rest components. Thus the 3th–7th multi-scale components (the 
6th–10th traces) are used to reconstruct the signal. The results using the proposed and conventional morpho-
logical reconstruction approaches are shown in the 11th and 12th traces, respectively. The weighting coeffi-
cients in conventional approach are chosen manually as .(1,1,1,1,0 5) associated to the 6th–10th traces taking 
the compromise between preserving signal and suppressing noise into consideration. It is clear that the signal 
is much more detectable after both two reconstructions. But the proposed approach suppress more back-
ground noise and makes the signal easier to detect than the conventional. As a comparison, the commonly 
used band-pass filtering is applied to the input data. The results using three different band-pass filterings 
(trapezoidal bands 10–20–180–190 Hz, 70–80–120–130 Hz and 60–70–170–180 Hz) are plotted in the 13th, 
14th and 15th traces. The weak band-pass filtering can preserve signal well but pass a lot of background noise 
at the same time. The strong band-pass filtering can suppress more noise but damage the signal. The corre-
sponding errors (differences between the true signal and processed results) associated to traces 11–15 are 
presented in traces 16–20 respectively. It is obvious that the proposed orthogonalized morphological recon-
struction obtains the the smallest error. The S/Ns of the processed results using the proposed and conven-
tional morphological reconstruction approaches and three band-pass filterings are .10 8905, − .0 1852, − .0 1788, 
.0 9289 and .0 6348 dB, respectively. The calculation of S/N refers to equation (30), except that n denotes the 

error. It is obvious that the proposed approach obtain the highest S/N. The cross-correlation coefficients 
between original signal and the five denoised signals are .0 9585, .0 6446, .0 7086, .0 6163, and .0 6913, 
respectively.

Figure 5 shows time-frequency spectra of clean data, noisy data, two reconstructions and three filtered results, 
which give us a more detailed comparison. The time-frequency spectrum is obtained by using standard Stockwell 
transform49. As we can see from Fig. 5(a), the energy of the synthetic signal is concentrated in the area of 0.12–
1.07 ms and 0–300 Hz. Contaminated by Gaussian noise (Fig. 5(b)), the time-frequency spectrum become noisy. 
The result using the proposed technique is shown in Fig. 5(c). An excellent reconstruction of the initial synthetic 
signal is obtained. Most of the noise has been attenuated and the signal’s energy is much more distinct. Figure 5(d) 
presents the reconstructed data obtained after using the conventional morphological reconstruction technique. 
Even though the quality of data is improved, the detected signal is still strongly affected by the noise. Figure 5(e,f), 
show the filtered data by different band-pass filters. The band-pass filtering is achieved by the low-cutoff and 
high-cutoff in frequency domain. As we can observe from Fig. 5(e,f), the low and high frequency components are 

Figure 5. Comparison of time-frequency spectrums of (a) clean data, (b) noisy data, (c) orthogonalized 
morphological reconstruction, (d) conventional morphological reconstruction, (e) filtered data (10–20–180–
190 Hz), (f) filtered data (70–80–120–130 Hz), (g) filtered data (60–70–170–180 Hz) of the first synthetic 
example.
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removed but the mixed parts in the same frequency band still exist. The starting time of the detected signals in 
Fig. 5(d,e,f), are not as clear as that shown in Fig. 5(c), indicating that the time-picking would be better performed 
on the record processed by the proposed orthogonalized morphological reconstruction technique.

The second example is demonstrated in Fig. 6. The synthetic signal (the 1st trace) is same to that in the first 
experiment. The added background noise consists of Gaussian noise (the 2nd trace) and limited band (40–160 
Hz) random noise (the 3th trace). The input data is the sum of the 1st, 2nd and 3th traces as shown in the 4th 
trace. The S/N of the input data is − .12 5386 dB. Similarly, the input data is decomposed into seven multi-scale 
morphological components as shown in the 5th–11th traces. In this experiment, we choose the 3 th–6th 
multi-scale components (the 7th–10th traces) to reconstruct the signal, taking the compromise between signal 
preservation and noise removal into consideration. The proposed and conventional reconstructions are plotted in 
the 12th and 13th traces. The weighting coefficients in conventional approach are chosen manually as (1,1,1,1) 
associated to the 7th–10th traces. It can be seen that, both approaches improve the detectability of the signal, but 
the proposed approach gives a better result. The three filtered data using band-pass filtering, with trapezoidal 
bands 10–20–180–190 Hz, 70–80–120–130 Hz and 60–70–170–180 Hz, are shown in the 14th, 15th and 16th 
traces. The results are unacceptable. We still hardly detect the signal in the filtered data. The S/Ns of the processed 
results using proposed and conventional morphological reconstruction approaches and three band-pass filterings 
are .4 9067, − .2 8560, − .6 2078, − .3 0327, and − .5 6471 dB, respectively. The cross-correlation coefficients between 
original signal and the five denoised signals are .0 8254, .0 4392, .0 3944, .0 4095, and .0 3838, respectively. Similarly, 
the time-frequency spectr a of clean data, noisy data, two reconstructions and two filtered results are shown in 
Fig. 7. The manually added limited-band random noise increases the difficulty of detecting the weak signal. As we 
can observe from Fig. 7(b), the time-frequency spectrum is extremely noisy and particularly several energy clus-
ters in the area of 0.17–0.3 ms and 0–200 Hz can seriously obstruct the detection of the true signal. Denoising by 
using the orthogonalized morphological reconstruction technique leads to the results depicted in Fig. 7(c). The 
noise is clearly suppressed. By comparing the true signal and reconstructed signal, we can see that the two signals 
are very similar except for a slight amplitude damage. However, the signal would be easier to pick than before, and 
the slight amplitude damage is not significant, considering the totally removed noise and the observable useful 
signal s. The conventional morphological reconstruction approach also remove some noise, but the noise energy 
clusters are still noticeable. Figure 7(e,f,g) demonstrate the three filtered results. As expected, by using band-pass 
filtering, noise that shares the same frequency band with signal cannot be separated.

Application to a real data set
The proposed orthogonalized morphological reconstruction is applied to a real microseismic monitoring dataset 
recorded in the west of China. There are twelve downhole 3-C geophones to monitor seismic activity. There are 
eight injection stages in this project. The magnitude of microseismic events ranges from − .3 86 to − .0 135 Mw. The 
data used in this study is produced in the last stage, in which the recording time is the longest in the whole project. 
Section “Supplementary material” gives the detailed information for this dataset. In this dataset, the signal 
induced from hydraulic fracturing is very weak when the signal reach the receivers. A lot of useful signal s cannot 
be detected immediately, which leads to many neglected microseismic events. Thus detection of weak signal is a 
vital step in this stage. A typical 1.5 s record (8631–8632.5 s after the beginning of fracturing) with horizontal 
components H1 and H2, vertical component V is shown in Fig. 8. As we can see from the initial data, the micro-
seismic record is very noisy and the background noise masks the useful signals. The relative strong S wave is visi-
ble in the V component record. However, the events are difficult to follow in both H1 and H2 components. The 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0

0.05

0.1

0.15

0.2

0.25

T
im

e 
(m

s)

Trace

Figure 6. The second synthetic example. From left to right: the 1st trace: signal, the 2nd trace: Gaussian noise, 
the 3th trace: limited band random noise, the 4th trace: signal + Gaussian noise + limited band random noise 
(input data), the 5th–11th traces: seven multi-scale components, the 12th trace: orthogonalized morphological 
reconstruction, the 13th trace: conventional morphological reconstruction, the 14th trace: result using band-
pass filtering with trapezoidal band 10–20–180–190 Hz, the 15th trace: result using band-pass filtering with 
trapezoidal band 70–80–120–130 Hz, the 16th trace: result using band-pass filtering with trapezoidal band 60–
70–170–180 Hz, the 17th–21th traces: errors of two reconstructions and three filtered results.
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frequency band of the perforation signal ranges from 0 Hz to 500 Hz. The frequency band of the observed micro-
seismic signals and background noise ranges from 0 Hz to 350 Hz and from 0 Hz to 900 Hz, respectively. Due to 
the impact of industrial electricity, there are low-frequency interferences in several traces. The S/N of the initial 
dataset is approximately − .14 5942 dB.

We then decompose the initial data into five morphological scale components. Fig. 9 shows the results after 
the proposed orthogonalized morphological reconstruction approach. It can be observed that the events are 
much more clear than that in the raw data. We can easily follow the coherent energy in all H1 (Fig. 9(a)), H2 

Figure 7. Comparison of time-frequency spectrums of (a) clean data, (b) noisy data, (c) orthogonalized 
morphological reconstruction, (d) conventional morphological reconstruction, (e) filtered data (10–20–180–
190 Hz), (f) filtered data (70–80–120–130 Hz), (g) filtered data (60–70–170–180 Hz) of the second synthetic 
example.

Figure 8. 3-C microseismic data. (a) Horizontal components (H1). (b) Horizontal components (H2). (c) 
Vertical component (V).
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(Fig. 9(b)), and V (Fig. 9(c)) component records. The S/N of the denoised result is approximately .4 0927 dB. As a 
comparison, the traditional morphological reconstruction approach is applied to this example. Similarly, the 
2nd–4th scale components are used to reconstruct both H1 and H2 components, and the 2nd–5th scale compo-
nents are used to reconstruct V components. The weighting coefficients are chosen manually as .(1,1,0 5), .(1,1,0 5) 
and (1,1,1,1), respectively.

The results using the traditional morphological reconstruction approach are shown in Fig. 10. The events are 
more visible than the initial data, but the proposed approach performs better. The S/N of the denoised result is 
approximately − .3 1015 dB. In order to avoid manually choosing the weighting coefficient σk, a varimax norm 
based morphological reconstruction approach can be used, in which the σk is defined as:

σ = norm c1/ ( ), (31)k v k

where ⋅norm ( )v  is the varimax norm50. The results are shown in Fig. 11. The reconstructions of the H1 (Fig. 11(a)) 
and V (Fig. 11(c)) components are acceptable, but the reconstruction of H2 (Fig. 11(a)) component is unsatisfied. 
The event is still hardly detected in the H2 component. The S/N of the denoised result is approximately − .5 1291 
dB.

Event location is an important step in the processing of microseismic data. For further evaluation of denoising 
performance by our proposed and other competitive approaches, we pick the events in each processed results. An 
accurate time-picking corresponds to a good weak signal detecting performance. The automatic events detection 
algorithm is chosen as the well-known STA/LTA filter51. In this test, the energy is used as characteristic function 
(CF) in STA/LTA filter. In the following figures the time picks are represented with red asterisks. Figure 12 shows 
the picked arrival times for the noisy 3-C records. Figures 13–15 show the results using the proposed method, 
median filtering and singular spectrum analysis (SSA) method, respectively. As we can see from this test, because 
of the strong background noise, the microseismic events are hard to pick. We can observe from Fig. 12 that STA/
LTA filter is triggered at incorrect time for many traces. It is obvious that after using the proposed orthogonalized 
morphological reconstruction approach, the events become much more clear and easier to pick than others, 
which indicates the superior performance of our proposed approach.

We apply the STA/LTA algorithm to a longer duration of recorded data and denoised data. The experimental 
results as presented in Table 1 show that more events have been detected after using the proposed denoising 
approach than using other methods. We use the detected events in the denoised data by the proposed approach 
to locate the sources. We use Geiger’s approach52 to obtain the location. One can find the details of this approach 
in53. The calculation of travel-time is based on the principle of ray tracing. The results of locating is shown in 
Fig. 16. The black curve line denotes the trajectory of the fracturing well. The blue circle denotes the position of 
perforation. The green asterisks denote the locations of the microseismic events.

Figure 9. Orthogonalized morphological reconstruction results of (a) horizontal components (H1) by 2nd–4th 
scales components, (b) horizontal components (H2) by 2nd–4th scales components, and (c) vertical component 
(V) by 2nd–5th scales components.



www.nature.com/scientificreports/

1 1SCIENtIfIC REPORTS | 7: 11996  | DOI:10.1038/s41598-017-09711-2

Conclusion
We have proposed a novel denoising method based on mathematical morphological decomposition. We intro-
duce an orthogonalization operator into the process of reconstruction, which can impel the reconstruction 

Figure 10. Traditional morphological reconstruction results of (a) horizontal components (H1) by 2nd–4th 
scales components, (b) horizontal components (H2) by 2nd–4th scales components, and (c) vertical component 
(V) by 2nd–5th scales components.

Figure 11. Varimax norm based morphological reconstruction results of (a) horizontal components (H1) by 
2nd–4th scales components, (b) horizontal components (H2) by 2nd–4th scales components, and (c) vertical 
component (V) by 2nd–5th scales components.
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of weak signal. We give detailed mathematical introduction of the new method and connect it with several 
well-known methods and mathematical models. The most striking difference between the proposed and tradi-
tional methods is that the core calculations in the proposed method are based on logical operation and set theory. 
Synthetic and real data examples demonstrate its superior performance compared with the competing alternative 
approaches. The detected weak signals make the microseismic monitoring feasible in severe environment where 

Figure 12. Arrival picking of the initial data. (a) Horizontal component (H1). (b) horizontal component (H2). 
(c) Vertical component (V).

Figure 13. Arrival picking of orthogonalized morphological reconstructions. (a) Horizontal component (H1). 
(b) horizontal component (H2). (c) Vertical component (V).
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Figure 14. Arrival picking results using median filtering. (a) Horizontal component (H1). (b) horizontal 
component (H2). (c) Vertical component (V).

Figure 15. Arrival picking results using SSA. (a) Horizontal component (H1). (b) horizontal component (H2). 
(c) Vertical component (V).

Recorded Proposed Median filtering SSA

15 37 23 18

Table 1. Comparison of events detection in recorded data and denoised data after using different denoising 
approaches.



www.nature.com/scientificreports/

1 4SCIENtIfIC REPORTS | 7: 11996  | DOI:10.1038/s41598-017-09711-2

the recorded data is extremely noisy and microseismic signals are very weak. The proposed orthogonalized mor-
phological reconstruction method belongs to a class of single-channel techniques and does not require array 
data. It can be used not only in microseismic monitoring, but also in other type of seismic data (active source or 
earthquake data), and in other real world applications, e.g., image processing and signal processing, large-scale 
earthquake data processing and inversion. The proposed method is promising for a wide research community 
and industrial applications.
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