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Time-Resolved Spectroscopic 
Study on the Photoredox 
Reaction of 2-(p-Hydroxymethyl)
phenylAnthraquinone
Qingqing Song1, Xiting Zhang   2, Jiani Ma1, Yan Guo1 & David Lee Phillips2

In this work, we report a combined time-resolved spectroscopic and density functional theory 
computational study on 2-(p-hydroxymethyl)phenylanthraquinone (PPAQ) in which the benzyl 
alcohol moiety is significantly farther away from the AQ ketone group compared to the compound 
2-(1-hydroxyethyl) 9,10-anthraquinone (HEAQ) so as to investigate the photophysical and 
photochemical reactions of PPAQ in several solvents, especially for the photoredox reaction in a pH 2 
aqueous solution. The results here indicate that PPAQ undergoes the photoredox reaction via a two-
step pathway and that the low efficiency of the photoredox reaction of PPAQ compared to the related 
HEAQ molecule is caused by the longer distance between the benzyl alcohol moiety and the AQ ketone 
moieties.

Anthraquinone (AQ) is an important component of the anticancer drug anthracycline1–3 and AQ and its deriva-
tives have also been widely studied for many types of photochemical reactions. Photoexcitation of AQ compounds 
often leads to efficient intersystem crossing (ISC) to populate a reactive triplet state that may then undergo a vari-
ety of reactions such as a typical hydrogen abstraction reaction with a strong hydrogen donor solvent like isopro-
panol (IPA)4–6. The photochemistry of AQ derivatives in aqueous solutions had also received increasing interest 
as a new platform for developing photoremovable protecting groups for a range of applications7–13.

An unusual photoredox reaction was discovered for AQ compounds by Wan and coworkers14. We recently 
examined 2-(1-hydroxyethyl) 9,10-anthraquinone (HEAQ) to study its photoredox reaction mechanism in an 
acidic aqueous solution using time-resolved spectroscopic experiments and density functional theory (DFT) 
calculations15. This work revealed that HEAQ undergoes an efficient photoredox reaction in water containing 
solutions via an initial protonation on the carbonyl oxygen, followed by a deprotonation of the side methylene 
C-H bond. Recently, a computational investigation using CASSCF calculations examined the reaction route of 
the photoredox reaction of HEAQ16. This study found that in a neutral aqueous solution, the photoredox reaction 
of HEAQ appears to occur via an excited state intramolecular proton transfer (ESIPT) process16. The photoredox 
reaction can be rationalized by excited states that have substantial charge transfer character, in which the electron 
density of the benzene ring with the reactive CH2OH moiety is transferred to the central AQ ring. The trapping 
by the carbonyl oxygen of a proton from water leads to the observed overall redox chemistry. Our recent experi-
mental and theoretical results in neutral aqueous solutions indicate that a proton-coupled electron transfer from 
an alcohol C-H bond to the para-carbonyl is the initial and crucial process for the photoredox reaction of HEAQ 
to occur in neutral aqueous solutions, which is caused by an intriguing charge-radical coupled effect. This could 
account for the experimental results in the literature that HEAQ can undergo efficient photoredox reaction under 
neutral aqueous conditions17.

It is noteworthy that AQ compounds with a benzyl alcohol moiety much further away from the AQ ketone 
groups like 2-(p-hydroxymethyl)phenylanthraquinone (PPAQ) can also undergo a photoredox reaction in aque-
ous solutions with a fairly high quantum yield (Φ ~ 0.5, pH 1 MeCN-H2O) but not as high as was found for HEAQ 
under similar conditions18. Final product analysis results clearly demonstrated that the insertion of an additional 
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phenyl group has modulated the reaction efficiency. It is important to know the modulation mechanism for 
the distance between the ketone group and the benzyl alcohol moiety (caused by the insertion of a phenyl ring 
between these two functional groups) on the photoredox reaction of AQ compounds. On one hand, it is suggested 
from the DFT calculations that the atomic distance between the carbonyl carbon atom and the ethyl carbon atom 
in the side chain is remarkably longer for the triplet state species of PPAQ (8.97 Å) than that for the triplet state 
species of HEAQ (4.99 Å), see Fig. 1. This brings up the question, how the long distance between the carbonyl car-
bon atom and ethyl carbon atom influences the photoredox reaction of AQ compounds? On the other hand, the 
insertion of the electron rich phenyl ring between the carbonyl and the ethyl group is expected to affect the elec-
tron transfer which plays a critical role in the overall photoredox reaction based on the results from our previous 
studies15, 17. Second, the intramolecular photoredox reaction in aqueous solutions for PPAQ was first proposed to 
take place through a concerted route (see Fig. 2) of an initial excited state electron migration from the aromatic 
ring of the benzyl alcohol to the AQ coupled by trapping with solvent protons18. This concerted reaction mecha-
nism is different from the two-step route found in our previous time-resolved spectroscopic studies on HEAQ15. 
The proposed two-step reaction mechanism of PPAQ based on the study of HEAQ is depicted in Fig. 3. Do sub-
strates containing the benzyl alcohol moiety far away from the AQ ketone group undergo the photoredox reaction 
in the same way as do substrates in which the benzyl alcohol moiety is close to the AQ ketone group? Third, it was 
found that HEAQ has a comparable quantum yield and reaction efficiency in a neutral aqueous solution with that 
in a moderate acidic condition, however, PPAQ performs very differently between neutral and moderate acidic 
aqueous conditions. The efficiency of the photoredox reaction of PPAQ was rather low at pH 7 from quantum 
yield measurements (Φ ~ 0.07) compared to HEAQ (Φ ~ 0.8, pH 7). Even in an acidic aqueous solution, PPAQ 
was found to be less reactive toward the photoredox reaction than HEAQ under analogous conditions. To help 
answer the above questions, we performed time-resolved spectroscopic studies on PPAQ using femtosecond 
transient absorption (fs-TA), nanosecond transient absorption (ns-TA) and nanosecond time-resolved resonance 
Raman (ns-TR3) spectroscopic techniques to study the photophysical and photochemical reactions of PPAQ in 
several solvents to compare with analogous results found previously for HEAQ. We also obtained results from 
DFT calculations to help interpret the time-resolved spectroscopy experimental results.

Results and Discussion
In Acetonitrile (MeCN) and IPA.  Figure 4 depicts the fs-TA results of PPAQ obtained in MeCN. At the 
very early time delays within 2 ps, the main band absorbing at 385 nm red-shifted to 420 nm. This change was 
also observed for HEAQ in MeCN at a comparable time region and can be assigned to the internal conversion 
(IC) process from a higher energy excited state (Sn (n > 1)) to the lowest singlet excited state (S1). The observation 
of clear isobestic points in Fig. 4b at 390 and 465 nm suggests a transformation of the S1 state to a new species. 

Figure 1.  Optimized chemical structures of the triplet state of (a) HEAQ and (b) PPAQ obtained from 
B3LYP/6-311 G** DFT calculations.

Figure 2.  A proposed concerted reaction mechanism of the photoredox reaction of PPAQ in acid aqueous 
solutions based on that of ref. 18.
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Because AQ compounds are known to commonly undergo efficient intersystem crossing (ISC) process to produce 
the triplet excited state species, the transformation observed in Fig. 4b is tentatively proposed to be the ISC pro-
cess from S1 to the triplet state species (T1). To make further verification of this assignment, the ns-TA experiment 
was conducted (Fig. 5a) and the species with absorption bands at 350, 400 and 595 nm formed within the laser 
pulse. Kinetics analysis was conducted for the absorption at 590 nm and a lifetime of 360 ns was determined. The 
analogous spectral profile observed in ns-TA with that of the later species in fs-TA spectra suggests that the same 
species was observed in both the later time fs-TA and early time ns-TA spectra. The ns-TA spectra for PPAQ were 
also recorded in MeCN with saturated oxygen and the spectral profile keeps the same as that observed under an 
open air condition, while the lifetime of the species decreased to 120 ns. This behavior further supports that the 
species observed in the ns-TA spectra is the triplet excited state species of PPAQ (the triplet species is denoted as 1 
hereafter) and the changes seen in Fig. 4b is due to the ISC process from S1 to T1. To obtain structural information 
regarding species 1, ns-TR3 experiments were conducted for PPAQ in MeCN.

Figure 3.  A proposed two-step reaction mechanism of the photoredox reaction of PPAQ in acidic aqueous 
solutions based on the results of a previously reported mechanism study on HEAQ is shown.

Figure 4.  (a and b) The fs-TA spectra and (c) the temporal dependence of transient absorption at 438 and 
598 nm for PPAQ in MeCN are shown.
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Figure 1S displays the UV-vis spectrum of PPAQ in MeCN and the pump (266 nm) and the probe wavelengths 
(416 nm) used in the ns-TR3 experiment are indicated in the figure. Figure 6 show that mainly one species was 
observed upon irradiation and was assigned as 1 based on the fs-TA and ns-TA results obtained under analogous 
experimental conditions. Further support for this assignment comes from the comparison between the exper-
imental results and the calculated normal Raman spectrum (Fig. 1S). These results suggest that PPAQ exhibits 
similar behaviors with that of HEAQ in MeCN, with the exception that the lifetime of 1 is remarkably shorter than 
that of the triplet state of HEAQ that had a time constant of 2000 ns for its lifetime under analogous conditions15.

Figure 7 (left) displays the ns-TR3 results for PPAQ in a strong hydrogen donor solvent IPA, where the typ-
ical photoreduction reaction of aromatic carbonyl compounds is expected to take place. The different Raman 
spectral profile in Fig. 7 (left) from that obtained in MeCN suggests that another species other than the species 
1 was probed for PPAQ in IPA upon irradiation. Combining these results with the reported work on AQ com-
pounds4–6 and especially the results for HEAQ in IPA15, 17, the new species detected in Fig. 7 (left) is thought to 
be the ketyl radical species of PPAQ, which is generated via abstraction of a hydrogen atom from the solvent IPA 

Figure 5.  (a) The ns-TA spectra and (b) the temporal dependence of the transient absorption at 590 nm for 
PPAQ in MeCN are shown.

Figure 6.  The ns-TR3 spectra of PPAQ after 266 nm photoexcitation in MeCN using a 416 nm probe wavelength 
at various time delays indicated next to the spectra are shown. The asterisk (*) marks regions affected by stray 
light.

http://1S
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by the carbonyl oxygen group. Therefore, the experimental spectrum was compared with the calculated normal 
Raman spectrum of the ketyl radical species of PPAQ (see Fig. 7 (right)). The reasonable agreement between the 
experimental data and the calculated simulation further supports assignment of the species in ns-TR3 as being 
the ketyl radical species of PPAQ, and demonstrates that the main photochemical reaction for PPAQ in IPA is the 
photoreduction reaction via hydrogen abstraction (see Fig. 8). The detection of the ketyl radical species of PPAQ 
upon irradiation in ns-TR3 experiment suggests that the photoreduction reaction is very efficient for PPAQ in 
IPA, and this behavior was also observed for HEAQ15, 17.

In Acidic MeCN-H2O Solutions.  The above time-resolved spectroscopic studies revealed that PPAQ exhib-
its similar behaviors with HEAQ in both MeCN and IPA solutions. Time-resolved spectroscopic experiments 
were also conducted to study the photoredox reaction of PPAQ in acidic water-containing solutions.

Figure 9 presents the fs-TA spectra of PPAQ obtained in an acidic aqueous solution. The steady state UV-vis 
spectra of PPAQ in MeCN, pH 2 MeCN-H2O (1:1) and pH 7 MeCN-H2O (1:1) solutions (see Figure 4S) shows 
no obvious difference, suggesting the original species upon irradiation in acidic aqueous solution is the same one 
as that in MeCN. Combining these results with the fs-TA results obtained in MeCN, the red-shift transformation 
from 395 nm to 432 nm within the first 1 ps (Fig. 9a) is assigned to be the IC process from Sn to S1 of PPAQ, fol-
lowed by the ISC transformation producing the triplet species 1 with specific absorption bands at 350, 420 and 
575 nm (Fig. 9b). It was noted that the spectral profile of 1 changed a bit compared to that in MeCN, which may 
be caused by the solvent effect since the PPAQ compound is easy to be affected by a polar solvent. The subsequent 
processes seem complicated. As a result, a new species was produced with characteristic absorption bands at 350, 
390 and 612 nm, which was not detected in the ns-TA spectra obtained in MeCN. To make a clear demonstration, 
each fs-TA trace selected from Fig. 9a,b and c were presented together in Fig. 5S).

To help the assignment of the species observed in the fs-TA experiment and to monitor the photochemical 
reaction of PPAQ in the subsequent time regions, ns-TA experiments were conducted for PPAQ in a pH 2 mixed 

Figure 7.  (Left) The ns-TR3 spectra of 2.0 × 10−3 M of PPAQ after 266 nm photoexcitation in IPA using a 
416 nm probe wavelength at various time delays indicated next to the spectra are shown. The asterisk (*) marks 
regions affected by stray light. (Right) Comparison of (a) the experimental Raman spectrum obtained at 10 ns 
time delay of PPAQ in IPA to (b) the calculated normal Raman spectrum of the ketyl radical species of PPAQ.

Figure 8.  The photoreduction reaction of PPAQ in IPA.

http://4S
http://5S


www.nature.com/scientificreports/

6Scientific Reports | 7: 9154  | DOI:10.1038/s41598-017-09192-3

aqueous solution and these results are displayed in Fig. 10. Mainly one species was observed in the ns-TA spectra 
and the spectral profile coincidences with the last species detected in the fs-TA spectra under analogous experi-
mental conditions (Fig. 9d). The long lifetime of this new lygenerated species suggested it was probably a singlet 
state species. As the time-resolved spectroscopic experiments were conducted under the same conditions where 
the photoredox reaction was observed by Wan and coworkers, we therefore tentatively connected the generation 
of the new species with that involved in the photoredox reaction. Examination of Fig. 2 (1 → 3 → 4) and Fig. 3 
(1 → 5 → 3 → 4) suggests that either in the concerted reaction route or the two-step reaction pathway, 1 gener-
ated the singlet species 3 which further underwent a ketonization process to form 4. We therefore calculated 
the electronic spectra of 3 and 4 (See Fig. 11 and Fig. 7S) to compare with the experimental spectra, Clearly, the 
experimental spectra profile exhibited more similarity with the calculated spectrum for species 3, rather than 
species 4. Hence, it is proposed that species 3 was probed and directly observed in the fs-TA and ns-TA spectra. 

Figure 9.  The fs-TA spectra of PPAQ in pH 2 MeCN-H2O (1:1) at different delay times recorded under 266 nm 
excitation are shown.

Figure 10.  The ns-TA spectra of PPAQ in pH 2 MeCN-H2O (1:1) recorded with 266 nm excitation are shown.

http://7S
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This assignment is consistent with Wan and coworkers study on a similar AQ compound in that the enol inter-
mediate had a characteristic absorbance at 520 nm, and the decay of this species ultimately leads to a weak broad 
absorption in the 400 nm region and attributed to the photoredox product18.

Closer examination of the fs-TA spectra especially in the time region between the observation of the species 
1 and 3, another species with an absorption band around 480 nm was generated. As in the concerted pathway 
mechanism shown in Fig. 2, the species that may possibly be observed between 1 and 3 is the triplet state species 
of 3, namely 3 (0, 3). However, this possibility was excluded by the fact that the simulated UV-vis spectra for both 
the meta- and para-carbonyl 3 (0, 3) (shown in Fig. 6S) lack an absorbance feature near the region of 480 nm. 
On the other hand, the spectral profile shown in Fig. 9c exhibited great similarity with the calculated UV-vis 
spectra of the protonated species for both the meta- and para-carbonyl 5 (Fig. 12), which was proposed in the 
two-step pathway mechanism. It is therefore proposed that PPAQ mainly undergoes the photoredox reaction via 
the two-step pathway rather than the concerted pathway from the above results.

To gain structural information for the important intermediates, ns-TR3 experiments were conducted for PPAQ 
in a pH 2 mixed aqueous solution and these results are displayed in Fig. 13. It is found that mainly one species was 
observed with specific Raman bands at 1495, 1575 and 1608 cm−1 upon irradiation and lasts for a relatively long 
time. It is tentatively proposed that a ground state product species was detected here. Based on the above analysis 
of the transient absorption results, the experimental Raman spectrum of the species recorded at 30 ns was com-
pared to the calculated Raman spectrum of the photoredox reaction product 4 (see Fig. 14). The good similarly 
between the experimental and calculated vibrational frequency pattern results supports that the species probed 
in the ns-TR3 spectra is species 4. It is noted that species 3 was detected in the ns-TA spectra while species 4 was 
probed in the ns-TR3 experiments and no obvious signal from the species 3 was found. There are several possi-
bilities that the species observed in ns-TA cannot be detected in the ns-TR3 experiment, the non-symmetrical 

Figure 11.  Comparison of (a) the experimental ns-TA spectrum of PPAQ obtained at 600 ns time delay of in 
pH 2 MeCN-H2O (1:1) recorded with 266 nm excitation to (b) the calculated UV-vis spectrum of the singlet 
state of the species 3 using um062x/6-311 G**.

Figure 12.  Comparison of (a) the experimental ns-TA spectrum of PPAQ obtained at 61.87 ps time delay of in 
pH 2 MeCN-H2O (1:1) recorded with 266 nm excitation to (b) the calculated UV-vis spectrum of the species 5 
at para-postion using um062x/6-311 G**.

http://6S
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structural, the low Raman scattering cross-section of the species and the low concentration of the species present. 
Firstly, the oscillator strength near the probe wavelength range of the 355 nm for species 4 (0.4428 at 343 nm) is 
substantially more intense than that of species 3 (0.1179 at 341 nm) as deduced from the electronic absorption 
calculations (shown in Fig. 11 and Fig. 5S). This suggests there is a high Raman scattering cross-section for 
species 4 since it gains significant Raman intensity by a stronger resonance with the transient absorption and is 
therefore observed in the ns-TR3 spectra more easily than species 3. Secondly, the more symmetrical structural 
of species 4 than that of species 3 facilitate the observation of the species 4 in our ns-TR3 experiments. Thirdly, 
the species 4 is much more stable than the species 3 (32 kcal/mol from DFT calculations). Based on the above 
facts, it is reasonable to propose that the totally symmetric vibrations of the species 4 which are resonant with the 

Figure 13.  The ns-TR3 spectra of PPAQ after 266 nm photoexcitation in pH 2 MeCN-H2O (1:1) using a 355 nm 
probe wavelength at various time delays indicated next to the spectra are shown.

Figure 14.  Shown is a comparison of (a) the experimental ns-TR3 spectrum obtained at 30 ns time delay of PPAQ 
in pH 2 MeCN-H2O (1:1) to (b) the calculated normal Raman spectrum of the species 4 using M062X/6-311 G**.

http://5S
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electronic transitions can be assumed to gain significant Raman intensity by resonance Raman enhancement. To 
sum up, we detected the key species involved in the photoredox reaction of PPAQ in a pH 2 aqueous solution by 
time-resolved spectroscopic experiments and with the assistance of results from DFT calculations we were able to 
determine that PPAQ undergoes the photoredox reaction via a two-step way as shown in Fig. 3.

DFT Calculations.  To better understand the photoredox reaction of PPAQ in aqueous solutions and explain 
its different behaviors from that of HEAQ, the spin and NBO analysis were performed by DFT calculations at the 
(U) M062X /6-311 G** level of theory and compared with analogous results for HEAQ.

The experimental results suggest that the efficiency of the photoredox reaction of PPAQ was rather low at pH 
7 from quantum yield measurements (Φ ~ 0.07) compared to HEAQ (Φ ~ 0.8, pH 7) and PPAQ was found to be 
less reactive even in an acidic aqueous solution toward the photoredox reaction than HEAQ under analogous 
conditions. We try to account for these experimental phenomena. Why is PPAQ less reactive than HEAQ toward 
the photoredox at pH ≤ 7? It should be noted that the intramolecular redox reaction for 2-(hydroxymethyl)anth-
raquinone (HMAQ) also occurs with high efficiency (Φ ~ 0.8, pH 7), just like HEAQ presented here. HMAQ 
has the same substituent group (-CH2OH) as PPAQ. Therefore, the difference in the efficiency of the photoredox 
reaction is predominantly derived from the presence of a phenyl ring in PPAQ. The phenyl ring has a profound 
effect on the stability of the triplet π-π* state. The NBO charges and spin populations for HEAQ and PPAQ in 
acidic and neutral aqueous solution are displayed in Fig. 13. Our recent study demonstrated that the substituted 
phenyl and either the meta- or para-carbonyl can be excited in the π-π* triplets and the excited phenyl group 
may have an effect on the side chain17. The NBO charge and spin populated on the C4 atom, which is directly 
connected to the side chain, can be expected to play a decisive role on the cleavage of the side-chain C-H bond. 
It should be noted that AQs have para- and meta-carbonyl groups relative to the distal substituent group, leading 
to meta-protonation structures I and III and para-protonation structures II and IV, and excited meta-carbonyl 
neutral structures V and VII and excited para-carbonyl neutral structures VI and VIII. Figure 15 displays that the 
positive charge populated on C4 of PPAQ (0.15) is less than that of HEAQ (0.24) in acidic aqueous conditions. 
More positive charge in C4 will favor the proton released from the alcohol C-H bond of distal side chain. As a 
result, the alcohol carbon anion generated after the deprotonation process of the C-H bond of PPAQ cannot be 
stabilized by the positive charge on C4 as much as that in HEAQ, which is in good agreement with the experi-
mental determination that HEAQ is more active toward the photoredox reaction than that of PPAQ. In neutral 
aqueous conditions, the positive charge is located on the C4 atom for both PPAQ and HEAQ (0.03 and 0.14, 
respectively) with the para-carbonyl group excited. The positive charge on the C4 atom for PPAQ is not positive 
enough to activate the alcohol C-H bond as much for the photoredox reaction compared to HEAQ. On the other 
hand, the spin and negative charge on the para-carbonyl O7 atom is an alternative point which can assist with 

Figure 15.  Shown are the NBO charge and spin density for HEAQ and PPAQ in acidic and neutral aqueous 
solutions.
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pulling the proton transfer from the C-H cleavage. However, it is nearly the same in both HEAQ (charge: −0.60; 
spin: 0.33) and PPAQ (charge: −0.63; spin: 0.31). Therefore, the nearly absent photoredox reaction observed 
for PPAQ in neutral aqueous condition is mainly due to the poor positive charge population on the C4 atom 
resulting from the long distance between the carbonyl group and the side-chain group. The phenyl ring in pro-
tonation structures III or excited para-carbonyl neutral species VIII has nearly co-planar relationship with AQ 
moiety, which is seemed to favor the radical or charge delocalization to the distal substituent group at first glance. 
However, the NBO and spin distribution in Fig. 13 indicate that some spin or charge stay in the extra phenyl ring 
so that the spin and charge is significantly less delocalized to the C4 atom in III and VIII as compared with the 
C4 atom in I and VI, respectively. The extra phenyl ring in PPAQ acts as an electron pond so that the spin and 
charge cannot be efficiently transferred to the C4 atom, which significantly reduces the proton extrusion from 
the alcohol C-H bond of side chain. On the other hand, the long distance between carbonyl group and distal side 
chain require more water molecules to form a water bridge or hydrogen bond network connection for the hydro-
gen/proton transfer. The long water wire also will decrease the efficiency for the photoredox reaction for PPAQ as 
compared with the case in HEAQ. Overall, the phenyl ring reduces the efficiency of the electron transfer between 
carbonyl group and the C4 atom and long distance between carbonyl group and distal side chain decreases the 
efficiency of the proton/hydrogen transfer. As a result, the photoredox reaction for PPAQ is less efficient than that 
of HEAQ in both neutral and acidic aqueous solutions.

Concluding remarks
Time-resolved spectroscopic experiments and DFT calculations were conducted to investigate the photoredox 
reaction mechanism for 2-(p-hydroxymethyl)phenyl anthraquinone (PPAQ) where the benzyl alcohol moiety is 
far away from the AQ ketone group, compared to a previously studied compound HEAQ. In acetonitrile, PPAQ 
undergoes an efficient intersystem crossing process to generate the triplet excited state species, 1. In a strong 
hydrogen donor solvent IPA, 1 was quickly quenched by a hydrogen abstraction reaction and the ketyl radical 
species was detected in ns-TR3 spectra. In a pH 2 acidic aqueous solution, 1 was quenched via protonation on the 
carbonyl oxygen of the AQ group. Combining the results from the time-resolved spectroscopic studies, it is pro-
posed that PPAQ undergoes the photoredox reaction via a two-step pathway (Fig. 16) in acidic aqueous solution 
in a manner similar to that previously reported for HEAQ.

The less efficient photoredox of PPAQ compared to that of HEAQ is caused by the long distance between the 
carbonyl group and the side-chain group as revealed by the spin and NBO analysis results from DFT computa-
tions. The work reported here can help in the development of the photoredox reaction for use in applications in 
the photosynthetic area and provides essential information for the use of AQ compounds in other photochemical 
applications such as a new platform for developing photoremovable protecting groups.

Experimental and Computational Methods
Femtosecond Transient Absorption (fs-TA) Experiments.  The fs-TA measurements were performed 
using a regenerative amplified Ti:Sapphire laser system and an automated data acquisition system. The probe 
pulse was obtained by using approximately 5% of the amplified 800 nm output from the laser system to gener-
ate a white-light continuum (350–800 nm) in a CaF2 crystal. The maximum extent of the temporal delay was 
3300 ps for the optical stage used in the experiments. The instrument response function was determined to be 
about 150 fs. At each temporal delay, data were averaged for 2 s. The probe beam was split into two parts before 
passing through the sample. One portion of the probe beam travels through the sample, the other portion was 
sent directly to a reference spectrometer that monitored the fluctuations in the probe beam intensity. Fiber optics 
were coupled to a multichannel spectrometer with a CMOS sensor that had a 1.5 nm intrinsic resolution. For 
the present experiments, the sample solutions were excited by a 266 nm pump beam (the third harmonic of the 
fundamental 800 nm from the regenerative amplifier). The 40 ml sample solutions were flowed through a 2 mm 

Figure 16.  The proposed reaction mechanism of the photoredox reaction of PPAQ in aqueous solution. The 
letters and numbers below the structures are the corresponding labels used in the text. And the absorbance for 
the transient species detected from fs-TA and/or ns-TA spectra and the Raman frequency from the ns-TR3 are 
given.
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path-length cuvette throughout the data acquisition. The samples were monitored for degradation by employ-
ing UV absorption spectroscopy during the measurements and replaced with fresh samples as needed to avoid 
noticeable sample degradation effects on the data collected. The data were stored as three-dimensional wave-
length-time-absorbance matrices that were exported for use with a fitting software. The sample solutions for the 
fs-TA experiments were prepared to have an absorbance of 1 at 266 nm so as to have the same number of photons 
being absorbed for the same irradiating conditions in each case19.

Nanosecond Transient Absorption (ns-TA) Experiments.  The ns-TA measurements were carried out 
on a commercial laser flash photoexcitation setup. The 266 nm pump laser pulse was obtained from the fourth 
harmonic output of an Nd:YAG laser and the probe light was provided by a 450 W Xenon lamp. The sample was 
excited by the pump laser and at a right angle the probe light from the Xenon lamp was passed through the sam-
ple. The two beams were focused onto a 1 cm quartz cell. The transmitted probe light was then measured either 
by a single detector (for kinetic analysis) or by an array detector (for spectral analysis). The changes in the trans-
mission properties were normally converted into changes of optical density (ΔOD). The signals analyzed by a 
monochromator were detected by a photomultiplier and the signal processed via an interfaced PC and analytical 
software. Unless indicated the sample solutions used in the ns-TA experiments were prepared with an absorbance 
of 1 at 266 nm.

Nanosecond Time-Resolved Resonance Raman (ns-TR3) Experiments.  The ns-TR3 experiments 
were performed using an experimental apparatus and methods described previously in our laboratory and only 
a brief account is given here20. The 266 nm pump wavelength supplied by the fourth harmonic of a Nd:YAG 
nanosecond pulsed laser and the 355 nm probe wavelength supplied by the third harmonic of a Nd:YAG laser, the 
416 nm probe wavelength supplied by the first Stokes hydrogen Raman-shifted laser line from the third harmonic 
of a Nd:YAG laser were used in the ns-TR3 experiments. The pump pulse excited the sample to initiate the pho-
tochemical reactions and the probe pulse interrogated the sample and the intermediate species produced by the 
pump pulse. The laser beams were lightly focused and aligned so that they were overlapped onto a flowing liquid 
stream of sample. The diameter of the pump beam was adjusted to be slightly larger than that of the probe beam 
at the overlapping volume in the liquid jet in order to minimize the ground state normal Raman signal. A pulse 
delay generator was used to electronically control the time delay between the pump and probe laser beams from 
the two different Nd:YAG lasers operated at a repetition rate of 10 Hz. The Raman scattered light was acquired 
using a backscattering geometry and then detected by a liquid nitrogen-cooled charge-coupled device (CCD) 
detector. The TR3 signal was acquired for 10 s by the CCD before being read out to an interfaced PC computer and 
10 scans of the signal were accumulated to produce a resonance Raman spectrum. The ns-TR3 spectra presented 
in this report were obtained from subtraction of an appropriately scaled probe-before-pump spectrum from the 
corresponding pump-probe resonance Raman spectrum to remove non-transient bands. The Raman bands of 
MeCN were employed to calibrate the Raman shifts of the Raman spectra with an estimated accuracy of 5 cm−1.

Density Functional Theory (DFT) Calculations.  Density functional theory (DFT) calculations with the 
M062X level of theory at 6-311 + g** basis set in the solvent with SMD (MeCN) appears to be reliable to simulate 
the photochemical behavior for main-group compounds17, 21–23. The M06-2X functional performs well for the 
hydrogen-transfer barrier height calculations, proton affinities of conjugated systems, hydrogen bonding, elec-
tronic excitation, thermochemistry, kinetics and noncovalent interactions for the main-group compounds20. Our 
previous study on benzophenone derivatives revealed that the solvent polarity and the hydrogen interaction have 
significant effects on the stabilization for the excited triplet ππ* state and proton coupled electron transfer path-
way compared to the excited triplet nπ* state and hydrogen atom transfer pathway (see Fig. 7S in the Supporting 
Information). Water molecules were considered as the explicit solvent while MeCN as the implicit solvent to sim-
ulate the mixed MeCN-H2O solutions in the current work. Therefore, the (U) M062X method with a 6-311 + G** 
basis set in SMD (MeCN) were done to determine the optimized geometries and vibrational wavenumbers for the 
species that were considered to be potential intermediates. The Raman spectra were obtained using the default 
G09 method that utilized the determination of the Raman intensities from the transition polarizabilities calcu-
lated by a numerical differentiation and with an assumed zero excitation frequency (e.g. the Placzek approxi-
mation). A Lorentzian function was used for the Raman vibrational frequencies and the relative intensities to 
obtain the computed Raman spectra that were compared to the experimental TR3 spectra. Appropriate frequency 
scaling factor of 0.983 was used in the comparison of the calculated results with the experimental spectra. No 
imaginary frequency modes were observed at the stationary states of the optimized structures shown here and 
only one imaginary frequency was observed for the saddle point transition state structures. The calculated UV-vis 
spectrums were carried out with the scaled value of 1.08 for X axis. The calculations presented in this study were 
done using the Gaussian 09 program suite installed on the High Performance Computing cluster at the Computer 
Centre in The University of Hong Kong.
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