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Experimental Study of Rheological 
Properties and Oil Displacement 
Efficiency in Oilfields for a Synthetic 
Hydrophobically Modified Polymer
Pengcheng Liu1, Zhenbao Mu2, Chao Wang1 & Yanling Wang3

In a previous study, we developed a synthetic hydrophobically modified hydroxyethyl cellulose (HEC) 
using bromododecane (BD), which we denote as BD-HMHEC. In this work, we continually investigate 
the rheological properties and its oil displacement efficiency in PuTao well area in Daqing oilfields, China. 
Results show that BD-HMHEC solution has good viscosification, thermal-resistance, salt-tolerance, 
shear resistance, and acid/alkali resistance. The storage modulus (G’) and the loose modulus (G”) of the 
BD-HMHEC solutions increase significantly with increasing BD-HMHEC concentration, and the solution 
becomes viscoelastic at a sufficiently high BD-HMHEC concentration. The core flooding results showed 
BD-HMHEC flooding improves oil recovery by 7–14% in comparison with HEC flooding at concentrations 
of 4,000 mg/L under equivalent conditions. Moreover, BD-HMHEC flooding improves oil recovery by 
7–8% after conducting water and hydrolyzed polyacrylamide (HPAM) flooding. The oil displacement 
mechanism of BD-HMHEC solutions is discussed based on a visual evaluation. The results indicate that 
BD-HMHEC flooding is a feasible means for improving oil recovery after water/HPAM flooding.

Hydrophobically modified polymers (HM-polymers) represent a class of water-soluble polymers, where a small 
number of hydrophobic groups are introduced to the macromolecular chain of conventional water-soluble 
polymers1, 2. When an HM-polymer is dissolved in water, supramolecular aggregates and a reversible network 
structure are formed owing to association among the hydrophobic groups; thus, the solution viscosity increases 
significantly3–5. As such, HM-polymers are similar to the conventional polymers (e.g., hydrolyzed polyacrylamide 
(HPAM)) used extensively in the field of oil recovery. However, HM-polymers usually exhibit unique rheological 
properties, and also demonstrate good thermal-resistance, salt-tolerance, shear resistance, and acid/alkali resist-
ance6. All types of HM-polymers are suitable substitutes for HPAM as oil displacement and profile modification 
agents for high temperature and high salinity reservoirs7, 8. HM-polymers have been reviewed in detail with par-
ticular emphasis on their application during enhanced oil recovery (EOR) processes9–12.

The rheology and oil displacement characteristics of hydrophobically modified polyacrylamide polymer 
(HMPAM) have been widely studied13–16. Hydrophobically modified hydroxyethyl cellulose (HEC), denoted 
as HMHEC, is another significant synthetic compound that has been widely used in various applications17–23. 
HMHEC has been claimed to have potential in EOR processes11.

Compared with HPAM, HEC provides a wide range of raw material sources that are non-toxic and have better 
properties, such as thickening and biocompatibility. In addition, the unique structure and properties of HEC 
ensure that it is easily modified chemically, making it useful for manufacturing various polymers. Therefore, it 
is of prospective and practical significance to replace toxic and non-degradable synthetic polymers with HEC in 
EOR processes24–26.

However, to the best of authors’ knowledge, previous research regarding HMHEC has mainly focused on the 
laboratory evaluation of the rheological performance and unique properties of HMHEC solutions, and considera-
tion of its use as a good oil displacement system to enhance oil recovery has been neglected27–29. In previous work, 
we developed a synthetic HMHEC by the macromolecular reaction between HEC and the long chain alkyl halides 
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of bromododecane (BD), herein denoted as BD-HMHEC, which focused on the development of material with 
enhanced properties30. In this study, the main goal of the first section was used to further consider its rheological 
properties, which give scientific understanding of the structure property-relationships between the thickening 
apparent viscosity and rheological parameters. The main goal of the second section was used to investigate its oil 
displacement efficiency, which describes the different effects on flooding processes between the rheological per-
formance and EOR. To understand the different effects of HPAM, HEC, and BD-HMHEC on flooding processes, 
the oil displacement performances of these water-soluble polymers were evaluated by core flooding based on field 
sampling, the actual formation pressure and temperature from the PuTao well area in Daqing oilfields (China). 
Then, the oil displacement mechanism of BD-HMHEC solutions was discussed according to a visual evaluation. 
The results of core flooding indicate that BD-HMHEC has much better oil displacement properties than HPAM 
and HEC, and has great potential in EOR processes.

Experimental
Preparation of polymer solutions.  A given volume of distilled water was placed in a beaker, and a given 
amount of polymer powder was slowly added while rapidly stirring with a stirring device. The stirring speed was 
reduced appropriately until the polymer was completely dissolved, and the solution was then stored for 24 h at 
room temperature. Polymer solution was prepared for application.

Method for determination of apparent viscosity of polymer solutions.  The apparent viscosity (ua) 
of the polymer solution was directly read using a DV-II + Pro rotor viscometer (Brookfield, US), whose accuracy 
is ±1.0% and range repeatability is ±0.2%. Unless otherwise stated, testing was conducted with a shear rate of 
6 s−1 at a temperature of 25 ± 0.1 °C.

Method for determination of G’ and G”.  The viscoelastic properties of a polymer solution are repre-
sented by a combination of viscous and elastic characteristics, and are observable as a response to an applied 
force. Dynamic viscoelasticity is observable as a response to an oscillating strain of a given frequency imposed on 
the polymer solution in a non-destructive state, and the viscosity and elasticity are characterized by the sizes of 
G′ and G″ in the solution. The values of G′ and G″ of polymer solutions were measured using a Physica MCR 301 
coaxial rotary rheometer (Anton Paar) with concentrations of 3000 mg/L, 4000 mg/L, 6000 mg/L, and 8000 mg/L. 
The oscillation frequency range was from 0.01–100 Hz at 25 °C.

Oil displacement experimental equipment and procedure.  Figure 1 shows a schematic of the exper-
imental set-up for oil displacement experiments. The test procedure was as follows.

	(1)	 The core holder (5, in Fig. 1) was packed with actual cores from the PuTao well area whose physical fea-
tures and geometrical dimensions are listed in Table 1, Table 2, and Table 3 and its weight was measured.

	(2)	 The core was saturated with formation water, aged for about 4 h, and then formation water was injected 
at a rate of 0.5 mL/min into the core. The pressures at both ends of the core were measured and the core’s 

Figure 1.  Oil displacement experimental apparatus. 1 Constant-flux pump. 2 Accumulator; 3 Six-way valve. 4 
Pressure gauge; 5 Core holder. 6 Oil-water separation pipe. 7 Constant-temperature oven.

Core 
No. Polymer

Length 
(cm)

Section 
area (cm2)

Permeability 
(µm2)

Porosity 
(%)

Injected 
slug (PV)

Incremental oil recovery (%)

I phase II phase III phase

Water 
flooding

HPAM 
flooding

BD-HMHEC 
flooding

1-a#

HPAM/BD-
HMHEC 
(4000 mg/L)

30 4.676 1.812 33.64 0.3 35.7 3.1 10.3

1-b# 30 4.676 1.817 34.05 0.4 36.1 4.5 15.4

1-c# 30 4.676 1.809 33.26 0.5 35.9 5.3 18.4

1-d# 30 4.676 1.820 33.94 0.6 35.6 6.2 20.1

1-e# 30 4.676 1.819 33.56 0.7 36.2 6.3 21.5

Table 1.  The results of HPAM and BD-HMHEC flooding after water flooding (injection rate: 0.5 mL/min).
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permeability to brine was determined employing Darcy’s law. The weight of the saturated core and its 
porosity were measured employing the saturated weighing method (in Table 1, Table 2, and Table 3).

	(3)	 Crude oil was injected into the core until water was no longer produced, and the irreducible water satu-
ration was calculated. The core was aged at 60 °C for 24 h and loaded into the core holder and placed into 
constant temperature oven. The oil displacement experiments were conducted until the oven temperature 
reached 60 °C (actual formation temperature of the PuTao well area).

	(4)	 Water was then injected until the water cut reached 98%, and the water flooding recovery was calculated.
	(5)	 A polymer solution was injected until the water cut exceeded 98%, and the oil recovery of polymer solution 

flooding was calculated.

Visual evaluation experimental equipment and procedure.  Figure 2 shows the visual valuation 
experimental equipment was employed to evaluate oil displacement efficiency. The equipment is comprised of a 
transparent and flat plate models, thermostatic physical model tank bottom, micro pump filled with fluid, cam-
era for continuous, real-time recording of various substances, computer analyzed image data system, and other 
components (in Fig. 2a). The right amount of epoxy evenly was sparingly applied evenly over both surfaces of 
the parallel glass in the transparent and flat plate models. The quartz sand or natural core powder was spread on 
the rubber surface to ensure uniformity and smoothness (in Fig. 2b). The experimental procedure is described 
as follows.

Core 
No. Polymer

Length 
(cm)

Section 
area (cm2)

Permeability 
(µm2)

Porosity 
(%)

Injected 
slug (PV)

Incremental oil recovery (%)

I phase II phase III phase

Water 
flooding

HPAM 
flooding

HEC 
flooding

2-a#

HPAM/HEC 
(4000 mg/L)

30 4.676 1.821 34.02 0.3 36.4 3.0 3.6

2-b# 30 4.676 1.812 34.16 0.4 35.9 4.3 4.9

2-c# 30 4.676 1.819 33.96 0.5 37.5 5.5 6.0

2-d# 30 4.676 1.825 35.09 0.6 37.1 6.4 7.3

2-e# 30 4.676 1.809 33.82 0.7 36.2 6.2 7.9

Table 2.  The results of HPAM and HEC flooding after water flooding (injection rate: 0.5 mL/min).

Core 
No.

Polymer 
concentration (mg/L)

Permeability 
(µm2)

HPAM 
Injected 
slug 
(PV)

Second HPAM/ 
BD-HMHEC 
Injected slug (PV)

Incremental oil recovery (%)

I phase II phase III phase

HPAM
BD-
HMHEC

Water 
flooding

HPAM 
flooding

Switching to 
BD-HMHEC 
flooding

Continuing 
HPAM 
flooding

3-a# 1250 4000 1.905 0.5 0.5 36.9 16.6 — 2.4

3-b# 1250 4000 1.910 0.5 0.5 37.0 16.8 7.9 —

4-a# 1250 4000 5.139 0.5 0.5 53.5 12.9 — 2.1

4-b# 1250 4000 5.180 0.5 0.5 53.8 13.0 7.3 —

Table 3.  The results of continuing HPAM and switching to BD-HMHEC flooding after water and HPAM 
flooding (injection rate: 0.5 mL/min).

Figure 2.  Device and physical model for visual evaluation of oil displacement. (a) Device for visually evaluating 
oil displacement. 1 Transparent visualization model. 2 Thermostatic physical model tank bottom. 3 Micro pump 
filled with fluid. 4 Camera for continuous, real-time recording of various substances. 5 Computer analyzed 
image data. (b) Physical model of visualization.
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	(1)	 The transparent model was saturated with formation water and then crude oil was injected until no water 
was produced. The model was installed in the experimental equipment.

	(2)	 Water was injected at a rate of 0.15 mL/min using a micro pump and the digital camera device and comput-
er analyzed image data system started to record.

	(3)	 When the water cut exceeded 98% from the outlet model, water flooding was stopped together with the 
micro pump, camera device and computer system.

	(4)	 BD-HMHEC solution was switched to inject at the same flow rate using the micro pump and the digital 
camera device and computer analyzed image data system started to record again.

	(5)	 When the water cut exceeded 98%, BD-HMHEC was finished together with the micro pump, camera 
device and computer system.

	(6)	 The captured images and measured data were saved after all the evaluation experiments.

Results and Discussion
Viscosification of the BD-HMHEC solution.  Effect of polymer concentration on ua.  The apparent viscos-
ity (ua) of BD-HMHEC and HEC solutions were read with concentrations of 500 mg/L, 1000 mg/L, 2000 mg/L, 
4000 mg/L, 6000 mg/L, 8000 mg/L and 10000 mg/L (temperature: 25 °C; shear rate: 6 s−1).

The trends with which the ua of BD-HMHEC and HEC solutions vary with respect to their concentrations 
shown in Fig. 3 are similar to that of HMPAM solutions15, 31, 32.

From Fig. 3, when the concentration of the BD-HMHEC solution was below the critical association concen-
tration (Cp

*; 4000 mg/L), the ua value was not significantly different from that of the HEC solution with concen-
trations of 500 mg/L, 1000 mg/L and 2000 mg/L. At concentrations below Cp, polymer molecules in the solution 
are mainly intramolecular-associated, and the molecular chains tend to shrink, resulting in a smaller ua. When the 
concentration reached Cp

*, the ua of the BD-HMHEC solution rose sharply to 2,040 mPa·s, while HEC remained 
at only 93 mPa·s. With increasing concentration above Cp

*, the ua of the BD-HMHEC solution increased much 
more rapidly than that of the HEC solution because the BD-HMHEC solution has a supramolecular agglom-
erate structure that enlarges the hydrodynamic volume at and above Cp

*, resulting in a notable increase in ua
33. 

BD-HMHEC solutions can obtain higher ua than HEC solutions at equivalent concentrations, and BD-HMHEC 
can been widely applied in EOR processes.

Effect of temperature on ua.  Figure 4 shows the effect of temperature on the ua values of BD-HMHEC and HEC 
solutions (concentration: 6000 mg/L; shear rate: 6 s−1).

From Fig. 4, the ua values of the BD-HMHEC and HEC solutions both greatly decreased with increasing 
temperature, and decreased much more slowly for temperatures above 60 °C, where both attained a nearly stable 
value. When the temperature reached 90 °C, the nearly stable ua value of the BD-HMHEC solution was only a 
small greater than that of HEC solution. The greater ua of the BD-HMHEC solution than that of HEC solution at 
a certain temperatures (less than 60 °C) is attributed to the intermolecular associations due to the endothermic 
process of entropy increase for hydrophobic association. The reason for the ua value of the BD-HMHEC solution 
greatly decreasing is attributed to intensify the thermal motion of the hydrophobic group, weaken the hydration 
of the hydrophobic group, and reduce the hydrodynamic volume with increasing temperature15, 34. However, the 
nearly stable value of the BD-HMHEC solution was greater than that of HEC, which illustrates that BD-HMHEC 
provided some improvements in the thermal-resistance performance.

These results suggest that BD-HMHEC solution would be more effective than HEC solution in high temper-
ature (60 ~ 90 °C) reservoir applications.

Effect of shear rate on ua.  Figure 5 shows the effect of the shear rate on the ua value of a BD-HMHEC solu-
tion (concentration: 6000 mg/L; temperature: 25 °C). ua is observed to decrease with increasing shear rate, and 
increase during restoration of the initial shear rate value over a range of 6–100 s−1. Special note, the relative error 

Figure 3.  Effect of polymer concentration on ua of BD-HMHEC and HEC solutions.
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of hysteresis between increase and restoration processes was larger than the experimental error of the measure-
ments (DV-II + Pro rotor viscometer: Accuracy is ±1.0%; Range repeatability is ±0.2%) in these experiments.

From Fig. 5, for shear rate values in the range of 30–60 s−1, the ua values are somewhat larger during the shear 
rate restoration phase than that obtained during the initial increase. The results indicate that the BD-HMHEC 
molecules gradually form more comprehensive supramolecular agglomeration networks during shear rate resto-
ration, and, consequently, the ua is not only recovered, but is generally somewhat larger. Specifically, for shear rate 
values below 30 s−1, the ua values are somewhat smaller during the shear rate restoration phase than that obtained 
during the initial increase. The ua of the BD-HMHEC solution ultimately failed to return to its initial value mainly 
because, after being subjected to shearing action, the degree of network sophistication required a relaxation time 
to return to its original level, which represented the observed time hysteresis.

The supramolecular agglomeration networks of the BD-HMHEC solution presented a dynamic equilibrium 
between association and disassociation, which has some time-dependency, and it is not instantly completed. The 
results show that the BD-HMHEC solution exhibits good shear-resistance, in which the molecular structure is 
stable upon subjection to an increasing shear rate. Therefore, the application of BD-HMHEC is suitable for EOR 
processes in medium- and high-permeability reservoirs.

Effect of NaCl on ua.  To simplify the discussion, only the effect of NaCl concentration on ua was considered in 
this paper, although other more complicated factors (such as salting-in or salting-out effects) may exhibit different 
effects on the properties of BD-HMHEC and HEC solutions.

Figure 6 shows the effect of the NaCl concentration on the ua values of BD-HMHEC and HEC solutions 
(concentration: 4000 mg/L; temperature: 25 °C; shear rate: 6 s−1). From Fig. 6, the ua values of the HEC solution 
decreased monotonically with increasing NaCl concentration. It is well known that the main drawback of HEC 
(or HPAM) is its sensitivity to salt, while a hydrophobically associated polymer responds differently owing to the 
introduction of hydrophobic groups.

As shown in Fig. 6, the ua values of the BD-HMHEC solution increased with increasing NaCl concentration 
for an NaCl concentration less than 30,000 mg/L. The addition of electrolytes enhances the polarity of the solu-
tion environment, and the hydrophobic response of the non-polarized hydrophobic groups becomes substan-
tial, which is prone to form hydrophobic micro-areas. While the hydration of the hydrophobic groups becomes 

Figure 4.  Effect of temperature on ua of BD-HMHEC and HEC solutions.

Figure 5.  Effect of the shear rate on ua of a BD-HMHEC solution.
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thin, the system forms a more complete and wider supramolecular network structure, causing the volume fluid 
mechanics to further increase, and the ua of the BD-HMHEC solution increases35.

For NaCl concentrations above 30,000 mg/L, higher salt concentration drives the addition of electrolytes and 
stronger hydrophobic association action, which can led to separation of the association. The solution displays 
slightly cloudy and partial polymers precipitated out of the solution, and ua decreased rapidly with increasing 
NaCl concentration. However, the ua of the BD-HMHEC solution was still 699.9 mPa·s and the ua of the HEC 
solution was only 10.0 mPa·s at NaCl concentration of 100,000 mg/L. BD-HMHEC solution represents good 
salt-tolerance and is therefore effective for EOR under high salinity (<100000 mg/L) reservoir conditions.

Effect of pH on ua.  Figure 7 shows the effect of the pH value on the ua of BD-HMHEC and HEC solutions (con-
centration: 6000 mg/L; temperature: 25 °C; shear rate: 6 s−1).

From Fig. 7, when the pH was between 4 and 10, the ua of the HEC solution exhibited little change, and, when 
HEC was in an acid/alkali environment, its ua declined sharply. However, the ua of the BD-HMHEC solution was 
as high as 11,000 mPa·s in a nearly neutral environment, and remained above 9000 mPa·s in an acid/alkali envi-
ronment. This indicates that the BD-HMHEC solution exhibited a degree of acid/alkali resistance.

As shown in Fig. 7, in a nearly neutral environment, the electrostatic repulsion of intermolecular polymer is 
minimal, and the macromolecular chains begin to extend; therefore, the ua of a polymer attains a maximum value. 
In a strong acidic environment, with higher H+ concentration, the polymer associates the hydrogen ion to form 
an electrostatic repulsion of the intermolecular polymer, and the intermolecular action becomes weak, resulting 
in a decrease in ua. When the solution environment becomes alkaline, electrostatic repulsion of the intermolec-
ular polymer increases, and the intermolecular action decreases with increasing OH− concentration. The molec-
ular chain of a polymer may become damaged in an alkaline environment, which leads to a rapid decrease in ua.

Whether under a nearly neutral or an acid/alkali reservoir environment, the acid/alkali resistance of 
BD-HMHEC can widen its application scope for EOR.

Viscoelasticity of the BD-HMHEC solution.  Figure 8 shows the viscoelastic curves of BD-HMHEC solu-
tions at different concentrations.

Figure 8(a) indicates that, when the BD-HMHEC concentration was low (3000 mg/L), the solution exhibited 
no viscoelasticity. One reason for this finding is that the interaction of the molecular chains is weak, and the 

Figure 6.  Effect of NaCl concentration on ua of BD-HMHEC and HEC solutions.

Figure 7.  Effect of pH on ua of BD-HMHEC and HEC solutions.
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inter-molecular chains exhibit no obvious entanglement. The other reason is that the hydrophobic association 
action of the solution is also weak, and the intramolecular association becomes dominant, resulting in a failure to 
form a spatial network aggregate structure.

Figure 8(b) indicates that G′ and G″ increased with increasing BD-HMHEC concentration (4000 mg/L, 
6000 mg/L, and 8000 mg/L) at the same frequency, and that the viscoelasticity of the solution became increasingly 
obvious with increasing polymer concentration. Viscoelasticity was exhibited when the BD-HMHEC concentra-
tion was 4000 mg/L (i.e., at Cp

*), and G′ and G″ were observed to increase with increasing oscillation frequency. 
For a BD-HMHEC concentration of Cp

*, the intermolecular action replaces intramolecular association with 
intermolecular association, and the BD-HMHEC molecules begin to form a supramolecular network structure, 
resulting in a more obvious viscoelasticity.

Similar to a hydrophobically associated polymer, the strength of the entanglement action of the molecule 
chain increases with increasing BD-HMHEC concentration. Moreover, the viscoelasticity of the hydrophobically 
associated polymer becomes increasingly obvious as the hydrophobic association action of the molecule chain 
increases. The G′ and G″ values exhibit a crossing point for each concentration, which is denoted as the specified 
frequency (SF). G″ is greater than G′ when the frequency is less than the SF, while G’ is greater than G” when the 
frequency is greater than the SF. At a relatively low frequency range, the viscous component dominates the viscoe-
lastic properties of a BD-HMHEC solution36. However, when the frequency is greater than the SF, the elasticity 
component becomes the dominate factor.

Figure 8(b) also shows that the SF point decreases with increasing polymer concentration. Also, the cor-
responding elasticity of a high polymer concentration solution exceeds the corresponding viscosity at a lower 
frequency. At a large concentration, the molecules of BD-HMHEC solution are prone to form hydrophobic 
micro-areas, which serve as a basic connection to form a larger supramolecular network structure33.

Therefore, the drive toward network structure formation increases with increasing BD-HMHEC concentra-
tion, so that the SF decreases with increasing BD-HMHEC concentration.

Oil displacement efficiency.  In order to understand the different effects of HPAM, HEC, and BD-HMHEC 
solutions on core flooding processes, the similar core physical properties to their parent were prepared to avoid 
cleaning the core after each injection experiment.

We selected to cut several different small-size medium-permeability core samples (Core No. 1-a#, 1-b#, 1-c#, 
1-d# and 1-e# for BD-HMHEC flooding; 2-a#, 2-b#, 2-c#, 2-d# and 2-e# for HEC flooding) with the section 
area of 4.676 cm2 and the length of 30.00 cm based on field samples from the PuTao well area in Daqing oil-
fields (China). These core samples were basically uniformly cut from the same period of the full-diameter cores 
(Tables 1, 2 and 3).

Core displacement experiment of the BD-HMHEC solution.  The BD-HMHEC concentration of the solution 
employed in the experiment was 4,000 mg/L (injection rate: 0.5 mL/min). Core flooding tests were conducted to 
evaluate the effects of the HPAM and BD-HMHEC flooding on oil recovery after water flooding.

Core flooding tests were divided into three phases: I phase was conducted water flooding; II phase was con-
ducted HPAM flooding and III phase was conducted BD-HMHEC flooding. Table 1 lists the experimental results 
of three phases with injected different PV (Pore Volume) slugs of HPAM (II phase) and BD-HMHEC (III phase) 
flooding and water flooding (I phase) in low permeability cores.

From Table 1, the results indicate the incremental oil recovery of HPAM and BD-HMHEC flooding improved 
that of water flooding by 3.0–6.0% and 10–20%, respectively. BD-HMHEC solution exhibits good EOR perfor-
mance than HPAM solution under equivalent conditions. In addition, it was determined that the oil recovery of 
BD-HMHEC flooding increased significantly with increasing injected slug sizes in the range 0.3–0.5 PV. The oil 
recovery of BD-HMHEC flooding increased slightly for injected slug sizes greater than 0.5 PV.

Core displacement experiment of the HEC solution.  Core flooding tests were also divided into three phases: I 
phase was conducted water flooding; II phase was conducted HPAM flooding and III phase was conducted HEC 

Figure 8.  Viscoelastic curves of BD-HMHEC solutions of different concentrations. (a) BD-HMHEC 
concentration: 3000 mg/L. (b) BD-HMHEC concentrations: 4000 mg/L, 6000 mg/L, and 8000 mg/L.
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flooding. Table 2 lists the experimental results of three phases with different PV slugs for HPAM (II phase) and 
HEC (III phase) flooding at the concentration of 4,000 mg/L (injection rate: 0.5 mL/min) after water flooding (I 
phase) in low permeability cores.

From Table 2, the results indicate that the absolute incremental oil recovery of HPAM and HEC flooding 
improved that of water flooding by 3–6% and 3–8%, respectively.

Comparison of Table 1 with Table 2 indicates that the absolute incremental oil recovery of BD-HMHEC flood-
ing was about 7–14% higher than that of HEC flooding under equivalent conditions.

EOR of continuing HPAM and switching to BD-HMHEC after water/HPAM flooding.  To avoid cleaning the core 
after each injection experiment, we selected to cut two small-size medium-permeability core samples (Core No. 
3-a#, 3-b#) and two small-size high-permeability core samples (Core No. 4-a#, 4-b#) with the section area of 
4.676 cm2 and the length of 30.00 cm (Table 3).

To further investigate the oil displacement performance of the BD-HMHEC flooding, core flooding tests were 
also divided into three phases: I phase was conducted water flooding; II phase was conducted HPAM flooding 
and III phase was conducted “Switching to BD-HMHEC flooding” or “Continuing HPAM flooding”.

Table 3 lists the results of the “Continuing HPAM flooding” and “Switching to BD-HMHEC flooding” after 
conducting water and conventional HPAM flooding for cores of different permeability.

The results indicate that, whether in medium or relatively high permeability zones, the absolute incremental 
oil recovery of HPAM flooding improved that of water flooding by 12–17%. But, continuing HPAM flooding 
improved the absolute incremental oil recovery by 2.0–2.5% after HPAM flooding; switching to BD-HMHEC 
flooding improved the absolute incremental oil recovery by 7–8% after HPAM flooding. Therefore, it can be 
determined that the BD-HMHEC solution has a better oil displacement property than HPAM solution.

The oil displacement mechanism of the BD-HMHEC solution.  The oil recovery of BD-HMHEC 
flooding is much greater than those of HEC and HPAM flooding. Two possible oil displacement mechanisms to 
explain these results are given as follows.

The mechanism of enhanced viscosity.  The BD-HMHEC solution exhibits good viscosification due to its hydro-
phobic association effect. It is generally considered that the apparent viscosity of polymer solution increases, 
the relative permeability of the water phase decreases and the water/oil mobility ratio reduces in porous media; 
thereby the oil displacement efficiency improves. A polymer’s ability to enhance oil recovery increases with 
increasing viscosity37, 38.

Figure 9 presents a schematic of the intermolecular association behavior of a BD-HMHEC solution with 
increasing concentration. The viscosification performance of the BD-HMHEC solution was poor at a relatively 
low concentration (i.e., for a concentration lower than Cp

*). The reason for this is that the macromolecular chains 
rely mainly on the intramolecular association of the hydrophobic groups, as shown in Fig. 9(a) and (b). When 
the concentration is greater than Cp

*, the macromolecular chains form a supermolecular structure (also denoted 
as a dynamic physical crosslinking network structure) with an intermolecular hydrophobic interaction base, as 
shown in Fig. 9(c). Supramolecular aggregates and hydrophobic regions are formed owing to association among 
the hydrophobic groups; thus, the solution viscosity increases significantly. However, HEC lacks these aggregates 
and structure regions. Therefore, BD-HMHEC solutions exhibit better viscosification and oil displacement per-
formances than HEC solutions.

The mechanism of viscoelasticity.  The unique dynamic physical crosslinking network structure of a BD-HMHEC 
solution imparts a viscoelasticity to the solution, enabling it to “pull, drag” the residual oil in dead-end and 
pore throat, but the HEC solution lacks this characteristic37, 38. Figure 10 describes a schematic of the flooding 
process of oil droplets in water-wet cores. Figure 11 describes the visual evaluation of BD-HMHEC solution oil 
displacement (concentration: 4000 mg/L; temperature 25 °C). The viscoelasticity oil displacement mechanism of 
a BD-HMHEC solution is discussed as follows based on the incremental oil recovery determined according to 
the visual evaluation.

From Fig. 10, when the BD-HMHEC solution flows in a porous medium, pore throat, etc., the molecule 
space network structure is destroyed under the conditions of shear flow. However, when the flow path diameter 
or flow velocity changes, the space network structure is reconstituted, and the viscosity is restored due to its 

Figure 9.  Schematic of the intermolecular association behavior of a BD-HMHEC solution with increasing 
concentration.
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viscoelasticity. Meanwhile, as the partial flow resistance increases, the subsequent injected fluid is able to flow 
into narrow neck regions, and, at this point, the oil groups within the narrow zone form a process deformation 
along the flow direction with projecting parts that become detached from the main oil groups into the moveable 
oil, which draws off the residual oil. Thus, the BD-HMHEC solution exhibits EOR by improving reservoir dis-
placement efficiency11, 37–40.

From Fig. 11, the experimental results indicate that the mean oil recovery of water flooding was about 28%, 
and that the total mean oil recovery was about 95% after BD-HMHEC flooding, resulting in about a 67% absolute 
incremental improvement over water flooding. The captured images show that BD-HMHEC improves the dis-
placement efficiency because of its increased viscosity and viscoelasticity.

Figure 10.  A schematic of the flooding process of oil droplets in water-wet cores.

Figure 11.  Visual evaluation of BD-HMHEC solution oil displacement.
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Conclusion

	(1)	 The BD-HMHEC solution has good viscosification, thermal-resistance, salt-tolerance, shear resistance, 
and acid/alkali resistance.

	(2)	 The BD-HMHEC solution exhibits viscoelasticity when its concentration is greater than or equal to 
4000 mg/L, and G′, G″, and the viscoelasticity all increase with increasing oscillating shear stress frequency.

	(3)	 Coreflood experimental results clearly indicated that the absolute incremental oil recovery of BD-HM-
HEC flooding was about 7–14% higher than that of HEC flooding under equivalent conditions. Moreover, 
BD-HMHEC flooding improved the incremental oil recovery by about 7–8% after HPAM flooding. These 
results demonstrate that BD-HMHEC flooding has much better oil displacement properties than those of 
HPAM and HEC flooding.

	(4)	 The visual experimental results indicated that the mean oil recovery of water flooding was about 28%, 
and the total mean oil recovery was about 95% after BD-HMHEC flooding, which achieved an improved 
absolute incremental oil recovery by about 67% relative to that of water flooding.

	(5)	 BD-HMHEC, as an oil displacement agent, can improve the oil displacement efficiency because of its 
viscosification and viscoelasticity, and has great potential in EOR processes.
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