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Influences of ethanol on 
the structure of toxic trans-
crotonaldehyde in mitochondria 
coming from rat myocardium
Yanbin Su1, Xiaowei Ma2, Yanwen Su1, Tongxing Mu3, Yanhe Li1, Ning Jiang1, Yuyun Su1 & Qi 
Zhang1

Inappropriate use of ethanol (EtOH) had led to noticeable health problems, but a beneficial 
phenomenon was found that EtOH displayed unique influences for toxic trans-crotonaldehyde (TCA) 
derived from mitochondrial lipid peroxidation. The influences of EtOH on the structure of TCA were 
systematically probed by UV-vis & Raman spectroscopy in the absence and presence of mitochondria, 
respectively. The maximum UV-vis peak at 301 nm of TCA was red shifted by hydroxyl (-OH) and methyl 
(-CH3) of EtOH, respectively. Raman stretching band of aldehyde (-CH=O) of TCA (TCA-CH=O) was split 
by the -CH3 of EtOH. The -CH3 increased TCA-CH=O stretching frequency while the -OH induced it. The 
more exposed -OH, the less stretching frequency. The ectopic -CH3 red shifted the UV-vis peak at 301 nm 
and Raman band of TCA-CH=O. In mitochondria, EtOH red shifted Raman stretching band of TCA-
CH=O. Raman stretching bands of C-H, C-O and C-C of EtOH were red shifted, while Raman stretching 
bands of -CH2 and C-C-O of EtOH disappeared. The paper unearths the influences of EtOH to trap and 
transform the structure of TCA-CH=O. This discovery has an important contribution to eliminate TCA in 
order to protect and repair mtDNA by means of the decrease of 8-oxoG.

Although inappropriate use of ethanol (EtOH) had led to noticeable health problems, our research team acciden-
tally discovered a beneficial phenomenon that EtOH showed a unique influence on toxic trans-crotonaldehyde 
(TCA) derived from mitochondrial lipid peroxidation. However, the detailed molecular mechanism and potential 
significance of EtOH on TCA is unknown so far.

TCA is a potentially and dangerously mutagenic compound to mitochondrial DNA (mtDNA) in vitro and 
in vivo1, 2. In all nucleobases, aldehyde (-CH=O) of TCA (TCA-CH=O) possibly attacks various nucleic acids, 
but guanine (G) is the most susceptible to TCA-CH=O3. When TCA is close to mtDNA4, 5, the G is converted to 
8-oxoguanine (8-oxoG) which can pair with adenine (A) as well as cytosine (C), then further converts into thy-
mine (T), A, or C6, 7. The 8-oxoG is the major oxidized base in mtDNA8, 9. If the 8-oxoG is persistently generated, 
the accumulation of 8-oxoG will accelerate the transformation of G to T in mtDNA. Under this circumstance, it is 
inevitable that the development and progression of some major diseases such as myocardial ischemia and malig-
nant tumors (Fig. 1)10–12. Therefore, the elimination of TCA can be effective in preventing the formation and accu-
mulation of the 8-oxoG in mtDNA. However, the elimination method of TCA has not been reported at present.

The primary sources of TCA include lipid peroxidation in mitochondria in vivo13, 14, tobacco tar15, and envi-
ronmental pollution in vitro, etc16. In search of how to eliminate the mutagenic action of TCA, it was acciden-
tally discovered that the maximum UV-vis peak at 301 nm of TCA was red-shifted by EtOH. Research finding 
prompted the idea that EtOH has been probably involved in the prevention and repair of mtDNA damage via the 
structural change of TCA-CH=O17. The influences of EtOH on the molecular structure of TCA-CH=O provide 
useful information on how to eliminate TCA. The purpose of this study was to explore the influences of EtOH on 
the structure of TCA-CH=O, especially in mitochondria.
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EtOH includes hydroxyl (-OH) and methyl (-CH3) while TCA contains -CH=O and carbon-carbon double 
bond (C=C). According to the characteristics of Raman spectrum detection, Raman band accurately reflects 
the oscillatory changes of a particular functional group in their microenvironment. Raman vibrational motions 
are divided into self-rotation motion and translational motion of a particular functional group. The latter is gen-
erally far shorter than the former. Raman spectra are mainly derived from translational motion. In order to 
clarify the molecular behaviors of EtOH interacted with TCA-CH=O, research designs were carried out as fol-
lows. Firstly, UV-vis spectroscopic behaviors of EtOH, -OH, and -CH3 on TCA-CH=O were observed; Secondly, 
Raman spectroscopic behaviors of EtOH, -OH, and -CH3 on the structure of TCA-CH=O were probed; Finally, 
in mitochondria, Raman spectroscopic changes of TCA and EtOH themselves during the interaction of EtOH 
with TCA-CH=O were studied.

Results and Discussion
UV-vis spectroscopic behaviors of EtOH, -OH, and -CH3 on TCA. Using ultrapure water as the con-
trol solvent, the maximum UV-vis peak at 301 nm of TCA as the reference, UV-vis spectroscopic behaviors of 
EtOH, -OH, and -CH3 on TCA display in Fig. 2a–g.

Figure 2a,b and d show that EtOH like the other aliphatic alcohols and polylols significantly red shifted 
UV-vis peak at 301 nm of TCA. But the aromatic alcohols blue shifted UV-vis peak at 301 nm of TCA (Fig. 2c). 
Observations show that TCA interacts differently with aromatic groups than with -CH3. Figure 2e,f and g illus-
trate that alkanes including cyclic methylation and ectopic -CH3 obviously red shifted UV-vis peak at 301 nm of 
TCA. If the -CH3 was replaced by different aromatic groups, the spectroscopic behaviors of aromatic alcohols on 
TCA displayed blue shift of UV-vis peak at 301 nm of TCA. These findings provide the important molecular trails 
for finding methods to trap or transform the structure of TCA. In order to further elucidate the spectroscopic 
behaviors of both -CH3 and -OH of EtOH on TCA, the spectroscopic behaviors of both -CH3 and -OH of EtOH 
on TCA were explored by means of Raman spectroscopy.

The toxic targets of TCA are both -CH=O and C=C functional groups which are responsible for its negative 
influence. The Raman bands of -CH=O and C=C are situated at 1688 cm−1 and 1641 cm−1, respectively. The 
Raman band changes of TCA-CH=O in different microenvironments depend not only on the H delocalization 
of TCA-CH=O itself, but also on the active -OH of exogenous Et-OH18. Therefore, the position, shape, and full 
width at half-maximum (FWHM) changes of Raman bands of TCA-CH=O could clearly describe the influences 
of EtOH on the structure of TCA-CH=O.

Gross Raman spectroscopic behaviors of EtOH on TCA-CH=O in the absence and presence of 
mitochondria. Raman spectra of TCA and TCA-CH=O19 are shown in Fig. 3 and Figure S1 in supporting 
information. In the range of 100 cm−1 to 1800 cm−1, there are altogether 15 Raman bands in TCA. Among them, 
the 1688 cm−1 and 1641 cm−1 represent the -CH=O and C=C stretching mode of TCA20, respectively. The shapes 
of Raman bands at 1688 cm−1 and 1641 cm−1 of TCA are symmetric without split. However, Fig. 3 shows that 
compared with Raman spectra of TCA (the black line in Fig. 3) and EtOH (the red line in Fig. 3), respectively, 
in the absence of mitochondria, the Raman band of 1688 cm−1 assigned to -CH=O was split (see also Fig. 4b) 
by EtOH with significantly decreased intensity (the blue line in Fig. 3). But in the presence of mitochondria, the 
Raman band of 1688 cm−1 assigned to -CH=O was remarkably shifted from 1688 cm−1 to 1681 cm−1 by EtOH 
(the green line in Fig. 3). The above results show that EtOH has an important influences on the molecular struc-
ture of TCA-CH=O, especially in mitochondria.

Raman spectroscopic behaviors of EtOH, -OH, and -CH3 on the structure of TCA-CH=O. Raman 
spectroscopic behaviors of EtOH interacting with TCA-CH=O can be clearly described according to the char-
acteristic changes of position, shape, and FWHM of corresponding Raman bands. The characteristic Raman 

Figure 1. The mode of action of EtOH-induced prevention of mismatch replication.
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bands of TCA were located at 1688 cm−1 assigned to -CH=O and 1641 cm−1 assigned to C=C, respectively. 
The normal FWHMs of Raman bands of both TCA-CH=O and TCA-C=C were 23 cm−1 and 10 cm−1 (Fig. 4a), 
respectively. Taking Raman band at 1688 cm−1 of TCA as the observed band, EtOH not only led to the split of 
band from 1686 cm−1 to 1690 cm−1 but also broadened the FWHM of band from 23 cm−1 to 25 cm−1 (Fig. 4b). 
The influences of other aliphatic alcohols on TCA displayed only the increase of FWHM of band without split 
of band (Fig. 4c). The isopropanol slightly red shifted the band without the change of FWHM of band(Fig. 4d). 
Raman spectroscopic behaviors of ectopic -CH3 of aliphatic alcohols on TCA differed from the -CH3 of aliphatic 
alcohols. Compared with EtOH (the black line in Fig. 4e), 2-phenylethanol eliminated the split of band (the red 
line in Fig. 4e), while phenoxyethanol (the blue line in Fig. 4e) and benzyl alcohol (the green line in Fig. 4e) fur-
ther red shifted band with split. By careful analysis of this phenomenon, it was founded that the split of band at 
1688 cm−1 of TCA by EtOH was closely related to the -CH3 or H in -CH3. When the phenyl substituted H in -CH3, 
the split of band disappear. However, when the phenoxy substituted H in -CH3 or the phenyl substituted -CH3, the 
split of band slightly expanded with red shift. Moreover, the FWHM of band was broadened by 2-phenylethanol 
and benzyl alcohol, while the FWHM of band was narrowed by phenoxyethanol. The results show that FWHM of 
band was also closely related to the -CH3 or H in -CH3. The Raman band at 1688 cm−1 of TCA was significantly 
blue shifted by alkanes. The displacement are 4 cm−1 to 5 cm−1 (Fig. 4f). The FWHM of band was simultaneously 
decreased 4 cm−1 from 23 cm−1 to 19 cm−1. Both blue shift and decrease of FWHM of band become the spectro-
scopic behaviors of -CH3 hydrophobic and steric on the structure of TCA-CH=O. Results show that the C-H 
group can interact with the molecular environment via van-der-Waals force. The glycol and 1, 2-propylene glycol 

Figure 2. UV-vis spectroscopic behaviors of EtOH, -OH, and -CH3 on TCA. (a) The maximum UV-vis 
peaks of TCA was located 301 nm (solvent: ultra pure water, H2O) and 316 nm (solvent: EtOH, CH3CH2OH, 
99.7%), respectively. (b) UV-vis spectroscopic behaviors of ultra pure water (H2O), methanol (CH3OH, 99%), 
EtOH (CH3CH2OH, 99.7%), n-propyl alcohol (CH3(CH2)2OH, 99%), n-butyl alcohol(CH3(CH2)3OH, 99%), 
n-pentanol (CH3(CH2)4OH, 99%), and n-hexyl alcohol (CH3(CH2)5OH, 99%) on TCA (97%), respectively. (c) 
UV-vis spectroscopic behaviors of ultra pure water (H2O), benzyl alcohol (C6H5CH2OH, 99%), 2-phenylethanol 
(C6H5CH2CH2OH, 99%), phenoxyethanol (C6H5OCH2CH2OH, 99%) on TCA (97%), respectively. (d) 
UV-vis spectroscopic behaviors of ultra pure water (H2O), glycol (HOCH2CH2OH, 99%), and glycerol 
(HOCH2CHOHCH2OH, 99%) on TCA (97%), respectively. (e) UV-vis spectroscopic behaviors of ultra pure 
water (H2O), n-hexane (CH3(CH2)4CH3, 99%), n-heptane (CH3(CH2)5CH3, 99%), n-octane (CH3(CH2)6CH3, 
99%), and n-nonane (CH3(CH2)7CH3, 99%) on TCA (97%), respectively. (f) UV-vis spectroscopic behaviors 
of ultra pure water (H2O), n-hexane (CH3(CH2)4CH3, 99%), and cyclohexane (C6H12, 99%) on TCA (97%), 
respectively. (g) UV-vis spectroscopic behaviors of ultra pure water (H2O), n-propyl alcohol (CH3CH2CH2OH, 
99%), and isopropanol ((CH3)2CHOH, 99%) on TCA (97%), respectively.
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enhanced the red shift of band from 1688 cm−1 to 1684 cm−1 and 1681 cm−1, respectively. The glycerol not only 
strengthened the red shift of band from 1688 cm−1 to 1681 cm−1, but also broadened the split of band. Besides, 
the FWHM of band was widened by the polylols, from 23 cm−1 to 26 cm−1, 25 cm−1, and 28 cm−1, respectively 
(Fig. 4g). The analyses recommend that two adjacent -OH enhanced only red shift of band at 1688 cm−1 while 
three adjacent -OH not only promoted the red shift of band at 1688 cm−1 but also broadened the split of band 
at 1688 cm−1. The more exposed -OH, the wider FWHM or the less stretching frequency of band at 1688 cm−1.

Brief summary, Raman spectral behaviors of both -OH and -CH3 of EtOH on TCA-CH=O can be described 
as follows. EtOH brings about the split of Raman band of TCA-CH=O at 1688 cm−1 related to the -CH3 or H in 
-CH3. The -CH3 blue shifts the Raman band of TCA-CH=O, while the -OH red shifts it. The -CH3 reduces the 
FWHM of Raman band, while the -OH broadens it. The more exposed active -OH in polyhydroxy alcohols, the 
wider FWHM or the less stretching frequency of Raman bands of TCA-CH=O. The ectopic -CH3 only red shifts 
the Raman band of TCA-CH=O. The spectroscopic behavior of -CH3 of EtOH on TCA-CH=O is obviously 
opposite to that of -OH of EtOH.

Raman spectroscopic changes of TCA and EtOH during the interaction of EtOH with TCA in 
mitochondria. Raman spectrum of TCA displays the black line in Fig. 5. Raman spectrum of EtOH shows 
six specific bands in the investigated frequency range (the red line in Fig. 5)21, 22. The 1453 cm−1, 1275 cm−1, and 
1093 cm−1 correspond to the CH bend, CH2 twist, and CH rock mode, respectively. The 1049 cm−1, 882 cm−1, and 
431 cm−1 represent the C-O stretching, C-C stretching, and C-C-O bend23–25, respectively.

Raman spectroscopic behaviors of EtOH on TCA illustrates the in blue line Fig. 5. In mitochondria, Raman 
spectroscopic behaviors of EtOH on TCA only red shifted the band at 1688 cm−1, from 1688 cm−1 to 1681 cm−1 
(the green line in Fig. 5). From the comprehensive analysis of the above Raman spectra, the molecular target of 
EtOH on TCA is no doubt the -CH=O of TCA. Therefore, Raman spectroscopic behaviors of TCA during the 
interaction of EtOH with TCA are clear and definite for the first time.

From the green line in Fig. 5, Raman spectroscopic behaviors of EtOH during the interaction of EtOH with 
TCA in mitochondria are as follows. The 1453 cm−1, 1093 cm−1, 1049 cm−1, and 882 cm−1 were red shifted, while 
the 1275 cm−1 and 431 cm−1 disappeared. Raman spectroscopic behaviors of EtOH itself were the red shift of 
C-H bend and rock mode, C-O stretching, C-C stretching, and the disappearance of CH2 twist and C-C-O bend. 
At the same time, Raman spectroscopic behaviors of TCA as toxic target were red shift of the band at 1688 cm−1 
assigned to -CH=O with blue shift of the bands at 1444 cm−1 assigned to -CH3, 1303 cm−1 assigned to CH=CH, 
and 1044 cm−1 assigned to C-CH=O, respectively.

Generally speaking, the red shift of Raman band always represents corresponding bond weaken between 
the vibrating atoms, in turn, the blue shift displays to corresponding bond strengthen26. In mitochondria, EtOH 
weakens not only the -CH=O of TCA but also -CH3 and -OH of EtOH itself. A detailed description of the 
dynamic three dimensional molecular behavior of the interaction between EtOH and TCA needs to be further 
described by theoretical simulation in the future.

According to the research findings of Mochly-Rosen17, mitochondrial aldehyde hydrogenase-2 (ALDH2) 
must be involved in the process of Et-OH interacting with TCA-CH=O. There are two enzymes,ε-protein kinase 
C (ε-PKC)27 and ALDH228 in vivo. In mitochondria, TCA is induced by hydrogen peroxide. When TCA is gen-
erated, EtOH immediately urges ε-PKC binding ALDH2, activates ALDH229, then red shifts the Raman band 
assigned to -CH=O of TCA.

It should be noted that compared with report from Daria Mochly-Rosen17, when EtOH (0.5 g/kg, approxi-
mately equal to 163 mM) was injected into the abdominal cavity, the ischemia and reperfusion injury of the left 
anterior descending coronary artery was significantly reduced without causing any side effects in vivo. And then 

Figure 3. Gross Raman spectroscopic behaviors of EtOH on TCA-CH=O in the absence and presence of 
mitochondria. The shapes of Raman bands at 1688 cm−1 and 1641 cm−1 of TCA are symmetric without split (the 
black line in Fig. 3). Compared with Raman spectra of TCA and EtOH (the red line in Fig. 3), respectively, in 
the absence of mitochondria, the Raman band of 1688 cm−1 assigned to -CH=O was split (see also Fig. 4b) by 
EtOH with significantly decreased intensity (the blue line in Fig. 3). In the presence of mitochondria, the Raman 
band of 1688 cm−1 assigned to -CH=O was remarkably shifted from 1688 cm−1 to 1681 cm−1 by EtOH (the 
green line in Fig. 3). The above results show that EtOH has an important influences on the molecular structure 
of TCA-CH=O, especially in mitochondria.
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combined with the latest research results of this group, resveratrol (0.01 mM) has a significant regulatory effect on 
the structure of TCA-CH=O for preventing mtDNA damage30. Therefore, when the -OH of EtOH changed the 
structure of TCA-CH=O, its concentration was significantly lower than the safe concentration of ethanol. EtOH 
for regulating the structure of TCA-CH=O is very safe for human health without any side effects.

In non-hydrogen bonding system, the molecular interaction is very weak. The molecular relaxation time is 
much longer than the molecular rotation time. The bandwidth of Raman vibration is mainly derived from the fast 
molecular rotation. But in hydrogen bond system, EtOH as a beneficial solvent, the molecular relaxation time is 
much shorter than the molecular rotation time due to the strong interaction between molecules. The variations of 
Raman spectrum mostly come from the fast molecular relaxation25.

When Raman band originates from a well isolated vibration, the width of Raman band will be related to only 
molecular rotation. But in case of a spectrum of a mixture of TCA and EtOH, some individual components have 
wide and overlapping bands, the broaden width of the band may be simply due to overlapping of bands of EtOH, 
TCA, and possibly bands from new bonds created between both components as well as molecular rotation of each 
component. Therefore, the changes of some minor bands should be further explored.

Figure 4. Raman spectroscopic behaviors of EtOH, -OH, and -CH3 on TCA. (a) The characteristic Raman 
bands of TCA were located at 1688 cm−1 assigned to -CH=O and 1641 cm−1 assigned to C=C, respectively. 
The standard FWHMs of above mentioned Raman bands were 23 cm−1 and 10 cm−1, respectively. (b) 
Raman spectroscopic behaviors of EtOH (CH3CH2OH, 99.7%) on TCA-CH=O (97%) in the position, 
shape, and FWHMs of bands at 1688 cm−1 and 1641 cm−1, respectively. (c) Raman spectroscopic behaviors 
of methanol (CH3OH, 99%), EtOH (CH3CH2OH, 99.7%), n-propyl alcohol (CH3(CH2)2OH, 99%), n-butyl 
alcohol(CH3(CH2)3OH, 99%), n-pentanol(CH3(CH2)4OH, 99%), and n-hexyl alcohol (CH3(CH2)5OH, 
99%) on TCA-CH=O (97%) in the position, shape, and FWHM of bands at 1688 cm−1 and 1641 cm−1, 
respectively. (d) Raman spectroscopic behaviors of n-propyl alcohol (CH3(CH2)2OH, 99%) and isopropanol 
(CH3(CH2)2OH, 99%), on TCA-CH=O (97%) in the position, shape, and FWHM of bands at 1688 cm−1 and 
1641 cm−1, respectively. (e) Raman spectroscopic behaviors of EtOH (CH3CH2OH, 99.7%), 2-phenylethanol 
(C6H5CH2CH2OH, 99%), phenoxyethanol (C6H5OCH2CH2OH, 99%), and benzyl alcohol (C6H5CH2OH, 99%) 
on TCA-CH=O (97%) in the position, shape, and FWHM of bands at 1688 cm−1 and 1641 cm−1, respectively. 
(f) Raman spectroscopic behaviors of n-hexane (CH3(CH2)4CH3, 99%), n-heptane (CH3(CH2)5CH3, 99%), 
n-octane (CH3(CH2)6CH3, 99%), and n-nonane (CH3(CH2)7CH3, 99%) on TCA-CH=O (97%) in the 
position, shape, and FWHM of bands at 1688 cm−1 and 1641 cm−1, respectively. (g) Raman spectroscopic 
behaviors of glycol (HOCH2CH2OH, 99%), 1, 2- propylene glycol (HOCH2CHOHCH3, 99%), and glycerol 
(HOCH2CHOHCH2OH, 99%) on TCA-CH=O (97%) in the position, shape, and FWHM of bands at 1688 cm−1 
and 1641 cm−1, respectively.
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During the interaction of EtOH with TCA, the spectroscopic behaviors of EtOH on TCA were undoubtedly 
local electron delocalization of TCA-CH=O by -OH in EtOH, especially in mitochondria. But there have been a 
lot of problems such as the molecular behavior of ALDH2 required to be explored in the future. It is worth noting 
that the -CH3 hydrophobic and steric effects are also very important. On the one hand, the -CH3 hydrophobic 
and steric decreases molecular binding force, declines the activation energy of molecule. On the other hand, the 
activation energy of -CH3 is much weaker than that of -CH=O, and the -CH3 rocking motion is faster than that 
of the -CH=O stretching.

It is known for quite a long time that EtOH is the most safe, common, and important organic solvents, but 
its other value has not been developed enough. Our results suggested that EtOH should be given high attention, 
development, and application in other areas. Some compounds containing -OH and -CH3 may become effective 
material for eliminating TCA. The influences of EtOH on TCA-CH=O are pilot contribution to eliminate TCA 
in order to protect and repair mtDNA by means of the decrease of 8-oxoG.

Conclusions
The influences of EtOH on the structure of TCA-CH=O were clarified for the first time. It was found that the 
changes in UV-vis and Raman spectroscopic behaviors of TCA-CH=O can be related to -OH and -CH3 of 
EtOH. Both -OH and -CH3 red shifted the maximum UV-vis peak at 301 nm of TCA. Raman stretching band 
of TCA-CH=O was split by EtOH only related to the -CH3 or H in -CH3. The -CH3 increased TCA-CH=O 
stretching frequency while the -OH induced it. The more exposed active -OH in polyhydroxy alcohols, the wider 
FWHM or the less stretching frequency of Raman bands of TCA-CH=O. The ectopic -CH3 red shifted UV-vis 
peak at 301 nm and Raman band of TCA-CH=O. The spectroscopic behavior of -CH3 was obviously opposite 
to that of -OH. In mitochondria, EtOH red shifted Raman stretching band of TCA-CH=O. The C-H bend and 
rock mode, C-O stretching, and C-C stretching of EtOH itself were red shifted, while the CH2 twist and C-C-O 
bend of EtOH disappeared. The paper unearths the influences of EtOH to trap and transform the structure of 
TCA-CH=O. This discovery has an important contribution to eliminate TCA in order to protect and repair 
mtDNA by means of the decrease of 8-oxoG. A detailed description of the dynamic three dimensional molecular 
behavior of the interaction between EtOH and TCA needs to be further described by theoretical simulation in 
the future.

Methods
Materials. Alkanes were n-hexane, n-heptane, n-octane, n-nonane, and cyclohexane, respectively. Aliphatic 
alcohols were methanol, EtOH, n-propyl alcohol, n-butyl alcohol, n-pentanol, n-hexyl alcohol, and isopropanol, 
respectively. Aromatic alcohols were 2-phenylethanol, phenoxyethanol, and benzyl alcohol, respectively. Polyols 

Figure 5. Raman spectroscopic changes of TCA and EtOH during the interaction of EtOH with TCA in 
mitochondria. (a) Gross Raman spectroscopic changes of TCA and EtOH in the range of 100 cm−1 to 1800 cm−1 
during the interaction of EtOH with TCA in mitochondria. (b) Characteristic Raman spectroscopic changes 
of TCA and EtOH in the range of 1650 cm−1 to 1740 cm−1 during the interaction of EtOH with TCA in 
mitochondria. (c) Characteristic Raman spectroscopic changes of TCA and EtOH in the range of 1420 cm−1 to 
1500 cm−1 during the interaction of EtOH with TCA in mitochondria. (d) Characteristic Raman spectroscopic 
changes of TCA and EtOH in the range of 1230 cm−1 to 1330 cm−1 during the interaction of EtOH with TCA in 
mitochondria. (e) Characteristic Raman spectroscopic changes of TCA and EtOH in the range of 1020 cm−1 to 
1120 cm−1 during the interaction of EtOH with TCA in mitochondria. (f) Characteristic Raman spectroscopic 
changes of TCA and EtOH in the range of 400 cm−1 to 920 cm−1 during the interaction of EtOH with TCA in 
mitochondria.
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included glycol, 1, 2- propylene glycol, and glycerol, respectively. Other reagents were potassium chloride, hepes, 
magnesium chloride, and EDTA. The above reagents were analytical pure without further purification. The purity 
of all above reagents were not less than 99% and purchased from Beijing Chemical Works (Beijing, China). TCA 
(97%) was obtained from Shanghai aladdin biochemical technologies limited corporation (Shanghai, China). Fat 
free bovine serum albumin (BSA) was obtained from Beijing chemical works (Beijing, China). Ultrapure water 
(18.2 MΩ cm−1) was produced using Millipore water purification system.

Instrument. UV-vis spectrum detection were performed on UV-2550 spectrophotometer (Shimadzu, Japan). 
The scanning range was from 190 nm to 400 nm with a resolution of 0.1 nm. Raman spectra were detected with 
Renishaw in Via Raman microscope consisting of a charge-coupled device detector and a confocal digital micro-
scope with a 5×objective, a numerical aperture 0.12, and a 1,800 g mm−1 spectrograph gratings. The accumu-
lation time was 10 s. The accumulation number was 5 times. The laser power set on sample was 10 mW. Raman 
spectra were recorded on an amplified recorder and the 488 nm laser as the excitation source. A spectral range 
was from 100 cm−1 to 1,800 cm−1 with a resolution of 1 cm−1. The pH value was measured by a PB-10 exact digital 
pH meter (Sartorius, Germany). Mitochondrial extraction was finished on 3K15 desktop high speed refrigerated 
centrifuge (Sigma, Germany).

Mitochondrial preparation. Mitochondria come from rat myocardium. Wistar rats, male, clean grade, 
were obtained from the laboratory animal center of college of life sciences in Jilin university. Rats weighing 
220 ± 2 g were selected. Before animals were euthanized, rats were free to drink and feed for 12 hours and then 
fast 12 hours, respectively. The heart were removed immediately after animal were anaesthetized with diethyl 
ether, weighed and immersed in ice-cold mitochondrial isolation buffer. No live animals were tested in this study. 
Myocardial tissue was obtained from rat heart after procedures approved by the Animal Care and Use Committee 
of College of Life Sciences, Jilin University, China. All experimental procedures strictly conformed to the Animals 
(Scientific Procedures) Act 1986 and fully complied with the ethical guidelines for the Care and Use of Laboratory 
Animals. The buffer was kept cold at 4 °C during the experiment. Other procedures of mitochondrial preparation 
were operated according to the previous method without modification31–33. Mitochondrial samples were used 
within 1 hour.

Sample preparations and detected conditions. According to the previous work accumulation, the 
concentration of TCA was 25 mM. The reference solvent was ultrapure water. The observed UV-vis peak of TCA 
was located at 301 nm. Choosing the TCA as standard, the observed Raman bands were situated at 1688 cm−1 
and 1641 cm−1, respectively. The samples were freshly prepared and kept in dark place. All samples were detected 
within 1 hour and the temperature was 25 °C.

Data image processing. Origin 8.0 software (the United States) was used for data image processing, and 
the spectra were normalized.

Data availability. No datasets were generated or analyzed during the current study.
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