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Low threshold Rhodamine-
doped whispering gallery mode 
microlasers fabricated by direct 
laser writing
Nathália B. Tomazio, Leonardo De Boni & Cleber R. Mendonca

The combination of the outstanding properties of whispering gallery modes with both the flexibility 
and ease of processing of polymers is particularly attractive for photonics applications. However, the 
versatile fabrication of polymeric nano/microdevices with the desired photonic performance has proven 
challenging. Here, we report on lasing in Rhodamine B doped whispering gallery mode microcavities 
fabricated by direct laser writing via two-photon polymerization. Threshold pump energies as low 
as 12 nJ were achieved for free-space pulsed excitation at 532 nm. To the best of our knowledge, this 
is the lowest laser threshold attained for microcavities fabricated in a single step of femtosecond 
laser writing, a remarkable feat that stands out from other fabrication methods.

Pioneering studies back in the sixties demonstrated the potential of many dyes as active medium for the devel-
opment of tunable coherent light sources, covering the spectrum from ultraviolet to infrared wavelengths1–3. 
From these early findings forward, many different setups were investigated. Flashlight and high intensity lasers 
pumping were tested, with threshold excitation of tens of kW/cm2 4, 5. The high threshold excitation intensities 
reported for dye laser setups from the past century were mostly caused by misalignment and successive absorp-
tive/scattering losses inside the cavity, which have been overcome with the development of mirrorless optical 
devices at micro/nanoscale. Among the emerging microdevices, the so-called whispering gallery mode (WGM) 
microcavities stand out. Their unique characteristics, such as narrow spectral linewidth, extremely small mode 
volume and very high power density make them promising tools for the realization of low threshold lasers6. In 
particular, microcavities made of polymers come up with additional advantages, e.g. ease of processing and shap-
ing, low cost and their huge variety of properties7.

Much effort has been directed towards the fulfillment of high performance organic microdevices, with the 
material and fabrication technique to be chosen according to the intended application8–14. Femtosecond laser 
induced two-photon polymerization (2PP) has been proven to be a powerful tool for high-precision 3D microfab-
rication of organic materials15–17. Such technique benefits from the nonlinear nature of the two photon absorption 
process, which translates into spatial confinement of the photo-driven polymerization18. Besides, organic dyes as 
well as other active material can be directly incorporated into the polymeric matrix previously to fabrication, thus 
reinforcing the versatility of the technique19–21. Here, lasing activity from Rhodamine B (RhB) doped whispering 
gallery mode microcavities fabricated via two-photon polymerization is reported. The host material is an acrylic 
based polymeric hollow microcylinder exhibiting good structural quality and smooth sidewall surfaces (Q-factor 
of 1 × 105 for undoped microcavities around 1550 nm)22. The giant power density achieved within the microcav-
ities, combined with the high fluorescence quantum yield of RhB, gives rise to a lasing threshold as low as 12 nJ 
for free space pulsed excitation at 532 nm.

Results and Discussions
Figure 1a reports a typical microcavity fabricated by employing 0.1 nJ pulses from a Ti:sapphire oscillator with 
20 µm/s of laser scan speed. The hollow microcylinders exhibit an outer diameter of 50 µm, 6.5 µm of sidewall 
thickness and approximately 80 µm of height. As can be inferred from the scanning electron micrograph, they 
feature good structural integrity and smooth sidewall surface. The host material is a crosslinked acrylate polymer 
similar to the one reported previously22. Contrary to previous approaches8, 23, Rhodamine B is easily integrated 
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into the polymer host material (concentration of 5.0 µmol/g of resin). Illustrated in Fig. 1b, the reconstructed con-
focal fluorescence micrograph confirms the dye is uniformly distributed throughout the top part of microcavity, 
which contributes mostly to lasing due to the exponential decay of excitation along the microstructure. Although 
there is a good match between the cross-sectional dimensions of both the scanning electron and the confocal 
micrograph, their height is clearly different. As fluorescence passes through the microcavity, it is re-absorbed by 
the dye molecules present in the close-to-top layers until it hits the detector. Consequently, for an integration time 
set to prevent signal saturation from the close-to-top layers, fluorescence from shorter layers is barely detected.

Depicted in Fig. 2 are the absorption/emission spectra of Rhodamine B dissolved in the acrylate polymer. 
They were compared to the spectra of a solution of RhB dissolved in ethanol at the same dye concentration as that 
used to prepare the doped photoresist. The polymeric matrix does not affect significantly the optical properties of 
the dye. The interaction with the acrylic polymer causes a 10 nm red shift of the dye absorption spectrum, though 
the emission spectrum remains unchanged.

The microcavities were excited from above with a 100-ps pulsed laser operating at 532 nm. Pulsed excitation 
was employed to prevent population transfer to the triplet lowest state, which would substantially drop the quan-
tum yield of fluorescence of the dye4. Figure 3 shows emission curves acquired for different excitation energy. The 
spectra feature a set of peaks modulated by a Lorentzian-shape envelope with maximum at 600 nm and 10 nm of 
full width at half maximum (FWHM). Despite the broad emission spectrum of Rhodamine B, the peaks show up 
only within a spectral window from 590 to 620 nm. On the shorter wavelength side, the emission and absorption 
processes compete, thus hampering lasing effects at this spectral region.

The spectral spacing between consecutive modes within the FWHM of RhB emission spectra was compared 
to the microcavity free spectral range FSR

r n2 ( )

2
= λ

π λ
, in which λ denotes the wavelength, r is the microcavity 

radius, and n(λ) is the effective refractive index at λ (n = 1.517 at 600 nm). The average FSR taken over all emis-
sion curves (FSR = 1.32 nm at 600 nm) matched the theoretical values within the instrumental error (0.25 nm of 
spectrometer resolution), thereby attributing lasing to the whispering gallery modes.

Figure 1.  (a) Scanning electron and (b) 3D reconstructed confocal fluorescence micrographs of a Rhodamine B 
doped microcavity produced by two-photon polymerization.

Figure 2.  Absorption and fluorescence spectrum of an acrylate polymer sample (macroscopic) doped with 
Rhodamine B in a concentration of 5.0 µmol/g of resin. Highlighted in blue is the overlap between both spectra. 
The inset shows the chemical structure of Rhodamine B.
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The loaded Q-factor, inferred from the peak linewidth, is 1.5 × 103. However, as the peaks are not properly 
resolved by the spectrometer, we believe the Q-factor to be underestimated. In a previous study, we measured the 
loaded Q-factor of the undoped microcavities as 1 × 105 at 1550 nm22. Their intrinsic Q-factor, limited mostly by 
absorptive and scattering losses, was found to be over 106. One may expect the intrinsic Q-factor of the doped 
microcavities to not change significantly for visible wavelengths out of RhB absorption spectrum. At 600 nm, the 
attenuation coefficient may drop an order of magnitude (due to the lower absorption of the acrylate polymer at 
the visible spectrum), which scales up the absorption-limited Q-factor (Qabs). On the other hand, as the ratio λ σ/
(σ ≡ surface roughness) grows for shorter wavelengths, the surface-scattering-limited Q-factor falls off24, thus 
compensating the rise of Qabs.

The bilinear behavior of the integrated intensity collected from the dye microlaser was obtained by plotting 
the peaks present in the emission spectra as a function of excitation energy (Fig. 3b–d). As lasing threshold 
depends on the wavelength, it varies slightly for different peaks. The lowest lasing threshold, measured at 12 nJ 
of pulse energy, occurred to the peak at the maximum of emission spectra. Such low threshold is comparable to 
what have been achieved for polymer microlasers fabricated by other techniques9, 14, 25 and is a direct result of the 
giant power density achieved within whispering gallery mode microcavities, combined with the high fluorescence 
quantum yield of Rhodamine B26, 27.

In principle, the crosslinked polymeric matrix may act as a scattering media, which combined with the pres-
ence of the dye, leads to random lasing effects28. To rule out such possibility, the emission spectra of RhB doped 
cubic hollow microstructures, which do not support WGMs, was compared with that of the microcylinders. The 
microcubes were fabricated by the same setup described herein and exhibit the same composition and volume of 
the microcylinders. As can be seen in Fig. 4, for the same pump energy levels as that used to excite the microcyl-
inders, the spectra do not exhibit either peaks or a kink in the output versus input energy plot, confirming that 
random effects do not play a role in lasing threshold.

Figure 3.  (a) Emission spectra of a Rhodamine B doped microcavity for the excitation energy levels indicated 
in the right hand side of the graph. To make the visualization easier, an offset was applied to the y-axis of 
each curve. The first curve represents the spectrum below lasing threshold. The inset shows an image of the 
microlaser being excited (82 nJ of input energy). Its emission is collected through the optical fiber (dashed 
outline to highlight). (b,c and d) Represents the growth of the peaks tagged in red in (a) as a function of 
excitation energy (threshold energies are shown in each corresponding graph).
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Conclusion
In summary, laser action in dye-doped polymeric microcavities fabricated via femtosecond laser induced 
two-photon polymerization was demonstrated. Rhodamine B is easily integrated into the polymeric host matrix, 
which does not affect substantially the optical properties of the dye. As a result of their great surface optical qual-
ity and the low absorption of the acrylate polymer around 600 nm, the microlasers exhibited lasing threshold at 
a pump energy as low as 12 nJ for free space pulsed excitation at 532 nm. The calculated free spectral range is in 
good agreement with its measured counterpart, revealing that lasing occurs in whispering gallery modes. Besides, 
no lasing was observed in doped microcubes fabricated with the same concentration as that of the microcylin-
ders, thus ruling out the influence of random lasing effects on the measured threshold. This work therefore repre-
sents a step forward in the field of soft photonics and demonstrates the potentiality of two-photon polymerization 
in fabricating high performance optical microdevices.

Methods
Three dimensional microfabrication is performed using a negative-tone photoresist composed of two acrylate 
monomers and a photoinitiator. The monomers ethoxylated(6)trimethyl-lolpropanetriacrylate (SR499 - 
Sartomer®) and dipentaerythritol pentaacrylate (SR399 - Sartomer®) are mixed in a proportion of 10/90 wt%. 
The photoinitiator is the 2,4,6-trimethylbenzoylphenyl phosphinate, an acylphosphine oxide photoinitiator com-
mercially known as Lucirin TPO-L (in excess of 3 wt%, Igarcure®). RhB (Sigma-Aldrich®) is first dissolved in 
ethanol and added to the polymeric resin in a concentration of 5.0 µmol/g of resin. The solution is mixed for 
30 min and left to rest by 48 hours previously to fabrication. Once the solvent has evaporated, the photoresist is 
dropped onto a glass substrate and covered by a cover slip with a spacer. The sample is then placed on a translation 
stage that is mounted on an inverted microscope. 100-fs pulses of a mode-locked Ti:sapphire oscillator operating 
at 780 nm are focused into the volume of the polymeric resin using a NA 0.25 objective lens. The microstructures 
are created by controlling both a galvanometric-mirror system and the stage that supports the photopolymer 
with computer-aided software. For a detailed description of the microfabrication process, the reader is referred 
to ref. 22.

The apparatus assembled for analyzing the emission of both the microcylinders and microcubes uses as excita-
tion source a frequency-doubled (532 nm) Q-switched/mode-locked Nd:YAG laser operating at 100 Hz, which 
delivers a sequence of 100-ps pulses modulated by the Q-switched envelope (pulse train). The excitation was 
carried out at room temperature. To assure single pulse operation, a Pockels cell and a polarizer are added to the 
system. The laser beam is focused with a 7.5 cm focal length lens, resulting in a beam waist with 50 µm of radius 
on the microcavity top surface. Microcavity emission is acquired with a conventional optical fiber connected to a 
spectrometer (Ocean Optics HR4000®). The sample (microcavities stood on a glass substrate) rests on an inverted 
microscope coupled to a CCD camera that allows real time monitoring of the excitation process. A half-wave 
plate, combined with a polarizer, is used to adjust excitation laser power, allowing exciting the microcavities with 
different energy levels.

The microcavities were characterized by scanning electron (Hitachi TM3000®) and z-stack confocal fluores-
cence microscopies (Zeiss LSM 700®, 40x Objective lens, excitation at 445 nm, 1 µm of z-step). The absorbance of 
RhB dissolved in both ethanol and acrylic polymer and the refractive index of the acrylic polymer around 600 nm 
were measured with the help of a Shimadszu UV-1800® spectrometer and a Carl Zeiss Jena Pulfrich Refractometer 
PR2®, respectively. Fluorescence spectra were collected on the same setup used to analyze microcavity emission. 
These measurements were performed in macroscopic samples of RhB-doped acrylic polymer with the same com-
position used to produce the microcavities.

Data Availability.  All data generated or analyzed during this study are included in this published article.

Figure 4.  (a) Scanning electron of a hollow microcube doped with Rhodamine B (5.0 µmol/g of resin). (b) 
Emission spectra of the dye microcube depicted in (a) taken for several excitation energy levels. Indicated in the 
inset is the growth of the integrated emission intensity of the dye microcube as a function of excitation energy. 
The colour scale identifies the emission curves.
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