
1Scientific REPORTS | 7: 8682  | DOI:10.1038/s41598-017-09411-x

www.nature.com/scientificreports

Investigations of Phase 
Transformation in Monocrystalline 
Silicon at Low Temperatures via 
Nanoindentation
Shunbo Wang, Hang Liu, Lixia Xu, Xiancheng Du, Dan Zhao, Bo Zhu, Miao Yu & Hongwei 
Zhao  

Nanoindentations of monocrystalline silicon are conducted to investigate the phase transformation 
process at a temperature range from 292 K to 210 K. The load-displacement curves are obtained and 
the residual indents are detected by Raman spectra. MD simulations are also conducted to identify the 
phase state during nanoindentation. The results show that the low temperature has no influence on the 
generation of Si-II during loading process of indentation, but the phenomenon of pop-out is inhibited 
with the temperature decreasing. The probability of pop-out occurrence has a dramatic drop from 260 K 
to 230 K. Both the generation and propagation of Si-III/XII transformed from Si-II are inhibited by the 
low temperature, and only a-Si was generated as a final phase state.

Monocrystalline silicon is an important semiconductor material in scientific research and industrial applications, 
like manufacturing of the micro-electro mechanical systems (MEMS), precision optics elements and electronic 
products. Its mechanical properties have been a research focus for many years1–4. Including the hardness, Young’s 
modulus and stiffness, lots of mechanical properties of silicon have been determined via nanoindentation test, 
which is a convenient and accurate method by recording penetration load (P) and displacement (h) during inden-
tation process. Meanwhile, because of the ability of inducing the high hydrostatic pressure and shear stress condi-
tion, nanoindentation is also used to investigate the phase transformation of monocrystalline silicon, combined 
with Raman microspectroscopy5, 6, transmission electron microscopy7, 8 and in situ electrical characterization9, 10.

At present, cryogenic engineering, associated with superconductor technology and space exploration, attracts 
more and more attention and requires high reliable structural functions. The properties and functions of mate-
rials are quite different at such extreme condition. But both the mechanical properties and process of the phase 
transformation of silicon are poorly understood at low temperature. Gridneva et al.11 reported the hardness of 
Si and Ge at the temperature down to −200 °C via microhardness tester. At elevated temperatures the hardness 
became larger, but at low temperatures the hardness was almost temperature independent. Molecular Dynamics 
(MD) with the temperature ranging from 300 K to 10 K was conducted by Zhao et al.12. They found that the 
degree of anisotropy increased with the temperature decreasing and identified the existence of Si-II and Si-XIII 
during indentation. M. M. O. Khayyat et al.13 carried out experiments with the temperature ranging from 300 K 
to 150 K using a microhardness tester, indicating that there was no Si-II formed under the temperature below 
200 K. However, the P-h curves were not recorded by their research, thus lots of important information from the 
indentation curves were lost. Johnson et al.14 used Raman spectra to detect Si-III and Si-XII at different tempera-
tures, over a range of 80–300 K, and found that both the Raman shift and the linewidth depended on temperature 
strongly. But the transformed phases were only conducted at room temperature, and the phase transformation 
process under low temperature was not discussed.

This study aims to identify the phase transformation process of monocrystalline silicon through nanoindenta-
tion tests at temperatures ranging from 292 K to 210 K. Phase transformation is described and explained through 
indentation unloading process and MD simulations are performed to identify the phase transformation during 
nanoindentation loading process.
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Results
P-h curves at different temperatures. It is well accepted that, at room temperature, monocrystalline 
silicon with the diamond cubic Si-I phase transforms into a much denser metallic Si-II phase (β-Sn phase) during 
the load process of indentation15. But the Si-II phase is unstable and can be transformed into other phases during 
unloading process. For rapid unloading, the Si-II phase tends to transform into amorphous silicon (a-Si), leading 
to an “elbow” phenomenon. While for slow unloading, most Si-II phase prefers to transform into a mixture of 
Si-III (bc8) and S-XII (r8) in a quite short time, leading to a discontinuity named as “pop-out”16. Fig. 1 shows 
the P-h curves obtained via nanoindentation at room temperature 292 K, and low temperature 260 K, 240 K and 
210 K. The unloading rate of all the indentations is settled as 1.6 mN/s, which is low enough to guarantee the 
occurrence of pop-out at room temperature, just as the P-h curve conducted at 292 K. It can be seen that at 260 K 
and 240 K, pop-out also occurs during unloading process. But with the temperature decreasing, pop-out disap-
pears at 210 K, and is substituted by a significant elbow phenomenon.

Statistical regularity of pop-out events. To investigate the specific regularity of the appearance of 
pop-out and elbow phenomenon, 25 nanoindentation experiments are conducted at each temperatures from 
292 K to 210 K with decrements of 10 K. Both the probability of the occurrence of pop-out and the force at the 
moment of pop-out occurring are exhibited in Fig. 2. The probability of pop-out declines dramatically when the 
temperature decreases from 260 K to 230 K, and pop-out disappears below 220 K. All the 225 indentation results 
show that if pop-out does not occur, the elbow event will exhibit instead. It indicates that the phenomenon of 
pop-out is inhibited, and elbow is promoted by the low temperature condition. Meanwhile, the critical load for 
pop-out occurrence at each temperature also decreases significantly with the temperature falling down.

Typical indentation curves at 240 K. From Fig. 2 it can be seen that 240 K is a special temperature that 
the probability of pop-out occurrence drops fastest and both pop-out and elbow can occur under a similar prob-
ability. Two typical P-h curves are extracted from 240 K indentations to analyze the phase transformation during 
unloading process for more details, as shown in Fig. 3a. It can be seen that the two curves coincide very well until 
the pop-out occurs, indicating that before this moment, the two indentations have a similar mechanical and 
phase state. The dash line in Fig. 3a shows purely elastic recovery process during unloading process. Both of the 
curves are separated from the ideal elastic recovery line apparently, as a result of phase transformation with the 

Figure 1. Load-displacement curves for nanoindentation at different temperatures.

Figure 2. Statistics of pop-out events performed at temperature from 290 K to 210 K of 80 mN indentations.
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stress releasing. Additionally, the h-t curve corresponding to the pop-out occurring in Fig. 3a is shown in Fig. 3b, 
whose coordinates are selected to exhibit the pop-out clearly. To make a contrast of pop-out phenomenon at 
different temperatures, a portion of h-t curve conducted at room temperature is shown in Fig. 3c. It can be seen 
that pop-out at 240 K takes ~3.0 seconds to finish, much longer than the ones occurring under room temperature 
with ~1.1 seconds. Additionally, there is a significant difference between the two pop-outs during the initial stage 
(marked with red lines). At 240 K, the beginning of the pop-out is a smooth and gradual process. But at 292 K, the 
slope of displacement changes suddenly and exhibits as a broken line.

Raman spectra of residual indents. Figure 4 illustrates the Raman spectra results of residual indents 
conducted at 292 K, 240 K and 210 K with different phenomenons. Shark peaks at ~166, 185, 353, 373.7, 385, 
396.3 and 437.5 cm−1 shown in the figure indicate the mixture of Si-III/XII phase generated during unloading 
process17–19. Two broad bands at ~150 and 469 cm−1 also can be found in the figure, which shows the amorphiza-
tion of silicon, known as a-Si20. As shown in the figure, at 292 K, slow unloading rate indentations with pop-out 
exhibit several peaks, indicating that a mixture of Si-III and Si-XII exist in the residual indents. A rapid unload-
ing indentation (marked as RA) is additionally conducted to make a contrast with the indentations performing 
pop-out phenomenon. The spectrum of RA shows that only a-Si can be found after indentation, where 520 cm−1 
peak can be ignored representing non-transformed Si-I phase21. Meanwhile, two indents conducted at 240 K are 
carefully detected, which perform pop-out and elbow during unloading process respectively. It can be seen that in 
the indents with elbow occurring, the structure in the residual area performs an amorphous state, just like “292 K 

Figure 3. Typical nanoindentation curves. (a) Load-displacement curves conducted at 240 K with phenomenon 
of pop-out and elbow. (b) Displacement- time curve with pop-out at 240 K. (c) Displacement- time curve with 
pop-out at 292 K.

Figure 4. Raman spectra of indents at different temperatures in silicon.
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elbow” spectrum. But in the one with pop-out occurring, phase of Si-III/XII generates. However, contrasted with 
“292 K pop-out” spectrum, the “240 K pop-out” crystal phase peaks are much weaker and broad bands also exist. 
This indicates that though pop-out occurs at 240 K, not all Si-II phase transforms to Si-III/XII, but some trans-
forming to a-Si instead. At 210 K, all the P-h curves perform elbows during unloading process, and the spectrum 
marked with “210 K” is plotted as represent. It is significant that at this temperature only amorphous phase gen-
erates, indicating that all the Si-II phase transforms to a-Si.

Discussion
The experiments so far reveal that low temperature has a significant effect on the phase transformation in 
monocrystalline silicon. According to the results exhibited above, the phenomenon of pop-out is inhibited by the 
low temperature and a-Si tends to be transformed with elbow events. As pop-out exists at 292 K and the probabil-
ity of its occurrence decreases with a continuous tendency, we can believe that the pop-out occurred at low tem-
perature is also a process that Si-II phase transforms to Si-III/XII. But the elbow event is not sufficient to prove the 
Si-II existing and transforming to a-Si, because it is difficult to identify whether the Si-I or Si-II transforming to 
a-Si and causes the elbow phenomenon. At room temperature in situ electrical indentation is an effective method 
to observe the phase transformation from Si-I to Si-II during loading process of indentation9, 10. But the electric 
characters of Si-II at low temperature are unknown and it is unreliable to evaluate the transformation process via 
this method.

To investigate the details of phase transformation during loading process, we perform MD simulations of 
nanoindentation on monocrystalline silicon. Figure 5a and b show the cross-sectional views of the constructed 
three dimensional models at the maximum depth of indentation at 210 K and 292 K respectively. A spherical 
tip was used to produce a relative homogeneous stress state of deformed silicon on the scale of nanometers. 
Generally, the Si-I phase exhibits a diamond cubic structure with each atom having four nearest neighbours at a 
distance of 2.35 Å, while Si-II phase has 4 nearest neighbours at a distance of 2.43 Å and 2 nearest neighbours at a 
distance of 2.58 Å22–24. At both temperatures, atoms with nearest neighbours from selected regions are extracted 
and shown in Fig. 5c and d. It is significant that the atoms at non-deformation region (marked with black circle) 
exhibit the phase state of Si-I, while the atoms just beneath the indenter (marked with red circle) perform as 
Si-II. The phase state is not influenced by temperature, which is consistent with the findings by Zhao et al.12. To 
determine the overall phase state of silicon, two regions are classified using radial distribution function (RDF), 
as shown in Fig. 5a and b. It can be seen that the RDF of two temperatures are also similar. The pair separation 
distance of the atoms at non-deformation region concentrates on the range between 2.19 Å and 2.50 Å, exhibiting 

Figure 5. MD simulation of nanoindentation at 210 K and 292 K. (a) 210 K (b) 292 K. (c) The nearest atoms 
extracted from non-deformation region. (d) The nearest atoms extracted from the region under indenter.
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the phase state of Si-I. At the region just beneath the indenter the pair separation distance concentrates on the 
range between 2.31 Å and 2.70 Å, which is superposed by the two kinds of nearest vibrating atoms of Si-II. From 
the MD simulation, it can be obtained that at the maximum depth of indentation, both phase states and phase dis-
tributions are similar at 210 K and 292 K, indicating that temperature has little effect on the phase transformation 
during nanoindentation loading process.

After confirming the Si-I has the ability transforming to Si-II, now we can further discuss the phase transfor-
mation process during unloading process of nanoindentation. According to the experimental results of Huang 
et al.4 and N. Fujisawa et al.25, the occurrence of pop-out at room temperature is due to the Si-III/XII phase 
reaching a critical volume as transformation seeds, and then grow up in a quit short period of time. The reduced 
probability of pop-out shown in Fig. 2 indicates that the generation of the transformation seeds is inhibited by 
the low temperature. With the temperature decreasing, Si-I becomes more and more difficult to transform to the 
initial Si-II. According to the decreasing trend of critical load for pop-out occurrence at each temperature, it can 
be assumed that because of the lower temperature, the generation of Si-III/XII needs a much more relax pressure 
condition. So temperature and pressure are two conditions controlling the phase transformation in silicon during 
unloading process. Additionally, the inhibition on phase transformation is also confirmed by the difference of h-t 
curves of pop-out occurred at 240 K and 292 K, as shown in Fig. 3. The pop-out occurred at 240 K takes a longer 
time and is smoother at the initial stage than the one at 292 K. The difference indicates that though the trans-
formation seeds have existed because of the occurrence of pop-outs, the propagation of phase transformation 
from Si-II to Si-III/XII is quite inhibited by the low temperature, leading to a longer period of time to finish the 
pop-out. So that both the generation and propagation of Si-III/XII transformed from Si-II are inhibited by the low 
temperature. The P-h curves and Raman spectra show that low temperature inhibits the generation of Si-III/XII 
phase and promotes the a-Si generating. Both the phase state (a-Si) and phenomenon during unloading process 
(elbow) at low temperature are similar with the condition of room temperature with a rapid unloading rate, but 
the physical origins of the two kinds of elbows are quite different. At room temperature the appearance of elbow 
is due to Si-II phase lacking of sufficient time to transform into Si-III/XII seeds, while at low temperature the 
condition inhibits the generation and propagation of Si-III and Si-XII.

In summary, nanoindentation study coupled with MD simulations reveals that at low temperature Si-II phase 
can be transformed from Si-I at high pressure. But both the generation and propagation of Si-III/XII are inhibited 
by the low temperature, and as a result Si-II phase can only transform to a-Si during the pressure releasing.

Methods
Sample information. The monocrystalline silicon (100) is provided by MTI Corporation in Hefei, China. 
The thickness of this sample is approximately 3 mm, and surface roughness of the polished side is less than 
0.5 nm. This side is used for nanoindentation measurements.

Apparatus and low temperature nanoindentation experiments. Nanoindentation tests with a sap-
phire Berkovich indenter (Synton-MDP) were performed via a costumed cryogenic nanoindentation device as 
shown in Fig. 6. The details of the instrument without cryogenic function can be found in ref. 26. The cryogenic 
cooling system (Janis Company, ST-400) in current investigation used liquid nitrogen (LN2) to implement the 
cooling effect. LN2 absorbed heat with flowing through the cold finger, and then existed with a state of nitrogen 
(N2). The adjusting heater settled at the top of cold figure was used to control the final temperature of the copper 

Figure 6. Schematic of the low temperature nanoindentation device.
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stage by adjusting the output power. As the flow rate of LN2 and power of adjusting heater were both carefully 
controlled, finally the temperature fluctuation of copper stage could be controlled within ±0.1 K. Two silicon 
diodes (Cryo-con Company, S900-CP) were used, which one was settled inside the cold finger to complete the 
PID feedback control with adjusting heater, and another was settled on the surface to monitor the temperature of 
specimen, connected with thermally conductive grease (M&I Company, Apiezon N). A piece of copper foil was 
placed to connect the tip and the copper stage to cool down the tip. The tip was also forced to touch the specimen 
under a load of 500 mN for 60 min at each temperature to guarantee the temperature between tip and specimen 
is closed. Then 25 nanoindentation experiments were carried out with the maximum indentation load of 80 mN, 
and the load/unload rate was 1.6 mN/s. Meanwhile, all the indentation experiments were performed inside vac-
uum environment with a vacuum degree of 10−2 Pa to prevent the occurrence of ice.

MD simulations. MD simulations were conducted to identify the existence of Si-II during low temperature 
nanoindentation. Periodic boundary conditions were chosen for the X and Z direction to reduce the effect of the 
simulation scale, and Y direction was built as assuming free boundary condition. Three-dimensional models were 
established and a thick of 4 Å atoms was selected to exhibit the cross section of nanoindentation. The MD model 
of the specimen was equilibrated to the target temperature of 292 K and 210 K respectively, assuming a microca-
nonical (NVE) ensemble–.
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