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Co-Registration of ex vivo Surgical 
Histopathology and in vivo T2 
weighted MRI of the Prostate via 
multi-scale spectral embedding 
representation
Lin Li   1, Shivani Pahwa2, Gregory Penzias1, Mirabela Rusu   3, Jay Gollamudi4, Satish 
Viswanath1 & Anant Madabhushi1

Multi-modal image co-registration via optimizing mutual information (MI) is based on the assumption 
that intensity distributions of multi-modal images follow a consistent relationship. However, images 
with a substantial difference in appearance violate this assumption, thus MI directly based on image 
intensity alone may be inadequate to drive similarity based co-registration. To address this issue, we 
introduce a novel approach for multi-modal co-registration called Multi-scale Spectral Embedding 
Registration (MSERg). MSERg involves the construction of multi-scale spectral embedding (SE) 
representations from multimodal images via texture feature extraction, scale selection, independent 
component analysis (ICA) and SE to create orthogonal representations that decrease the dissimilarity 
between the fixed and moving images to facilitate better co-registration. To validate the MSERg 
method, we aligned 45 pairs of in vivo prostate MRI and corresponding ex vivo histopathology 
images. The dataset was split into a learning set and a testing set. In the learning set, length scales 
of 5 × 5, 7 × 7 and 17 × 17 were selected. In the independent testing set, we compared MSERg with 
intensity-based registration, multi-attribute combined mutual information (MACMI) registration 
and scale-invariant feature transform (SIFT) flow registration. Our results suggest that multi-scale SE 
representations generated by MSERg are found to be more appropriate for radiology-pathology co-
registration.

In spite of different radiographic imaging modalities (e.g. MRI, Ultrasound) being available for prostate cancer 
diagnosis, a definitive ascertainment of disease extent is only possible by histopathologic examination on surgi-
cally excised specimens1. Diagnosis and delineation of prostate cancer regions based on routine MRI may suffer 
from inter-rater differences. Figure 1 illustrates the challenges of relying solely on radiology readers to determine 
ground truth for disease extent using imaging alone.

Consequently, there has been a recent appreciation of the need to identify alternative image representations 
that can complement intensity information which includes image gradients2, co-occurrence information3, and 
image segmentations4 for the purposes of multi-modal image co-registration. Texture features, e.g. Gabor wave-
lets5 provide multi-scale, multi-oriented textured representations of the original images6. The intuition behind the 
texture feature representation is that similar underlying structural attributes (e.g. edge patterns) can be identified 
in the two images to be registered. Texture features extracted at differently sized neighborhoods enable the cap-
turing of different underlying structural cues6, 7. In addition, certain scales might result in expression of cues or 
features that are not expressed at other scales. Hence, it becomes critical to explicitly consider the scales at which 
the features are extracted and develop better representations in a scale-specific manner. The challenge though is 
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identifying which representations are most appropriate for multi-modal co-registration. Previous registration 
methods6–10 involving texture analysis did not explicitly interrogate the role of texture as a function of feature 
scale. MSERg aims to leverage the use of multiple feature scales for creating different image representations, 
thereby increasing the similarity of the multi-modal images and thus co-registration accuracy.

Though there are a number of extant texture features (e.g. Haralick11, Laws12, Gabor5), there also exists sub-
stantial redundancy between these features. The use of dimensional reduction (DR) methods to project high 
dimensional features into lower dimensional spaces allows for the construction of new transformed representa-
tions that can robustly drive multi-modal co-registration. Independent component analysis (ICA) is a method 
for decomposing mixture data into lower dimensional orthogonal features, with the most salient information 
obtained by minimizing mutual information (MI) and maximizing non-Gaussianity within the data13. Li et al.6 
showed that using ICA could reduce redundancy between multi-channel image texture features, in turn improv-
ing the co-registration result. ICA does not, however, implicitly rank the order of the independent components 
(ICs) according to their importance.

Spectral embedding (SE) is a nonlinear DR method for projecting data into a low-dimensional manifold from 
a high-dimensional space10. This method takes the dissimilarity between two images as a weighted affinity matrix 
and applies eigenvalue decomposition to obtain the corresponding eigenvectors and eigenvalues. The approach 
orders the components that best preserve the structure of the high-dimensional manifold by selecting the eigen-
vectors corresponding to the minimum eigenvalues as the top components10. In addition, applying SE onto the 
textural ICs extracted at each scale can help preserve the nonlinear relationships between the target and template 
images and hence potentially facilitate more accurate co-registration.

MI is a popular similarity measure for multi-modal image co-registration where the goal is to try to maximize 
the information shared between two images14. MI mitigates the sensitivity of intensity-difference-based similarity 
measures on different image modalities by measuring intensity distribution of the images to be co-registered. 
Unfortunately, in spite of these advantages, MI is inadequate at robustly registering multi-modal images with sub-
stantially different appearance characteristics1. For example, the appearance of tissue and anatomical structures 
on prostate MRI and corresponding ex vivo histopathology are vastly different. (Figure 1) The shape of the excised 
prostatectomy specimen tends to substantially change during the process of tissue fixation, slicing and sectioning. 

Figure 1.  Illustration of a pair of corresponding in vivo prostate MRI (c) and ex vivo histology images (b). 
On panel (a) one can observe the cancer annotations made by two radiologists (green and red) unblinded to 
the corresponding histology images. The divergent annotations made by the two radiology readers, in spite of 
having access to the pathology images, suggests the need for accurate co-registration of pathology and radiology 
imaging in order to ascertain the ground truth extent for disease on radiology imaging ((d) the overlap 
registration visualization).
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The tissue preparation procedure has also been found to cause tissue loss and deformation. Similarly, the shape of 
in vivo MRI can undergo substantial deformation under pressure from surrounding organs such as the bladder. 
Furthermore, during MRI acquisition, the presence of an endorectal coil could also induce deformations in the 
natural shape of the prostate. Hence the goal of this work is to identify image representations which maximize 
the similarity between the fixed (MRI) and moving (histopathology) images. However, there is a need for higher 
dimensional similarity functions to be able to combine multiple different image representations to adequately 
co-register diverse looking images. To meet this need, we employ the α-MI, which shows great performance in 
high dimensional registration15, as the similarity measure.

Previous Work and Brief Overview of Approach
As previously mentioned, there has been substantial interest in identifying alternative image representations 
for multi-modal co-registration. Chappelow et al.8, 9 presented a texture-feature-based registration method to 
improve multi-modal registration performance called multi-attribute combined mutual information (MACMI). 
The approach used a set of multiple image texture features to complement image intensity information including 
the first and second order statistical and gradient features. MACMI yielded a noticeable improvement in align-
ment accuracy between images of different modalities, evaluations having been performed on both synthetic and 
clinical studies. Multi-modal co-registration in high dimensional spaces is difficult to drive using traditional MI 
approximated by the ‘histogram-based plug-in’ estimation16. Thus, MACMI typically could not accommodate 
more than 2D or 3D spaces for co-registration9. Instead of depending on density estimation, Neemuchwala et al.17  
computed the length of entropic graphs, such as the k-Nearest Neighbor graph (k NNG) and the minimal span-
ning tree (MST), to estimate graph entropic similarity measures. The graph entropic similarity measures, such 
as α-MI, can potentially eliminate the low dimensionality constraint of ‘histogram-based plug-in’ estimation16 
during calculation of MI. Staring et al.15 applied entropy graphs to address the deformable registration of cervi-
cal MRI and solved the high dimensional registration problem by deriving the analytic derivative of α-MI with 
respect to the transformation parameters.

Furthermore, ICA has been employed to eliminate redundant representations from within a larger set of 
extracted textural features6. However, the disadvantage of ICA is its unordered output ICs, hence it is impossible 
to fix the alternative representations for the fixed and moving images and thus the registration performance will 
most likely not be robust in spite of the repeated application of ICA. Hence, we employ spectral embedding onto 
the ICA representations. This enables generation of a series of ordered spectral vectors which are arranged in 
order of the amount of variance captured in the ICA component space. Thus, by having a ranked set of vectors, 
we can employ the top spectral embedding vectors to drive the co-registration. In addition, ICA is a linear DR 
method. For the MRI and ex vivo pathology specimens that we are attempting to co-register, a linear embedding 
representation may not adequately capture the non-linear deformations induced in both the imaging and the 
pathology data during the acquisition process. Spectral embedding is a nonlinear DR method and hence the 

Figure 2.  MSERg comprises 2 main modules: Firstly a SE representation is constructed at each scale. (1) 
Texture feature extraction is performed at each length scale within both the fixed and moving images. (2) ICA is 
then performed at each texture feature length scale, and (3) spectrally embed the ICs extracted from the texture 
features at each length scale. The second module involves multi-scale registration. This module comprises the 
following main steps. (1) Identifying and combining image representations at optimal length scales in order to 
drive co-registration and (2) using α-MI to combine the scale spaces of spectral embedding vectors in order to 
facilitate radiology-pathology co-registration.
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resulting vectors could potentially better capture the non-linear deformations induced in the imaging and pathol-
ogy images.

In this paper, we present a new co-registration method, MSERg, that employs textural features, ICA, spectral 
embedding to identify the most representative feature scales and then combines these new multi-scale image rep-
resentations via α-MI to facilitate more accurate multi-modal co-registration. Specifically, our approach explores 
the influence of scale length of extracted texture features on multi-modal co-registration. Figure 2 provides an 
illustrative rendering of the overall workflow comprising our method.

Co-registration performance was compared with intensity-based registration, a texture-feature-based regis-
tration, named as multi-attribute combined mutual information (MACMI) registration18, scale-invariant feature 
transform (SIFT) based registration, named as SIFT flow19, and single-scale Spectral embedding representation 
registration (SSERg). SIFT flow is a registration algorithm developed by Liu et al.19 and it employs the features 
extracted by SIFT descriptors to characterize the correspondence between the fixed and moving images. SIFT 
flow can be used to register images of great textural and appearance difference19. Our experiment comprised of 
clinical and synthetic datasets. In the clinical experiment, We applied the Dice similarity coefficient (DSC) to 
evaluate the alignment of prostate capsule boundaries between the histopathology images and corresponding 
MRI which segmented by radiologists. For local registration accuracy evaluation, DSC was employed to evalu-
ate the registration accuracy by comparing the registration results against the tumor annotations mapped from 
histopathology images via manual registration. In addition, the root mean squared distance (RMSD) was used 

Figure 3.  In Figure 3 Panel A, sub-panel (a) shows the down-sampled gray scale histopathology image and 
(e) shows the corresponding T2 weighted MRI slice. (b–d) are SE based representations of histopathology and 
(f–h) are MRI derived SE representations at scales κ ∈ {3, 11, 17}, respectively. The orange arrows point to the 
urethra structures. Panel B illustrates the NMI distribution for each scale representation across 45 pairs of 
histopathology images and MRI. Marked improvement in similarity is observed across all scales and reflected 
via a greater NMI of SE representations compared to intensity - based representations. In Panel C, column 
(a) shows the intensity representation of corresponding PD, T1 and T2 MRI and columns (b–d) show their 
corresponding SE representations at scales κ ∈ {3, 9, 17}, respectively. SE representations across different scales 
emphasize different attributes in the image, attributes that only become apparent at specific length scales. For 
instance, for clinical data, the region corresponding to the urethra is de-emphasized in the representations 
shown in (b) and (g). On the other hand, (c), (d), (f) and (h) highlight and emphasize the same regions. In 
addition, synthetic data SE representations in Panel C, sub-panel (c) illustrate underlying similarities across 
different modalities compared to sub-panels (a), (b) and (d).
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to measure the distance between the corresponding landmarks between the histopathology images and MRI in 
millimeters. In the synthetic experiments, We firstly applied synthetic non-linear B-splines deformations on the 
proton density (PD) images and then registered the corresponding T1 weighted and T2 weighted images in order 
to recover the original applied deformation. We then compared the recovered deformation against the induced 
deformation to evaluate the performance of the co-registration scheme. The mean deformation difference (MDD) 
was employed to quantify the recovered deformation errors compared to the induced deformation.

Results
Similarity improvement.  Figure 3 panel B shows a box plot of NMI distribution among 45 pairs of MRI 
and histology images with original intensity representation and the SE representations with scale κ ∈ {3, 5, 7, 9, 
11, 13, 15, 17}. Because each individual scale SE representation consists of 3 SE vectors, we use the average NMI 
value of these 3 corresponding SE vectors to represent the similarity level between SE representations of MRI and 
histology images. All the SE representations used in this experiment show greater NMI values than the intensity 
signal with moderate variance among different scales. The result indicates that SE representations could convert 
images of different modalities, MRI and histopathology images, to show more substantial similarity compared to 
the original intensity representation. In addition, SE representations of different scales extract different textural 
information. In Figure 3 panel A, (a) and (e) are the intensity representations of the moving and fixed images. 
(b–d) are histopathology SE representations and (f–h) are the corresponding MRI SE representations at scales 
κ ∈ {3, 11, 17}, respectively. The SE representation at scale κ = 17 shows more similar appearance between the two 
modalities compared to other image representations. The influence of length scales on morphologic cues within 
the images is clearly illustrated. For instance, the region corresponding to the urethra is de-emphasized in the 
representations and at the length scales shown in (b) and (g). On the other hand, (c), (d), (f), and (h) highlight 
and emphasize the same regions. Panel C demonstrates the intensity representations of brain PD, T1 weighted 
and T2 weighted MRI in column (a) and SE representations at scale κ ∈ {3, 9, 17} respectively in columns (b)-(d). 
Similar to the clinical data shown in panel A, SE representations at different scales extract divergent morphol-
ogy and texture features. Synthetic data SE representations in panel C column (c) illustrate underlying similar-
ities across different modalities compared respectively to columns (a), (b) and (d). These results reinforce our 
approach, that different morphological structures are emphasized or suppressed across different length scales and 

Evaluation methods
Intensity-based 
Registration MACMI MSERg SIFT

tumor lesion DSC 0.59 ± 0.17 0.52 ± 0.18 0.66 ± 0.10 0.54 ± 0.16

capsule boundary DSC 0.93 ± 0.02 0.95 ± 0.03 0.96 ± 0.01 0.84 ± 0.04

RSMD 3.97 ± 0.70 3.64 ± 1.02 2.96 ± 0.76 3.89 ± 1.17

MDD (T1 to PD) 33.78 ± 17.80 2.53 ± 1.05 1.45 ± 0.43 3.51 ± 0.73

MDD (T2 to PD) 41.89 ± 16.19 1.82 ± 1.00 0.50 ± 0.28 1.36 ± 0.62

Table 1.  Quantitative evaluation of representation-based registration on the clinical and synthetic testing 
sets. (N = 25 for both datasets) The table shows the mean and the standard derivation of tumor DSC, prostate 
boundary DSC and landmark RMSD for clinical dataset and MDD for synthetic dataset. Note that the greater 
the DSC, the lower the RMSD and MDD indicate the more accurate result.

Figure 4.  MSERg, MACMI, SIFT and Intensity-based Registration comparison in terms of prostate capsule 
boundary DSC, landmark RMSD and tumor DSC with statistical significance analysis testing on the clinical 
test set. Greater DSC value and lower RMSD indicate better annotation alignment and thus a better registration 
result. Statistical significance testing was performed between each pair of methods with respect to MSERg 
in terms of capsule boundary DSC, landmark RMSD and tumor DSC. In 8 of the 9 different comparisons 
performed, MSERg statistically significantly (p < 0.05) outperformed the other methods for the cases in the 
clinical test set.
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only a multi-scale representation can optimally help determine image similarity in order to aid in multimodal 
co-registration.

Evaluation of MSERg with other representation-based registration methods.  MSERg combined 
the scale κ ∈ {5, 7, 17} for clinical data and the scale κ ∈ {3, 5, 7} for synthetic data. These scale combinations 
were selected based on the evaluation of single-scale representation based registration performance on the inde-
pendent learning set. For clinical data, the registration of the scale κ ∈ {3, 7, 17} show averagely better tumor 
annotation alignment than other scales. For synthetic data, MMD values between the induced deformation and 
recovered deformation of the scale κ ∈ {3, 5, 7} are less than other scales.

MSERg and Intensity-based Registration.  For clinical data, MSERg illustrates a better across the board regis-
tration performance with less variance in the testing set compared with intensity-based registration. (Table 1) 
Furthermore, MSERg shows statistically significant performance improvement on all the three registration 
evaluation measurements. (Figure 4) Additionally, Figure 6 illustrates a clinical registration case show-
ing intensity-based, MACMI, SIFT flow and MSERg registration results qualitatively. MSERg outperforms 
the other methods by showing the most accurate tumor ROI annotation, landmarks and capsule boundary 
alignment.

For synthetic data, the registration performance is evaluated via MDD. Table 1 and Fig. 5 demonstrate the 
quantitative performance evaluation among the four registration methods. MSERg has the least difference 
between the results and the induced deformation in both multimodal registration cases while intensity-based 
registration has the greatest difference.

Figure 5.  MSERg, MACMI, SIFT and Intensity-based Registration comparison in terms of MDD with 
statistical significance analysis on synthetic test set (25 cases of PD,T1 and T2 weighted MRI). Lower the MDD 
value indicates less difference between the recovered deformation and the induced deformation and thus a 
better registration result. (a) shows the registration results with PD images as fixed images and T1 weighted 
images as moving images and (b) with T2 weighted images as moving image. (c) and (d) exclude the intensity-
based results to demonstrate comparison between MSERg, MACMI and SIFT methods more specifically. 
MSERg has the least MDD from the induced deformation compared with the other registration methods 
statistically significantly.
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MSERg and Texture-feature-based Registration.  MACMI, a texture-feature-based-registration, although 
employs texture features like MSERg, the use of scale selection, ICA and SE appears confers a competitive advan-
tage to MSERg. Figures 4 and 5 show the registration results evaluation with statistical significance analysis for 
clinical and synthetic dataset respectively. MSERg does not significantly outperform MACMI at a 95% confidence 
limit via landmark RMSD evaluation in clinical dataset. However, MSERg has significantly better boundary align-
ment and tumor annotation alignment accuracy.

MSERg and SIFT flow.  SIFT is a descriptor to characterize image local intensity gradient information20. SIFT 
flow adopts SIFT descriptors that aligns images of very different texture and appearances based on local gradient 
information19. However, in case of in vivo T2 weighted MRI and ex vivo histology image registration, MSERg 
shows more accurate and robust results across 25 cases in the testing set. Especially, SIFT flow results have a poor 
boundary alignment accuracy compared with the other three registration methods. (Figures 4(a) and 6(j)) In 
addition, the MMD values of SIFT flow method in synthetic experiments are greater than MMD value of MSERg 
according to Figure 5. Thus, MSERg outperformed SIFT flow registration consistently on both clinical and syn-
thetic datasets.

MSERg and SSERg.  Figure 7 illustrates a frequency plot showing in how many instances either the SSERg or 
MSERg registration yielded the best result among clinical (N = 25) and synthetic (N = 25) testing sets. Although 
MSERg cannot outperform SSERg with every individual scale for every given experiment or dataset, overall 
MSERg dominates as the best performing registration scheme the majority of the time. The results clearly suggest 
that integrating multiple length scales offers an advantage in terms of multi-modal co-registration, the majority 
of the time.

Furthermore, the same scale combination kept in both T1 to PD and T2 to PD registrations and MSERg more 
frequently shows the best registration performance in both multimodal registration datasets. However, the results 
in Figure 7 also suggest that there is little consistency in performance of a specific scale across different experi-
ments. In other words, there is no “magic scale”. For example, though scale κ = 3 is of frequency 0.32 as the best 
method in co-registering T1 to PD synthetic brain scans, scale κ = 3 does not feature even once when registering 
25 pairs of T2 and PD synthetic brain scans. Thus, compared with SSERg, MSERg has more accurate and robust 
registration performance across different datasets.

Discussion
Co-registration of prostate in vivo MRI and ex vivo histopathology images is important in localizing prostate 
cancer extension on MRI and could help facilitate the development of radiomic machine based classifiers for 
characterization of prostate cancer on MRI21, 22. However, both the radiology and histopathology images undergo 
size and shape deformation during imaging and subsequent surgical resection and slice preparation, making 
automatic co-registration difficult. MSERg is an automatic registration method involving textural analysis scale 
selection, independent component analysis and spectral embedding to align the in vivo MRI and ex vivo histopa-
thology images and thus map the ground truth tumor extension onto MRI.

Figure 6.  Illustration of a clinical registration case. (a), (f) are the fixed and moving images with landmarks 
annotated by the pathologist and the radiologist. The tumor ROI annotations on the pathology image are made 
by the pathologist and the corresponding tumor ROI on the MRI are mapped from pathology annotations 
obtained via manual registration. (b), (g) show the registration results of intensity-based registration; (c), (h) 
of MACMI, (d), (i) of MSERg and (e), (j) of SIFT, respectively. The light blue lines in panels (b–e) illustrate 
the tumor ROI on a T2-weighted MRI slice and the magenta lines highlight the corresponding ROI on the 
transformed pathology image. (g–j) illustrate the landmark alignment results where the cyan colored landmarks 
represent those identified on the MRI, while the yellow colored landmarks represent those corresponding locations 
on the transformed pathology image. The dark blue lines in (g–j) illustrate the capsule boundary on MRI.
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Over the last decade there has been work on co-registration methods for pre-operative in vivo imaging and ex 
vivo histopathology images of the prostate. There are two general classes of methods to co-register in vivo MRI 
and ex vivo histopathology images of the prostate: 3D volume to volume registration23, 24 and 2D slice to slice 
registration8–10. 3D volume to volume registration requires for accurate 3D histology volume reconstruction23, 24.  
However, the 3D histology volume reconstruction is crippled by limited number of histology slices typically 
obtained during clinical workup of the surgical specimens25. Consequently, there has been several approaches that 
have attempted 2D slice to slice registration. The limitation of the 2D slice to slice registration is the requirement 
for the slice correspondence to first be determined between the in vivo MRI and ex vivo histopathology images. 
Xiao et al.25 developed an iterative group-wise comparison methods to identify the correspondence between ex 
vivo histology and pre-operative in vivo MRI slices. However, the accuracy of the correspondence estimation 
tends to depend on the manual segmentation of the prostate on the MRI sections, which in turn depends on the 
radiologist who annotates the tumor. Another recent attempt at histology-MRI co-registration involves the con-
struction of 3D printed molds containing spatial landmarks to relate the histology slices with in vivo MRI slices26. 
While this approach could help address the constraints of establishing slice-to-slice correspondence, significant 
discrepancy might exist in the sagittal view between the 3D molds and MRI volume and it may not be possible to 
include this approach within a busy clinical protocol26.

Other approaches for co-registering MRI and pathology images have involved either some manipulation of 
the pathology specimens (e.g. inserting carbon rods27) or ex vivo imaging of the surgical specimen23, 28, 29. The 
closest work to our approach is that of Li et al.6. Li et al. applied ICA on multi-scale and multi-oriented Gabor 
features to fuse texture information from different image channels to drive multimodal co-registration of brain 
MRI scans. Their approach requires high quality images and landmark points to constrain the deformation field6. 
However,the prostate pathology and MRI scans such as the ones employed in our study may have various artifacts, 
making landmark selection subjective and user dependent. Ou et al.7 introduced a general-purpose multi-feature 
registration approach. They too employed Gabor filters and attempted to use feature selection approaches to 
identify the optimal feature attributes in order to increase the multimodal image similarity and voxel uniqueness 
within each monomodal image7. The authors did not explicitly attempt to evaluate possible correlation and hence 
redundancy between selected filters and limited the textural representations to only the Gabor filter family.

The underlying rationale behind MSERg, just like in Li et al.6 and Ou et al.7 is that alternative representations 
of multimodal images can reduce dissimilarity between multimodal imagery and help facilitate co-registration. 
The difference, however, between MSERg and the approaches of Li et al.6 and Ou et al.7 is that MSERg involves 
the use of spectral embedding on independent components derived from multiple classes of texture features 
(Haralick and Gabor) to further distill and rank the textural information to construct alternative representations 
of the original images. Figure 3 illustrates that spectral embedding representations appear to be more capable of 
improving the similarity between the fixed and moving images compared to the original intensity representation. 
Furthermore, MSERg aims to use the spectral embedding representations of different size scales to highlight dif-
ferent types of details that may be useful in identifying similarities between dissimilar images and thus improve 
registration performance. For example, small scale texture features from MRI and histopathology images may 
reflect capillary vessel infiltration, or small scale tissue differentiation, while large scale texture feature filters may 
detect larger blood vessels, bone, or boundaries between organs. MSERg specifically aims to explore the influence 
of length scale of textural representation, and thus the registration performance.

It has been shown that MSERg can improve the radiology and histopathology image co-registration perfor-
mance. However, we do acknowledge that one weakness of this study, albeit a direction of future work, is the 
intelligent scale selection. Currently we used a fairly naïve scale selection approach for constructing MSERg. 
The approach essentially involves selecting scales based on their average single-scale registration performance 
on the independent learning set. However, this naïve scale selection method still gave us very promising and 
encouraging results. Clearly though more intelligent scale selection approaches can be employed. Future work 
could potentially employ optimization techniques for more efficient and intelligent scale combination selection. 

Figure 7.  Illustration of a frequency plot showing in how many instances either SSERg or MSERg registration 
yielded the best registration result. We compared 8 different SSERg combinations along with MSERg on the 
same 25 clinical and synthetic testing cases. (a) Shows the frequency of each registration method having the 
greatest Tumor DSC within the clinical testing set. (b) and (c) illustrate the frequency of each registration 
method with the least mean deformation difference (MDD), in case of T1 to PD and T2 to PD registration 
respectively. Compared to SSERg, MSERg has more accurate and robust registration performance across 
different datasets.
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Another limitation of this work was that a precise and detailed sensitivity analysis of multiple different parameters 
involved in MSERg was not performed. For instance, we did not evaluate the potential variations in performance 
as a function of the number of features for ICA, the number of ICs for SE and the number of SE vectors for each 
SE representation. This is another direction for future work. Finally, though the learning and testing sets used in 
this study were from two different institutions, more validation experiments need to be performed on multiple 
datasets from different institutions in order to more thoroughly evaluate the robustness of MSERg.

Data Description and Experimental Design
Dataset Description.  This study consists of both a clinical as well as a synthetic dataset. In the clinical data-
set, we considered 45 pairs of ex vivo prostate histology specimens and corresponding 3 Tesla T2-w axial in vivo 
MRI from a total of 19 patients. Histology specimens were acquired after radical prostatectomy and sliced at 3 
mm intervals. Each slice was stained with Hematoxylin and Eosin. The histology images were originally collected 
in quadrants and stitched into pseudo whole mount slices using Histostitcher © software1. All data was ana-
lyzed retrospectively, after de-identification of all patient sensitive information. All experimental protocols were 
approved under the IRB protocol #02–13–42C with the University Hospitals of Cleveland Institutional Review 
Board, and all experiments were carried out in accordance with approved guidelines. Under this IRB, we were 
allowed to obtain de-dentified images from St Vincent’s Hospital and University of Pennsylvania, and material 
transfer agreements were signed and agreed upon between Case Western Reserve University and University of 
Pennsylvania and St. Vincent’s Hospital. Correspondences between histology and MRI and cancer region anno-
tations on the histology image and MRI were made by a pathologist and a radiologist working together in unison. 
Here, we treated the MRI as the fixed image and corresponding histology image as the moving image.

The synthetic dataset contains 50 corresponding slices of 181 × 217 PD, T1 weighted and T2 weighted brain 
MRI from the MNI BrainWeb simulated brain database30. The slice thickness of the dataset was 1 mm and inten-
sity non-uniformity was 0%. We applied synthetic non-linear B-splines deformations on the PD images and then 
registered the corresponding T1 weighted and T2 weighted images in order to recover the original applied defor-
mation. We then compared the recovered deformation against the induced deformation to evaluate performance 
of the co-registration scheme.

Pre-processing of MRI and Pathology Data.  The prostate regions of T2-w MRI slices were manually 
segmented using 3D Slicer31. The RGB digital images were converted to grayscale using MATLAB rgb2gray func-
tion, padded and down sampled to about 10 μm pixel resolution to match the resolution of the reference MRI. 
Each pair of pre-processed MRI and histology images were spatially concatenated to make sure that the same ICs 
were extracted on both the MRI and histology images. Texture feature extraction, ICA and SE were applied on 
the concatenated images.

Experimental Design.  Single-scale Representation Registration.  In our study, we constructed new SE rep-
resentations for 8 different scale κ to concentrate texture information with 8 different sizes of neighborhood. The 
normalized mutual information (NMI) was treated as an evaluation measure to evaluate the improvement in 
similarity of SE representations compared against the original MRI and the signal intensity from the histology 
slices alone. This single-scale spectral embedding representation based registration employed single-scale SE 
representations for the moving and fixed images and was performed on 20 pairs of MRI and histology images 
and 25 pairs of synthetic images in the learning set and then the registration results were evaluated in terms of 
DSC for clinical data and MDD for synthetic data at each κ ∈ {3, 5, 7, 9, 11, 13, 15, 17}. The top 3 performing scale 
representations were selected for MSERg based on the average registration performance in the learning set.

Multi-scale registration.  The top 3 individual scale representations identified in the learning set were combined 
in a high dimensional registration space (Figure 2). MSERg employs α-MI as the similarity measure to con-
duct high dimensional registration on both the clinical and synthetic testing sets. The goal of this experiment 
was to evaluate whether combining the top performing individual scale representations can further improve 
multi-modal registration performance. In this work we compared MSERg with four other representation-based 
registration strategies, intensity-based registration16, texture-feature-based registration9, SIFT flow registration19 
and single-scale representation based registration.

Intensity-based registration, texture-feature-based registration and SIFT flow registration.  Here, ‘intensity-based 
registration’ refers to registration using the original intensity images as the fixed and moving images with MI esti-
mated on the basis of a histogram as the similarity measure. The registration parameter selection and optimiza-
tion were done during the learning process and on the training step. The set of parameters that resulted in the best 
registration result were locked down for the evaluation on the hold out testing set. For the texture-feature-based 
registration, we adopt MACMI method to selected the texture feature representations. MACMI selects the texture 
features that maximize the combined mutual information (CMI)8. We extracted an ensemble of five features with 
optimal CMI based on the same gradient, first and second order statistical features used in the work of Chappelow 
et al.8. Following feature selection, free form deformed registration32 was applied with α-MI as the similarity 
measure to co-register the multi-modal images in the testing set. In addition, we have validated with SIFT flow 
registration as proposed in the work of Liu et al.19.

Ground Truth Registration.  In order to quantitatively evaluate the performance of the different co-registration 
methods in the clinical dataset, we need a ground truth definition of what constitutes a near optimal registra-
tion. This can then be used as the framework for comparing all other registration results. Towards this end, a 
control-point-based manual registration scheme was employed for co-registering all 45 pairs of histology-MRI 



www.nature.com/scientificreports/

1 0Scientific REPorTS | 7: 8717  | DOI:10.1038/s41598-017-08969-w

sections. The corresponding control points were carefully selected by a pathologist and a radiologist on ex vivo 
histology images and in vivo MRI. The landmarks used for each registration pair varied between 6 to 10. The reg-
istration results were then visually assessed by the radiologist and pathologist. If they were found to be unsatisfac-
tory, the registration was re-done. Once the co-registrations were found to be satisfactory, they were designated 
as the “ground truth” registration for the particular MRI-pathology pair.

Performance Evaluation Measures.  Registration results were assessed via DSC33 and RMSD. DSC is defined as 
follows,
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where AX0
 denotes the region of interest (ROI) previously manually delineated on the fixed images. Here ROI 

refers to the capsule segmentation in global accuracy evaluation and the tumor annotated regions on the fixed 
images in local accuracy evaluation. X0 and X1 refer to the fixed and moving images respectively. The tumor anno-
tations on the fixed image are obtained via manual registration between the histopathology images and MRI. AX1

 
refers to corresponding annotations on the moving images.

RMSD is defined as follows,
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where βk denotes the pixel of kth landmark in X0 and X1 and ⋅  represents the L2 norm. RMSD measures the 
distance between the anatomical landmarks such as the urethra, and nodules annotated by the pathologist and 
radiologist.

The MDD refers to
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where D0 is the ground true deformation field and D1 is the result deformation field. C is the total number of 
deformation vectors in the deformation field. MDD measures the difference between the registration result and 
the ground truth.

Implementation Details.  SE representations.  To construct SE representations for different length scales, 
firstly, Gabor and Haralick features were extracted for κ ∈ {3, 5, 7, 9, 11, 13, 18, 17}. Then ICA was employed on 
the Gabor and Haralick features across different κ using the JADE-ICA algorithm. Finally, the spectral embed-
ding algorithm was used to get the top 3 SE vectors for each individual scale representation.

Identifying optimal scales.  In the learning set, single-scale SERg co-registration was implemented within each 
individual scale SE space. α-MI was applied as the high dimensional similarity measure with k - NNG as the 
entropic graph. The deformable registration was realized via the Elastix toolbox34 with B-spline interpolation. 
We set α = 0.99, k = 20 nearest neighbors with 3 resolution levels (resolution scales η = 4.0, 2.0, 1.0) employed 
with 100 iterations for each resolution level. The top 3 representations with the greatest DSC were selected as the 
optimal scale representations for MSERg.

Comparing MSERg against other representation-based registration methods.  All the registration methods 
adopted the same standard gradient descent optimization method via the Elastix toolbox34. MSERg was com-
pared against intensity-based registration and texture-feature-based registration. For Intensity-based regis-
tration, 3 resolution levels (resolution scales η = 4.0, 2.0, 1.0) were employed with 1000 iterations for each 
resolution level. The texture-feature-based registration also were made to use the same multi-resolution reg-
istration strategy with 100 iterations for each resolution level. MSERg employed a combination of 3 scale 
SE representations (κ ∈ {5, 7, 17}), with α = 0.99, k = 20 for α-MI registration in Elastix and 100 iterations 
per resolution level (resolution scales η = 4.0, 2.0, 1.0). SIFT flow was implemented via the Image Alignment 
Toolbox (IAT), which is a Matlab toolbox for image alignment and registration35. The manual registration to 
obtain the ground truth for evaluation of the different schemes was implemented via an in-house software tool 
using thin-plate splines36 method.

Computational efficiency.  For a pair of MRI and histology images with 320 × 320 resolution, the spectral embed-
ding representation construction for all 8 scales takes around 10 minutes and the representation construction for 
MACMI and SIFT takes 5 minutes and 7 seconds respectively. In the registration step, each single-scale spectral 
embedding representation registration requires around 1 minute to align a pair of MRI and histology images. 
Thus, it takes 1 × 8 × 20 = 160 minutes for all 8 single-scale representations in the learning set consisting of 20 
cases. This computational burden can be greatly reduced via parallel computing because all the single-scale rep-
resentation registrations are independent of each other. In the testing set, MSERg, MACMI and intensity-based 
registration take around 2.5, 3.5 minutes and 0.5 minute respectively. All three registration methods were 
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implemented in the Elastix toolbox34 on a computer with a Windows 10 operation system based off a 3.40 GHz 
processor with 16.0 GB RAM. SIFT registration was implemented via SIFT flow19 algorithm taking about 1.5 min-
utes for each case on the same computer, using the same software and OS configuration. Table 2 summarizes the 
computational efficiency for all registration methods used in this paper.
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