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Hippocampal sharp-wave ripples 
in awake mice are entrained by 
respiration
Yu Liu, Samuel S. McAfee & Detlef H. Heck

Several recent studies have shown that respiration modulates oscillatory neuronal activity in the 
neocortex and hippocampus on a cycle-by-cycle basis. It was suggested that this respiratory influence 
on neuronal activity affects cognitive functions, including memory. Sharp-wave ripples (SWRs) are 
high-frequency local field potential activity patterns characteristic for the hippocampus and implicated 
in memory consolidation and recall. Here we show that the timing of SWR events is modulated by the 
respiratory cycle, with a significantly increased probability of SWRs during the early expiration phase. 
This influence of respiration on SWR occurrence was eliminated when olfactory bulb activity was 
inhibited. Our findings represent a possible neuronal mechanism for a direct influence of the respiratory 
cycle on memory function.

In their 2006 opinion piece, Fontanini and Bower suggested that respiration-locked neuronal oscillations, which 
the olfactory bulb (OB) generates with almost every breath, might propagate throughout the entire neocortex via 
the olfactory system, creating a direct link between respiration and cortical neuronal rhythms1. In 2014 Ito et al.  
showed that indeed, OB respiration-locked oscillations were responsible for driving respiration-locked neu-
ronal oscillations in the whisker barrel somatosensory cortex of the awake mouse2. The same study also showed 
that the power of neocortical gamma oscillations was modulated in phase with the respiratory cycle2. Because 
of the strong correlation of gamma oscillations with numerous cognitive functions including memory3–7, the 
phase-amplitude coupling between respiration and gamma power lead to speculations that respiration could 
directly influence cognitive functions associated with gamma oscillations2, 8, 9.

The hippocampus, a structure essential for memory function, is not formally a part of the olfactory system, 
but it receives inputs from the piriform cortex via the entorhinal cortex and exhibits respiration-locked oscil-
lations10–12. The hippocampal network generates characteristic sharp-wave ripple (SWR) activity which has 
been shown to be critically involved in memory consolidation and memory retrieval in mice13–15, rats16–23 and 
non-human primates24–26.

In a recent study Zelano and colleagues showed that memory recall in humans is modulated by their respira-
tory phase, with subjects showing the most reliable memory recall of memorized items when they were presented 
during the inspiratory phase27. This effect occurred only when subjects were breathing through the nose, suggest-
ing that respiration-locked OB activity was a necessary factor27. The neuronal mechanism behind the modulation 
of memory function with the phase of respiration is unknown.

Here we asked whether hippocampal SWR activity is modulated by respiration and whether respiratory 
influence on SWR activity required OB activation. To this end we performed extracellular recordings in the 
dorsal hippocampal CA1 region in awake head-fixed mice while simultaneously monitoring respiration. The 
role of olfactory bulb activity was evaluated using designer receptors exclusively activated by designer drugs 
(DREADDs)28 to inhibit respiration-locked activity in the OB.

Results
We used extracellular recording techniques in awake, head-fixed mice to measure local field potentials in the 
dorsal hippocampal CA1 region while simultaneously monitoring respiratory activity using a thermistor placed 
in front of the nose (Fig. 1a–c). The LFP signal was band-pass filtered at 150–200 Hz to facilitate the detection of 
SWR events using a threshold function (Fig. 1). Recordings of hippocampal SWR activity were conducted in nine 
mice. Five mice were assigned to a control group and 4 mice to a group that received bilateral injections of a viral 
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vector construct that caused the expression of DREADDs in afferent projections to the main OB. This allowed 
us to temporarily suppress respiration-locked OB activity by systemic injection of CNO, as verified in separate 
experiments involving recordings of OB activity in an additional 4 mice (Fig. 2).

In the control group of 5 mice a total of 382 SWRs were detected during periods where the mouse was at rest. 
The waveform of the averaged raw SWR activity showed the characteristic combination of a negative deflection 
and high-frequency oscillations (Fig. 3a). Time-Frequency analyses of LFPs around the SWRs indicated that the 
detected SWRs had same peak frequency and duration as reported in literature (Fig. 3b) (for a recent review on 
SWR see ref. 29).

We used Rayleigh circular statistics to analyze the distribution of SWR events relative to the phases of the 
respiratory cycle during resting conditions, i.e. with respiratory frequencies not exceeding 4 Hz. This analysis 
revealed a significantly increased probability of SWR events during the early expiration phase of respiration 
(Rayleigh test: n = 382; r = 0.14; z = 7.35; p = 0.02). As illustrated in the polar plot in Fig. 3c, the respiratory phase 
during which SWR probability was highest (around 210°) corresponded to early expiration (Fig. 3c).

Effect of inhibiting respiration-locked OB activity on respiration- locked CA1 activity. Using 
4 mice with OBs injected with DREADDs vector we investigated the effect of respiration-locked OB activity on 
hippocampal LFP oscillations. Hippocampal LFP activity contains slow-frequency oscillations in the delta and 
theta range that have been shown to be phase- locked to nasal respiration11, 12. We compared the amplitudes 
of respiration-aligned LFP activity in the hippocampus immediately before and 30-min after CNO-injection 
in OB-DREADD treated mice. Respiratory and LFP activity were aligned on the end of expiration. The res-
piratory waveform was not changed by CNO-injection (Fig. 4a). However, the respiration-aligned, average LFP 
signal shows a significant reduction in the amplitude of respiration-locked oscillations (Two-Sample t-test: 
p < 0.05). Figure 4b shows group mean LFP signals aligned on the end of expiration as measured before and 
after OB inhibition by CNO injection. Dashed horizontal lines in the panel illustrate how the amplitude of the 

Figure 1. Recording sites and raw data examples of simultaneous recordings of local field potentials (LFPs) 
in the awake mouse. (a) Schematic drawing of the top view of a mouse brain. LFPs were recorded from the 
left CA1 region of the hippocampus. Dashed line represents the plane of the coronal section shown in (b) 
for verifying the recording location in CA1. Stars represent sites of bilateral injections of DREADD vector in 
OB. (b) An example of an electrolytic lesion (arrow) in a coronal section of the CA1 region of hippocampus. 
(c) Examples of respiration (Resp) and raw LFP data. The trace marked “Resp” shows respiration related 
temperature changes with expiration causing an increase in temperature, which corresponded to a decrease 
in voltage. The troughs in the trace thus represent the ends of expiration (Exp: expiration, Ins: inspiration). 
LFP1 and LFP2 were recorded from electrodes in CA1. Arrow points at a characteristic high-frequency ripple 
activity associated with SWRs. Abscissa represents time in seconds. (d) An enlarged view of raw LFPs around 
a hippocampal ripple event (arrow). Same LFP amplitude scale bar as in (c). (e) High-pass filtered versions of 
the LFPs in panel d emphasizes the high-frequency ripple components of CA1 activity. Horizontal dashed line 
above LFP1 represents the mean filtered LFP amplitude plus 3 standard deviations (SD) from a continuous 
recording of 60 seconds, which was used as a threshold (mean ± 3 SD) for automatic detection of sharp-wave 
ripple activity in the CA1 region. The arrow marks the beginning of ripple activity.
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Figure 2. Disruption of olfactory bulb respiration-locked oscillations with administration of inhibitory 
DREADDs channel activator Clozapine-N-oxide (CNO). (a) Baseline example of simultaneously recorded 
olfactory bulb LFP and respiration shows robust neuronal oscillations in OB locked to the respiratory cycle. 
Time and voltage scale apply to (a,b). Troughs in respiration trace correspond to the end of expiration. 
(b) Example of olfactory bulb LFP after systemic injection of CNO solution. Respiration-locked neuronal 
oscillations are visibly disrupted. (c) Group data showing disruption of respiration-locked OB activity following 
CNO injection. Peak correlation values were taken to account for variable latency of respiration-driven 
oscillations. 10 minutes of resting data were used to calculate each cross correlation. Paired T-test: **p < 0.01. 
Exp: expiration; Ins: inspiration.

Figure 3. Hippocampal sharp-wave ripple (SWR) activity in relation to the respiratory cycle in mice. (a) 
Average local field potential (LFP) aligned on hippocampal SWRs (mean +/− standard error). Data are 
aligned on the onset of ripple-activity (at time 0 s). (b) Time-Frequency mapping of LFPs around CA1 ripples. 
Color represents normalized frequency power. (c) Polar plot reflecting the distribution of SWR events relative 
to respiratory phase. Red arrow represents the mean vector determined by circular statistics (Rayleigh test: 
n = 382; r = 0.14; z = 7.35; p = 0.02). 0° represents the end of expiration, 180° corresponds to the end of 
inspiration. Concentric circles mark r values as indicated in the lower half of the circle.
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respiration-locked oscillation in CA1 was determined by measuring the voltage differences between LFP minima 
and maxima (peak-to-trough voltage differences). Inhibiting OB bulb activity significantly reduced the amplitude 
of respiration-locked oscillations in CA1 (Fig. 4c).

Effect of respiration-locked OB activity on SWR event timing. Finally, we asked whether the SWR 
activity was influenced by respiration-locked OB activity. In the four DREADD treated mice we compared the 
amplitudes, ripple frequency and the timing of SWR events relative to the phase of respiration before and after 
inhibition of respiration-locked OB activity by CNO injection. In all four mice combined we detected a total 
of 289 and 310 SWR events in comparable time periods before and 30 min after CNO injections, respectively. 
Inhibiting respiration-locked OB activity did not alter the amplitude of SWRs (Fig. 5a). However, the power 
of the ripple oscillation measured with the 100–200 Hz frequency range was significantly reduced following 
CNO-injection (Fig. 5b; Two-Sample t-test: p < 0.05). Analysis of SWR timing relative to the respiratory cycle 
prior to CNO injection revealed a significantly increased probability of SWR events during early expiration at a 
phase angle of around 210° (Fig. 5c; Rayleigh test: r = 0.18; z = 9.73; p = 0.001). This is consistent with results from 
the control group of 5 mice that did not receive DREADD treatment (Fig. 3c). Analysis of measurements taken 
30 min after CNO-injection no longer showed a significant relationship between respiratory phase and SWR 
events (Fig. 5d; Rayleigh test: r = 0.09; z = 2.53; p = 0.278).

Figure 4. Changes in respiration and local field potential (LFP) recorded in hippocampal CA1 region following 
Clozapine N-oxide (CNO) injection in DREADD-mice (n = 4). (a) Group-average respiratory traces before 
(blue) and after (red) CNO-injection aligned on the end of expiration (t = 0). (b) Group-average LFP traces 
aligned on the end of expiration before and after CNO injection. Color code as in (a). Horizontal black bars 
mark times where the two traces differ significantly (two-Sample t-test: *p < 0.05). The amplitude of respiration-
locked LFP oscillations was determined by measuring the voltage differences between LFP maxima and minima 
before and after CNO injection (red and blue dashed horizontal lines mark maximal and minimal voltage 
values in the corresponding average LFP traces). Blue and red vertical double-arrows indicate peak-trough 
voltage differences for pre and post CNO injection measurements, respectively. (c) The amplitude of average 
respiration-locked LFP oscillations in CA1 was significantly reduced when OB bulb activity was inhibited by 
CNO injections. Error bars represent standard error of the mean. (Paired-t-test: *p < 0.05).
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Discussion
In this study we provide the first evidence that hippocampal SWR generation is modulated by respiration and that 
the influence of respiration on SWRs requires normal OB activity. Our evidence is based on experiments involv-
ing the simultaneous observation of hippocampal SWR activity and respiratory behavior in awake, head-fixed 
mice. We conducted our experiments under two main conditions: with the OB intact or with OB activity inhib-
ited using neurochemical (DREADD) techniques. The main new findings are that the probability of the hip-
pocampal network to generate SWR activity is significantly increased during the early phase of the expiration, 
and that this modulation of SWR generation depends on an intact OB. Taking into account the slow buildup of 
excitatory activity that has been shown to precede the high-frequency ripple30, the phase of increased probability 
would be slightly advanced to late inspiration.

We suggest that these findings are functionally relevant for memory formation and recall, as they tie in with 
recent results from a study in humans, which demonstrated a significant link between memory function and the 
phase of nasal respiration27. In this study subjects were shown pictures of real-world objects and were later asked 
to identify those objects out of a larger collection that contained an equal number of new objects. The probability 
to correctly identify previously seen objects was significantly higher for objects presented during the inspiration 
phase, both in the learning and the recall phase of the experiment27. Without knowing the timing of SWRs in 
this experiment relative to object presentation, recognition or response we cannot directly link the preferred 
phase of SWR timing in mice to the human results. However, the results from this study relate to our findings 
in two important ways: 1) Zelano et al. demonstrated that memory function is modulated by respiration on a 
cycle-by-cycle basis and 2) the influence of respiration on the reliability of memory recall was only observed 
during nasal respiration and not when subjects were breathing through the mouth27. Our results thus suggest a 

Figure 5. Changes in hippocampal sharp-wave ripple (SWR) activity before and after Clozapine N-oxide 
(CNO) Administration in mice with bilateral injections of DREADD vector in OB. (a) Average LFP waveform 
aligned on the SWR onset (t = 0). Solid blue and red lines represents mean LFP traces pre- and post-CNO 
treatment, respectively. Shading represents standard error. (b) Comparison of normalized spectral power 
within the 100–200 Hz frequency band pre- and post-CNO treatment. Two-Sample t-test: *p < 0.05. (c) Polar 
coordinates (°) for SWR activities during respiratory cycles, showing normalized vectors (thicker line areas) 
and mean vector length (red arrow; r) determined by circular statistics (Rayleigh test). 0° represents the end of 
expiration. The largest circle represents the maximum r (1.0). Pre-CNO: r = 0.18; z = 9.73; p < 0.001; Post-CNO: 
r = 0.09; z = 2.53; p = 0.278.
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possible neuronal mechanism underlying the modulation of memory function with the phase of nasal respiration, 
as described by Zelano and colleagues27.

Our findings also raise the question of how respiration-locked OB activity can modulate the probability of 
SWR generation. Current data suggest that SWRs are intrinsically generated within the hippocampal network31, 
as they are also generated in hippocampal slice preparations32, 33. The probability of a SWR event in the intact 
brain could thus be modulated by respiration-locked activity reaching the hippocampus via the entorhinal 
cortex11, 12. As demonstrated here by us (Fig. 4) and previously by others11, 12, the effects of respiration-locked 
synaptic activity reaching the hippocampus via the entorhinal cortex can be directly observed in form of 
respiration-locked LFP oscillations. Our results show that loss of OB activity significantly reduces the amplitude 
of respiration-locked oscillations (Fig. 4). We hypothesize that the reduced modulation of hippocampal network 
excitability is no longer sufficient to cause SWR events generation to be phase-locked to respiration.

A second potential mechanism is less direct as it involves the suppression of SWR by cholinergic projections 
to the hippocampus from medial septal neurons34. Manns and colleagues reported that neurons in the basal 
forebrain nuclei, including cholinergic neurons, showed rhythmic spike activity that was highly correlated with 
respiration-locked OB activity35. Optogenetic activation of medial septal neurons, which provide cholinergic 
input to the hippocampus, has been shown to effectively suppress the generation of SWR in the hippocampal 
network34. A cholinergic input to the hippocampus that is modulated in phase with respiration could thus result 
in a rhythmic suppression of SWR and could create the respiration-locked bias we observed.

In summary, there is increasing recognition of the influence of the respiratory phase on various aspects of 
brain activity, including activity linked to cognitive functions2, 8, 9, 27, 36. Cognitive and emotional effects of breath-
ing exercises consisting of practicing specific patterns of breathing have been the subject of several studies37–45. By 
contrast, the investigation of the influence of respiratory phase on brain function on a cycle-by-cycle basis is still 
in its infancy. The surprising discovery of the influence of respiratory phase on memory and memory-controlling 
neuronal activity is clearly relevant for understanding the fundamental mechanisms of memory. Since respiration 
is easily monitored and manipulated, these new findings may also prove to be of use in a clinical context, either 
as a diagnostic tool by linking abnormal respiratory patterns to memory deficits or for the treatment of memory 
deficits, e.g. by using biofeedback to identify respiratory patterns that enhance respiration-SWR phase locking.

Methods
Animals. Nine adult male mice (C57BL/6J) were used for investigation of hippocampal SWR activity, divided 
into a control group (n = 5) and a group that received olfactory bulb DREADD-treatment (n = 4). Four addi-
tional DREADD-treated mice were used to verify that CNO injections reliably inhibited OB activity. Mice were 
housed in a breeding colony at the University of Tennessee Health Science Center animal facilities with 12-hour 
light/dark cycles in standard cages with free access to food and water. All animal procedures were performed in 
accordance with the NIH Guide for the Care and Use of Laboratory Animals (2011). Experimental protocols were 
approved by the Institutional Animal Care and Use Committee.

DREADD-transfection procedures in the OB. For controlled inhibition of respiration-driven OB activ-
ity, animals received bilateral 100 nL injections of AAV8-CamKIIa-HA-hM4D(Gi)-IRES-mCitrine (Addgene, 
Cambridge, MA) to the main OB (AP 4 mm, ML 0.85 mm, Depth 0.5 mm). Vectors were infused at a rate of 
100 nL/min using a microsyringe (Neuros 1 uL, Hamilton Instruments, Reno, NV) and quintessential stereotaxic 
injector (Stoelting Instruments, Wood Dale, IL). The syringe needle was held stationary for 1 minute pre-injection 
and 2 minutes post-injection to allow for expansion of compressed tissue and diffusion of fluid into the tissue, 
respectively. Surgical sites were then covered with Kwik-sil epoxy (World Precision Instruments, Sarasota, FL) 
and the skin was closed with cyanoacrylate glue. Mice were given analgesic medication (0.05 ml carprofen solu-
tion, s.c.) and returned to their home cage for 4 weeks of viral incubation before preparation for recording.

Clozapine-N-Oxide administration. Clozapine-N-Oxide (CNO) powder (Sigma-aldrich, St. Louis, MO) 
was dissolved in 5% DMSO and sterile injectable saline to create an ip-injectable solution. To initiate inhibition 
of OB activity, mice were injected with a dose of 5 mg/kg CNO in solution. Recordings were taken continuously 
over the next hour to observe electrophysiological changes as the drug took effect.

Surgery. Mice were surgically prepared for awake, head-fixed, electrophysiological recordings. Surgical anes-
thesia was initiated by exposing mice to a mix of 3% isoflurane in oxygen in an incubation chamber. Anesthesia 
was maintained with 1–2% isoflurane in oxygen during surgery using an Ohio isoflurane vaporizer (Highland 
Medical Equipment, Deerfield, IL, USA). Rectal temperature was maintained at 37–38 °C with a servo-controlled 
heat blanket (FHC, Bowdoinham, ME, USA). To prepare for electrophysiological recordings from left CA1 region 
of hippocampus, a round skull opening (1.0–1.5 mm diameter) over the left hippocampus was made using a 
dental drill (Microtorque II, RAM Products, Inc., USA) without damaging the underlying dura (Fig. 1a; AP 
2.3 mm; ML 2.0 mm). A cylindrical plastic recording chamber (4.5 mm diameter and 5 mm height) was placed 
over the skull openings and a metal head-post was mounted on the skull for head fixation during experiments. 
The chamber and head-post were embedded in acrylic cement and anchored to the skull bone using three small 
skull screws. The chamber was completely filled with triple antibiotic ointment. While still under anesthesia, mice 
were injected subcutaneously with Carprofen solution (0.05 ml; 50 mg/ml) to alleviate pain. The same surgical 
methods were used on 4 DREADD treated mice to implant thermistor probes above the nasal cavity to monitor 
respiratory activity46 and to prepare the mice for recordings from the OB (AP 4 mm, ML 0.85 mm). A postsurgical 
recovery period of 3–4 days was allowed before electrophysiological experiments.

Electrophysiological experiments. Mice were adapted to the head-fixed position by placing them in the 
head holder for increasing amounts of time before the first recording session. Prior to each recording session, 
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the chambers were cleaned and filled with sterile saline solution. Two extracellular recording electrodes (glass 
insulated tungsten/platinum; 80 μm diameter; impedance: 3.5–5.0 MΩ) were used to record LFPs. During exper-
iments, the guiding tubes of a computer-controlled microdrive (Thomas Recording, Germany) were lowered 
into the saline-filled recording chamber to a distance of less than 1 mm from the dura surface. The stainless steel 
guiding tubes also served as reference electrodes and were electrically connected to the brain tissue via the saline 
solution. Two recording electrodes (350 μm apart) were slowly advanced through the intact dura into the neocor-
tex directly overlying the hippocampal CA1 region and eventually into the CA1 proper for recordings. The accu-
racy of electrode tip positioning in CA1 was verified by histological examination of electrolytic lesions (10 μA; 
12 s) created to mark the recording site (Fig. 1b). During the recordings, penetration depth and the appearance 
of characteristic SWRs in the LFP signal29 (Fig. 1c–e) were routinely used to verify electrode placement in CA1. 
All signals were band-pass filtered at 0.1 Hz–200 Hz, digitized at 2 kHz and saved to a hard-disk (CED 1401 and 
Spike2 software, Cambridge Electronic Design, U.K.). Respiration was simultaneously recorded using a thermis-
tor that was positioned near a nostril46.

For mice in the control group, LFPs in the CA1 region were continuously recorded for at least 20 min. In 
DREADD-treated mice, LFP recordings were continued for a minimum of 50 min, including 10 min before and 
40 min after CNO-administration.

Data analysis. Detection of SWR activity in the CA1. For the analysis of hippocampal SWR, raw LFPs were 
band-pass filtered for the frequency range of SWR (150–200 Hz) (Fig. 1e). The mean amplitude and standard 
deviation of LFP amplitude fluctuation across each 1 min data block were calculated from the band-pass fil-
tered signal. Potential SWR onsets were detected as LFP values larger or smaller than the average LFP value by 
±3 SDs (Rothschild et al., 2017). A minimum of 5 ripple-frequency oscillation cycles (with the corresponding 5 
consecutive voltage peaks exceeding 3 SD) were required to define a SWR. The time of the 3 SD threshold cross-
ing of the first voltage peak of the oscillation defined the SWR onset. The end of a SWR was marked as the first 
LFP voltage that fell within the ± 3 SDs voltage range around the mean LFP, with the following voltage values 
remaining within this range for 200 ms. Based on this criterion, we treated SWRs separated by at least 200 ms as 
two distinct SWR events. SWR had to be detected on both recording electrodes.

It is relevant to mention that the high-frequency ripple component of the SWR complex is preceded by a 
slow build-up of excitatory activity30. In slice experiments this slow buildup has been shown to start between 50 
and 60 ms before the onset of the high-frequency ripple30. There is no reliable way to detect the onset of the slow 
buildup in the LFP recorded in vivo, which is why we used the reliably detectable onset of the high-frequency 
ripple activity as the temporal align for our analyses.

Time-frequency analysis of LFP. To examine time-frequency aspects of SWR activity in the CA1 region of the 
hippocampus, LFPs were analyzed using an open-source software FieldTrip47. Sections of LFP-data from 0.2 s 
before and 0.2 s after SWR-onsets were selected for the performance of SWR-aligned Time-Frequency Analysis 
(FieldTrip function: ft_freqanalysis; Frequency-Rang: 100–200 Hz; Slide-Window: 0.2 s; Step: 1 ms).

Statistical analyses. Two-Sample t-test and Paired t-test were used to analyze changes in amplitude and power 
spectrum of SWR activities. Circular statistics (Rayleigh tests) were used to analyze SWR distribution during 
respiratory cycles. The respiration-entrained SWR activities were illustrated in polar plots of the distribution of 
SWR-timing as a function of respiratory phase (polar plots). The degree of entrainment was determined by circu-
lar statistics (Rayleigh test)48 and demonstrated by the mean vector length (r). Greater r indicated greater activity 
entrainment by the respiratory cycles. Moreover, the angular position of the mean vector in polar plots indicted 
the preferred phase for SWR activity and was related to the respiratory phase at which the most activity was dis-
tributed. In the present study, 0° in the polar plot represents the end of expiration as monitored by a thermistor 
placed in front of mouse nostrils46. Average spectral power was calculated within the 100 to 200 Hz frequency 
band and was normalized to the maximum value in each mouse. Unless specified otherwise, figures represent 
results as mean ± standard error.

Verification of OB activity suppression by DREADD activation. For verification of 
DREADDs-induced disruption of respiration-locked neuronal oscillations in OB, respiratory activity was con-
tinuously monitored in 4 mice by a thermistor surgically implanted above the mouse nasal cavity46. Prior to 
CNO injection OB LFP oscillations were phase-locked to respiration (Fig. 2a). CNO injection eliminated the 
phase-locking of OB LFP oscillations to respiration (Fig. 2b). Waveform correlation analysis between the ther-
mistor signal and OB LFP activity was used to quantify the relationship between the nasal airflow and OB activity. 
The peak cross-correlation values of the thermistor and LFP signals were calculated before and after DREADD 
activation by CNO injection. CNO treatment significantly reduced the correlation between respiration and OB 
LFP activity (Fig. 2c; paired t-test, p < 0.01).

Histological evaluation of recording location. At the end of the experiments, animals were deeply 
anesthetized and intracardially perfused with 0.9% NaCl and followed by 4% paraformaldehyde solution. Brains 
(including OB) were removed and fixed in 4% paraformaldehyde solution for a minimum of 24 hours. The accu-
racy of electrode positioning was verified post-mortem for all animals by reference to surface maps of the location 
of cortical areas and hippocampus49. Fixed brains were sectioned at 60 μm and mounted onto slides. Light micros-
copy was used to verify the accurate position of the recording electrode tip in the CA1 region of the hippocampus 
(Fig. 1b).
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