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Cytochrome P450/ABC transporter 
inhibition simultaneously enhances 
ivermectin pharmacokinetics 
in the mammal host and 
pharmacodynamics in Anopheles 
gambiae
Carlos J. Chaccour  1,2,3, Felix Hammann4, Marta Alustiza5, Sandra Castejon6, Brian B. 
Tarimo7, Gloria Abizanda8, Ángel Irigoyen Barrio9, Helena Martí Soler2, Rafael Moncada10, 
José Ignacio Bilbao11, Azucena Aldaz12, Marta Maia7,13,14,16 & José Luis Del Pozo6,15

Mass administration of endectocides, drugs that kill blood-feeding arthropods, has been proposed as 
a complementary strategy to reduce malaria transmission. Ivermectin is one of the leading candidates 
given its excellent safety profile. Here we provide proof that the effect of ivermectin can be boosted 
at two different levels by drugs inhibiting the cytochrome or ABC transporter in the mammal host 
and the target mosquitoes. Using a mini-pig model, we show that drug-mediated cytochrome P450/
ABC transporter inhibition results in a 3-fold increase in the time ivermectin remains above mosquito-
killing concentrations. In contrast, P450/ABC transporter induction with rifampicin markedly impaired 
ivermectin absorption. The same ketoconazole-mediated cytochrome/ABC transporter inhibition also 
occurs outside the mammal host and enhances the mortality of Anopheles gambiae. This was proven 
by using the samples from the mini-pig experiments to conduct an ex-vivo synergistic bioassay by 
membrane-feeding Anopheles mosquitoes. Inhibiting the same cytochrome/xenobiotic pump complex 
in two different organisms to simultaneously boost the pharmacokinetic and pharmacodynamic activity 
of a drug is a novel concept that could be applied to other systems. Although the lack of a dose-response 
effect in the synergistic bioassay warrants further exploration, our study may have broad implications 
for the control of parasitic and vector-borne diseases.

In spite of remarkable advances since the turn of the century, malaria continues to be a major public health 
problem in most tropical countries1. Most of these recent advances can be attributed to the scale-up of vector 
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control interventions such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)2. Malaria 
is, however, a moving target and mosquito vectors do not cease to evolve and adapt in response to the pressure 
exerted by our control measures. The spread and intensity of insecticide resistance3 and behavioural adaptations 
that allow avoidance of insecticides and other home-centred control measures4, 5 are two of the major challenges 
faced by the malaria community today.

In this context, the mass use of drugs that can kill mosquitoes feeding on treated subjects has potential to 
become a new paradigm for vector control. These drugs, known as endectocides, could allow targeting of mosqui-
toes that avoid or are resistant to currently used insecticides and thus, could be a complementary intervention for 
malaria elimination6, 7. When modelling this potential intervention, the duration of the mosquito-killing effect is 
the parameter with the greatest impact on malaria transmission. The longer the drug is present in the blood, the 
larger the magnitude of effect will be8, 9.

Ivermectin is one of the most broadly studied endectocides. It effectively kills malaria vectors in the insec-
tary10 and in the field11, 12. It has also been distributed to more than 2.5 billion people in the last 30 years for the 
control of onchocerciasis and other neglected tropical diseases (NTDs)13. For that use, it has an excellent safety 
profile14. Ivermectin, however, has a relatively short half-life of 18 hours15, which would limit the duration of the 
mosquito-killing effect. Concentrations that kill 50% of Anopheles gambiae in 10 days can only be sustained for 
around 72 hours after the single dose of 200 mcg/kg commonly used for NTDs; for other less susceptible species 
like Anopheles aquasalis16, this mosquito-killing window can be shorter.

Several strategies have been proposed to overcome the relative short half-life of ivermectin and increase its 
potential impact on malaria transmission. These include using higher doses than approved for NTDs17, using 
repeated doses at regular intervals18 or developing slow-release formulations8, 19. The comparative advantages and 
disadvantages of each strategy has been described elsewhere20.

One additional strategy is to use a second drug to intentionally slow down ivermectin´s metabolism and 
elimination and boost plasma levels, sustaining them for longer periods of time. This is known as pharmacoen-
hancement and is commonly used in HIV treatment with protease inhibitors21.

Protease inhibitors, like many drugs including ivermectin22 are metabolised by the cytochrome P450 (CYP) 
3A enzymes. The pharmacokinetic (PK) profile of the target drug is enhanced by adding either Ritonavir, a broad 
CYP inhibitor at doses below antiretroviral efficacy, or by using Cobicistat, a more specific CYP 3A4 inhibitor 
recently licensed for this purpose21. This approach reduces pill burden, improves adherence to treatment and 
spares active pharmaceutical ingredient of the boosted protease inhibitor21.

Modulation of the ABC transporter P-glycoprotein (P-gp) can also be used to improve the pharmacokinetic 
profile of certain medicines. The P-glycoprotein is an active efflux transporter; its action is normally protective by 
pumping out xenobiotics23. In humans, it is present primarily in endothelial cells with transport or barrier roles, 
such as intestinal mucosa or the capillaries in the blood-brain barrier24. In recent years, attempts have been made 
at reducing P-gp activity with the goal of increasing bioavailability and therapeutic benefit of certain drugs in 
humans, e.g. by better access to central nervous system targets or overcoming acquired P-gp-mediated resistance 
to chemotherapeutics25–28. Ivermectin is a substrate and an inhibitor of P-gp29.

One important challenge for using pharmacoenhancement strategies with ivermectin is the role of P-gp at the 
blood-brain barrier. Mice and dogs with a dysfunctional P-gp show increased susceptibility to ivermectin due to 
abnormal accumulation of the drug in the brain30, 31. There is a theoretical concern for this happening in humans, 
although supported by very little data32, 33. This potential for added toxicity has been evaluated in HIV and cancer 
therapy with encouraging safety results34.

We conducted a drug-drug-interaction study of ivermectin in a mini-pig model using ketoconazole, a broad 
CYP3A4 inhibitor. This drug was used for a first proof-of-concept step, given its capacity to inhibit both the CYP 
and the P-gp. Although it had been described in animal models that ketoconazole enhances systemic exposure to 
ivermectin35, 36, it is not completely clear whether this is done by reducing metabolism (directly related to CYP) 
or by reducing excretion (more related to P-gp inhibition).

Additionally, in the mosquito, metabolic resistance mechanisms drive an important proportion of insecticide 
resistance in Africa37, 38. There is no available data on the role of mosquito P450 in ivermectin detoxification; 
however, permethrin-resistant Aedes aegypti adults have a significantly increased ivermectin 5-day LC50 when 
compared with permethrin-sensitive counterparts39. Both compounds have different targets; this suggests a role 
of metabolic pathways involving P450s or xenobiotic pumps such as the P-gp.

If ivermectin is scaled up for vector control, this will exert selective pressure on mosquitoes, a process that 
can eventually lead to ivermectin resistance. In the face of the challenge posed by resistance to public health 
insecticides, a thorough understanding of the mosquito metabolic pathways and potential defence mechanisms 
from ivermectin can be pivotal if this novel strategy were to be used in the field. To date, ivermectin drug-class 
resistance in arthropods has been associated with a wide range of mechanisms: reduced cuticular penetration40, 
mutation of the glutamate-gated chlorine channel41 and metabolic resistance due to overexpression of xenobiotic 
pumps from the ABC family, like the P-gp42–44 and cytochrome P450 isoenzymes44, 45.

Since ketoconazole is a broad inhibitor of CYP and P-gp, our drug-drug interaction study provided a unique 
opportunity to test the concept of whether vector mortality is also enhanced by inhibition of both mechanisms 
in the mosquito as well. Using the original blood samples, we conducted a synergistic bioassay46 to evaluate the 
potential involvement of these mechanisms in the metabolism/detoxification of ivermectin in Anopheles gambiae 
and whether this information could be harnessed to enhance the effect of the drug on the vector.

Our main aims were: (a) to assess the PK modifications induced by a dual CYP/P-gp inhibitor, (b) to assess 
the safety of ivermectin in the presence of P-gp inhibition in a mini-pig model, (c) to determine the effect of 
ketoconazole alone on mosquito mortality and (d) to determine whether ketoconazole by means of CYP/P-gp 
inhibition increases the ivermectin-driven mosquito mortality.
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Results
Design of drug-drug interaction study. The experiments were conducted following a randomised cross-
over design (Fig. 1). In phase I all mini-pigs received a single 800 mcg/kg dose of oral ivermectin and sampling 
was done as described below. After a washout period of 14 days, the animals were randomly assigned to pre-treat-
ment with either ketoconazole (200 mg daily, orally, for 14 days), rifampicin (10 mg/kg daily, orally, for 14 days) 
or nothing in a 1:1:1 ratio and ivermectin dosage and sampling was repeated. The total wash-out period between 
ivermectin doses was 30 days. Ketoconazole is a dual inhibitor of the CYP and the P-glycoprotein (P-gp), which 
plays a key role as xenobiotic pump in the blood-brain barrier and other epithelial barriers23, 24. Inhibiting the 
P-gp could theoretically lead to toxicity due to abnormal accumulation of the drug in the brain30, 31. The dose of 
200 mg/day was calculated to maximise the time ketoconazole remained above the 50% inhibitory concentration 
(IC50) for the CYP 3A4 (estimated in 0.022–0.025 µM [1.6–13.2 ng/ml]47) but remaining below the much higher 
IC50 for the P-gp (estimated in 5.6 µM [2975 ng/ml]48). Irrespectively of this, drug quantification in cerebrospi-
nal fluid (CSF) was added as an additional safety point. Rifampicin a CYP/P-gp inducer49 was included as we 
expected to see reduced bioavailability and penetration into CSF.

The main outcome measure was time above the ivermectin concentration that kills 50% Anopheles gambiae 
in 10 days [10-day lethal concentration 50 (LC50)], which has been estimated at 6 ng/ml50. Secondary outcome 
measures were the maximum concentration reached (Cmax), the total area under the curve (AUC) and the area 
under the curve above the LC50 (AUC > LC50).

Design and sample size of mosquito bioassay. Mosquitoes were membrane fed with reconstituted 
blood as described by Bousema et al.51. Feedings were done with samples drawn directly from the pigs at different 
intervals and pair-matched according to ivermectin concentration, thus the only different between the samples in 
a pair was the presence or absence of ketoconazole.

Since mosquitoes grouped in cups for feeding, we used a cluster design in which the unit of intervention was 
mosquito cups. Our primary outcome was mean 10-day mosquito mortality after membrane feeding. Sample 
size calculations were conducted according to the method described by Gangnon and Kosorok52. The minimum 
expected 10-day mortality in mosquitoes imbibing blood containing 9.9 ng/ml of ivermectin is 66%; this is based 
on the predictive function described by Ouedraogo et al.50. Based on previous observations and with all mosqui-
toes having the same colony origin and age range, we chose a conservative intracluster correlation of 0.15. The 
frailty variance of clusters was resembled by a gamma of 1. All experiments were performed in triplicate. With 
these parameters, at least 4 clusters of 44 mosquitoes were needed per arm to achieve 80% power at 5% signifi-
cance level accounting for 10% non-feeders.

After determining of the ivermectin levels in all samples in the drug-drug interaction study, we selected 4 
paired samples with matching ivermectin concentrations (+/−1 ng/ml) from naïve and ketoconazole pre-treated 
groups. Baseline serum samples collected before ivermectin treatment in ketoconazole and naïve pigs were 
used as controls. These samples were shipped frozen to the insectary facilities of the Ifakara Health Institute in 
Bagamoyo, Tanzania for membrane feeding assays. It was hypothesised that induction of the mosquito CYP/P-gp 
by rifampicin could improve survival in presence of ivermectin, but this could not be tested due to a reduced 
absorption of ivermectin in the mini-pigs pre-treated with rifampicin (see below).

Pharmacoenhancement. Ivermectin in both phases and pre-treatments in phase II were administered 
uneventfully to all subjects. Blood samples were obtained according to the planned schedule. Lumbar punctures 
were performed with mixed success. It was possible to insert a tunnelled intrathecal catheter and reservoir in 5 
out of 6 pigs. Two reservoirs were removed within 48 hours due to motor impairment with full recovery after 

Figure 1. Illustration of the randomized-crossover design used in the study. In phase I all six pigs received 
a single 800 mcg/kg dose of oral ivermectin. After a washout period of 14 days, the animals were randomly 
assigned to pre-treatment with ketoconazole, rifampicin or nothing in a 1:1:1 ratio and ivermectin dosage and 
sampling was repeated. The time between ivermectin doses was 30 days. Figure by Juliane Chaccour.
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removal. One pig (#72) was euthanised 72 hours post procedure due to non-reversible motor impairment and was 
replaced by a seventh animal (#75). At least one CSF sampling point was obtained from 5 out of 6 pigs in phase I. 
The success rate was considerably higher during phase II with CSF samples obtained from 6 out of 6 pigs.

Ketoconazole enhances ivermectin’s PK. The main plasma PK parameters in all groups are presented in 
Table 1. The plasma PK parameters of ivermectin-naïve pigs were compatible with previously published data53, 54.

Firstly, we compared the PK parameters between ivermectin-naïve pigs and those who received it in phase 
II without pre-treatment by means of a Mann-Whitney test and found no difference in time above LC50, Cmax, 
AUC or AUC > LC50 (P values of 0.12, 0.61, 0.16 and 0.32 respectively). Given these results, the small sample size 
and relative large variations between subjects (as expected in a mini-pig model), these two groups (excluding one 
animal for which lamda could not be calculated) were combined for comparisons between ivermectin alone and 
ketoconazole/rifampicin pre-treated pigs. In order to respect sample independence, only the values of the second 
treatment of mini-pig 73 were used, this penalized the main outcome by increasing the time above LC50 of the 
combined ivermectin.

The PK curves of all three groups (ivermectin alone, ketoconazole + ivermectin and rifampicin + ivermectin) 
are shown in Fig. 2.

Pre-treatment with ketoconazole significantly increased the time above LC50 3-fold from a median of 36 to 
111 hours (P = 0.033). The Cmax was also increased 2-fold (median 14 vs 28 ng/ml, P = 0.033), along with a more 
than 3-fold increase in the AUC > LC50 (median 212 vs 711, P = 0.033). The total AUC was also increased more 
than 2-fold (862 vs 2092 h*ng/ml) but this difference was not statistically significant (P = 0.067).

Pre-treatment with rifampicin seriously hampered ivermectin absorption making the AUC and AUC > LC50 
calculations uninterpretable. Only one pig reached ivermectin plasma concentration above 6 ng/ml, which was 
maintained for less than 5 hours in total (Fig. 2).

Pre-treatment with ketoconazole did not increase ivermectin in the CSF. No clinical adverse 
events were observed. Although detectable in some, ivermectin was below quantification level (0.5 ng/ml) in all 
CSF samples obtained (Table 2). Of 24 CSF samples available from phase I, ivermectin was detectable in 4. Of 37 
CSF samples available from phase II, ivermectin was detectable in 4 samples (2 in the ketoconazole group and 2 
from rifampicin group).

Mosquito bioassay. Out of a total of 169 samples available we selected four pairs with matching ivermectin 
concentrations (+/−1 ng/ml) that only differed in the presence of ketoconazole, plus two controls; one from a 

Treatment Subject Cmax [ng/mL] AUC inf [h·ng/mL] Time > LD50 [h] AUC > LD50 [h·g/mL]

Ivermectin 1

69 14.3 1916.2 46.7 509.4

70 24.1 694.9 27.2 198.9

71 3.0 16.9 0.0 0.0

72 1.6 — 0.0 —

73 27.6 244.3 9.3 47.3

74 2.9 99.4 0.0 0.0

Median (Range) 8.7 (26.0) 244 (1899) 4.6 (46.7) 23.7 (509.4)

Ivermectin 2

73.2 15.2 1380.0 54.5 226.3

75 20.9 1030.5 45.4 368.9

Median (Range) 18 (5.6) 1205.3 (349) 49.9 (9.1) 297.6 (142.6)

Ivermectin(combined)

69 14.3 1916.2 46.7 509.4

70 24.1 694.9 27.2 198.9

71 3.0 16.9 0.0 0.0

73.2 15.2 1380.0 54.5 226.3

74 2.9 99.4 0.0 0.0

75 20.9 1030.5 45.4 368.9

Median (Range) 14.8* (21) 862.7 (1899) 36.3* (54) 212.6* (509)

Ivermectin + ketoconazole

69 27.7 2320.7 117.1 703.9

72 28.4 1863.3 104.6 718.5

Median (Range) 28.0* (0.7) 2092 (457.4) 110.8* (12.4) 711.2* (14.6)

Ivermectin + rifampin

71 0.3 — 0.0 0.0

74 6.8 — 4.7 —

Median (Range) 3.6 (6.5) — 2.4 (4.7) —

Table 1. Relevant PK parameters by treatment group. Footnote: Cmax: peak plasma concentration, AUC 
inf: area under the PK curve to infinity, LD50: the 10-day lethal concentration 50 of ivermectin for Anopheles 
gambiae (6 ng/ml). Pig 72 died and was replaced by pig 75. Pig 73 received ivermectin in phase 1 and was 
randomised to ivermectin alone in phase 2, this is denoted as 73/73.2, these observations were not combined in 
order to sustain sample independence. *Denotes a statistically significant difference.
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ketoconazole-only and one from a fully untreated pig (Table 3). In the rifampicin group, there was only one sam-
ple with matching ivermectin concentration in naïve pigs.

Ketoconazole is not lethal to mosquitoes at the dose used. Firstly we assessed whether the keto-
conazole concentration present in the samples could have a lethal effect per se. For this we compared the 10-day 
mortality of mosquitoes fed on samples containing only ketoconazole (baseline samples from ketoconazole 
pre-treated pigs) with the mortality of mosquitoes feeding on fully drug-free samples (baseline of control pigs). 
Given that all pigs received ivermectin in the first phase, this experiment served as well to assess whether there 
could be active metabolites increasing mortality in spite of a washing period of 30 days.

Ketoconazole alone did not increase the mortality of Anopheles gambiae, in fact it provided a slight, protective 
effect (Long-rank P = 0.048, n = 222), as previously seen with other antimicrobials55 (Fig. 3).

Figure 2. Comparison of median (±range) plasma concentrations across different treatment groups. The 
dashed line indicates the target 10-day lethal concentration (LC50) for Anopheles gambiae. Alive Anopheles 
image in public domain from CDC Public Health Image Library, photo credit: James Gathany. Dead mosquito 
image CC-by-sa PlaneMad/Wikimedia available at https://commons.wikimedia.org/wiki/File:Dead_mosquito.
jpg. CDC: Centers for Disease Control and Prevention, IVM: ivermectin, KET: ketoconazole, RIF: rifampicin.

Concentration

Phase I Phase II

Ivm Ivm Ket Rif

 < 0.1 ng/ml 20 10 10 13

 > 0.1 < 0.5 ng/ml 4 0 2 2

Total 24 10 12 15

Table 2. Number of CSF samples with detectable and quantifiable ivermectin divided by study phase 
and treatment group. Footnote: Ivm: ivermectin only group, Ket: ketoconazole + ivermectin group, Rif: 
rifampicin + ivermectin group.

Pair Drug concentrations
Mean survival 
(days)

Time to median 
mortality (days)

1
IVM 9.98 6.73 (6.29–7.17) 7

KET 8.96 5.39 (4.90–5.89) 5

2
IVM 16.5 5.11 (4.63–5.86) 5

KET 17.23 3.79 (3.49–4.09) 4

3
IVM 20.46 7.43 (7.11–7.75) 7

KET 20.39 5.10 (4.51–5.69) 4

4
IVM 27.58 5.28 (4.54–6.02) 5

KET 27.68 4.23 (3.80–4.65) 4

Table 3. Mean survival and time to median mortality of mosquitoes feeding on blood samples with matching 
concentrations (+/−1 ng/ml) of ivermectin with (K) or without ketoconazole at CYP inhibition concentrations. 
Footnote: IVM: ivermectin alone group, KET: ketoconazole + ivermectin group.

https://commons.wikimedia.org/wiki/File:Dead_mosquito.jpg
https://commons.wikimedia.org/wiki/File:Dead_mosquito.jpg
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Ketoconazole synergises the mosquito mortality caused by ivermectin. Ketoconazole signifi-
cantly increased the mortality of Anopheles gambiae fed in all samples containing ivermectin irrespectively of 
the ivermectin concentration (Fig. 4). The effect was predominantly observed at the expense of early mortality as 
seen by a reduction in the mean survival and the time to median mortality in all ketoconazole groups (Table 3).

The mortality of mosquitoes fed on the only paired sample with rifampicin-ivermectin did not differ from that 
of ivermectin or rifampicin alone groups (data not shown).

Discussion
Our study shows that inhibition of the CYP 3A4 could safely increase ivermectin’s time above target insecticidal 
concentration in the mammal host, increasing mosquito exposure. This finding could be harnessed to simplify 
the dosing regime and spare active pharmaceutical ingredient. Additionally, once outside the mammal host, 

Figure 3. Survival curves of mosquitoes feeding on blood from one fully untreated pig (control) vs mosquitoes 
feeding on a ketoconazole-only treated pig (Ket-). Triplicate experiments, n = 222.

Figure 4. Survival curves of mosquitoes feeding on blood with matching ivermectin concentrations (+/−1 ng/
ml) with (blue) or without (pink) the ketoconazole at CYP inhibition concentrations. Triplicate experiments, 
n = 133–220.
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pharmacological CYP inhibition increases the mortality of exposed Anopheles gambiae mosquitoes, which could 
further improve efficacy. A natural next step would be to assess the potential implications of these findings in the 
field by means of modelling studies.

CYP inhibitors that also target the P-gp could theoretically increase penetration of the drug into the CNS and 
facilitate interaction with the GABA receptors, to which ivermectin has weak affinity. Thus, our main concern 
was that ketoconazole mediated CYP inhibition might reduce ivermectin’s excellent safety profile. Our results 
suggest that the large therapeutic window of ivermectin and the difference in IC50 for CYP and P-gp could safely 
allow CYP inhibition without a measurable increase of the drug in the CSF or clinically observed adverse events. 
Currently there are some “selective” CYP3A4 or P-gp inhibitors on the market but most drugs that affect one sys-
tem typically have at least a partial effect on the other. Emerging more selective molecules56 or even combination 
strategies34 could overcome this issue.

Ivermectin resistance resulting from scale up of its veterinary use is well known. It was observed in nematodes 
as early as 198557, four years after licensure of the drug. It was soon proven that resistance could be selected in 
the lab after only 8 generations of Haemonchus contortus exposed to sub-optimal dosing58. In arthropods highly 
ivermectin-resistant Musca domestica could be selected in the lab after only seven generations in the early 1990s59. 
Field reports in economically or public health relevant arthropods followed shortly60, 61. The relative delay in 
global resistance reports was the result of ivermectin’s broad spectrum. Most intestinal parasites in this spec-
trum could be removed with doses as low as 20 mcg/kg, but the 200 mcg/kg dose was selected based on the less 
susceptible organisms, the dose-defining species. The result is that any resistance arising in the more susceptible 
parasites could not be detected until their susceptibility was 10-fold higher62. This phenomenon has been called 
the window of escalation62 and could be an important concept it if ivermectin is scaled up for vector control given 
that malaria vectors also differ in their ivermectin susceptibility16, 63, 64. While Anopheles gambiae50 and Anopheles 
minimus seems to be remarkably susceptible based on their low LC50, others like Anopheles aquasalis or Anopheles 
dirus promise to become the dose-defining mosquito species16, 63, 64 for the novel vector control use of the drug. 
Taking advantage of a synergist could potentially delay the emergence of ivermectin resistance in malaria vectors 
and extend the spectrum of ivermectin towards less susceptible vectors.

The findings from our study suggest that although metabolic pathways play a role in the mosquito defence 
from ivermectin, the activity of the detoxification mechanisms or efflux pumps could be modulated to synergise 
ivermectin and boost its efficacy. These findings warrant surveillance of early signs of metabolic resistance if 
ivermectin is used to reduce malaria transmission. At the same time, these results offer a simple potential tool to 
address metabolic resistance before it challenges efficacy.

Additionally, emerging data indicates that active ivermectin metabolites could cause mosquito mortality even 
when the mother drug is no longer detectable in plasma65, 66. Increasing the time above mosquitocidal levels of 
ivermectin at the expense of reducing active metabolites could leave overall mosquito mortality unchanged20. 
Previous animal studies suggest dual CYP3A4/P-gp inhibitors do not significantly modify the PK of one of the 
major ivermectin metabolites, 3 O-desmethyl ivermectin35, 36 potentially suggesting an increase in systemic expo-
sure mostly due to reduced excretion rather than reduced metabolism. Nonetheless, the evaluation of ivermectin 
metabolites is a complex process22, 67 and their potential role in the insecticidal effect of the drug would require 
additional investments.

Ketoconazole was used purely to test the concept of dual CYP/P-gp inhibition enhancing the PK and the 
ivermectin-related mosquito mortality, but it is in no way a molecule suitable for combination in MDA cam-
paigns. Some additional limitations of this study include: a small number of mini-pigs was used for the pharma-
coenhancement experiment, which explains the relative large concentration ranges; this pharmacokinetic effect, 
however, has previously been seen in other animal models35, 36. We included rifampicin, a dual CYP3A4/P-gp 
inducer49 to validate the results, evaluate changes in the CSF concentration and better understand the potential 
routes of manipulation of detoxification enzymes/transporters in the mosquito. Yet, Rifampicin mediated CYP 
3A4/P-gp induction led to a marked reduction in systemic ivermectin exposure, possibly due to reduced intes-
tinal absorption and/or pre-systemic metabolism; Although there is no evidence that ivermectin is a substrate 
of Organic Anion-Transporting Polypeptides (OATPs) in hepatic tissue or the intestinal epithelium, decreased 
bioavailability when co-administered with orange juice suggests this could occur68, 69. If this was the case, inhibi-
tion of OATPs mediated uptake by rifampicin70 could have also contributed to the reduced ivermectin absorption 
seen in our rifampicin pre-treated mini-pigs. Rifampicin-ivermectin samples were insufficient for the mosquito 
experiment. Nonetheless, the role of MDR1 polymorphism on the pharmacokinetics and pharmacodynamics 
of ivermectin in humans requires further exploration32, 33, particularly in the African setting71, 72. Finally, we 
acknowledge the lack of a dose-response effect in the membrane feeding assays. These assays were performed 
with reconstituted blood which can lead to varying final drug concentrations given to mosquitoes caused by the 
manual mixture; this could explain the apparent absence of a dose-response effect in our experiments but does 
not affect our conclusion about a pharmacodynamic synergism. Future experiments assessing drug concentra-
tions inside the mosquito could help clarify this potential source of bias.

When used as anthelmintics, dual pharmacokinetic and pharmacodynamic enhancement of macrocyclic lac-
tones such as ivermectin can occur by modulation of the ABC transporter. This results in higher drug bioavaila-
bility in the host and higher drug penetration in the nematode73, 74, which is the main driver of efficacy. However, 
this dual in vivo enhancement by inhibiting the CYP has not been reported, even though it could have important 
implications for the treatment of certain helminths75–78. Particularly in the context of wider use of ivermectin 
mass-treatment as resistance in endo- and ectoparasites can be induced simultaneously79.

Provided an appropriate regimen of a selective molecule is defined and the appropriate cost-effectiveness 
evaluations are conducted, our findings could be applied to other systems and have important implications for 
the control of different vector-borne diseases.
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Materials and Methods
Mini-pig procedures. The pre-medication drugs were administered by crushing the tablets and mixing 
them with canned meat products used for enrichment. For ivermectin administration and sampling during the 
first 8 hours, the animals were sedated with a single intramuscular dose of tiletamine-zolazepan (4 mg/kg) and 
maintained with inhalatory isoflurane (1.5–2%). In pigs, there is no evidence of a significant interaction (other 
than being a substrate) of these drug classes with the CYP3A4 or the P-gp80. Ivermectin was administered via 
nasogastric tube.

For blood sampling during the first eight hours, a femoral line was left in place and later removed during 
recovery from anaesthesia. Blood sampling thereafter was done by jugular puncture under restrain. Sampling 
points for blood were: pre-treatment, at 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 24, 48/72 hours and at days 6/7, 9 and 14. For the 
mosquito bioassay, additional serum samples were obtained at every time point, and frozen at −20 °C.

For obtaining CSF samples during the first 8 hours, an intrathecal catheter was placed by means of 
fluoroscopy-guided lateral lumbar puncture81 (Fig. 5). Given the challenges posed by the particular anatomy of 
the pig, efforts were done to tunnel the intrathecal catheter and connect it to a subcutaneous reservoir in order to 
avoid repeating the technically demanding lumbar puncture during phase II of the study (Fig. 5). Given the risk 
of damaging nerve roots when accessing the reduced thecal space, the pigs received at least 20 ml/kg of isotonic 
IV fluids during the first 8 hours and motor impairment lasting more than 72 hours was included as a humane 
endpoint criterion. Sampling points for CSF were: pre-treatment and at 0.5, 1, 2, 3, 4, 5, 6, 7 and 8 hours.

Mosquito procedures. For all experiments, we used the fully susceptible Anopheles gambiae s.s. colony 
maintained at the insectary in Bagamoyo. Mosquitoes were reared at 28 °C, 80% humidity and with a photoperiod 
of 12:12. Larvae were kept in large plastic bowls covered with netting containing approximately 2 litres of water 
with larval densities not exceeding one 4th instar larvae per ml. Larvae were fed Tetramine fish flakes ad libitum. 
Once they developed into pupae these were collected using disposable plastic Pasteur pipettes and transferred 
to small bowls containing approximately 200 ml of clean water. The pupae bowls were then placed inside fully 
screened cages (30 × 30 × 30 cm) where adult mosquitoes were allowed to emerge and given 10% glucose as a 
sugar source ad libitum.

Only mosquitoes of 2–5 days of age were used for the experiments. Before the experiments, mosquitoes were 
starved from sugar for 12–18 hours and from water for one hour. Hungry females were selected by applying a 

Figure 5. Cerebrospinal fluid sampling. (A) The pigs were sedated with tiletamine-zolazepan, intubated and 
maintained with inhalatory isoflurane. (B) Lateral lumbar puncture was performed in aseptic conditions by 
an anaesthetist and an interventional radiologist under fluoroscopic guidance. (C) After introduction of the 
intrathecal catheter (black arrows), it was tunnelled (D) and connected to a reservoir placed in subcutaneous 
tissue (E) to avoid a second round of laborious localization of the intrathecal space.
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bottle with heated water (37–40 °C) to the cage. 40–50 hungry females were transferred to each paper cup using 
a mouth aspirator.

We performed membrane feeding assays with serum replacement as previously described51. For each exper-
iment, the selected pig sample was thawed and 1 ml of whole blood was centrifuged at 2100 rpm for 10 minutes. 
The serum volume was noted and replaced with the same amount of the sample pig-serum being tested. After 
this, tubes were inverted 10 times. Each sample was tested in triplicate.

In order to reduce potential confounding arising from variations in bloodmeal size, partially fed mosquitoes 
were discarded and only fully engorged females followed up for the mortality assessment. After each feeding 
experiment, the cups were placed on ice for 1–2 minutes to select and transfer fully engorged females.

Cups with fully engorged mosquitoes were kept at 24–26 °C and 65–70% relative humidity inside climate con-
trolled incubators. Mosquitoes were maintained with 10% glucose solution using impregnated cotton. Mortality 
was recorded daily for 9 days by a person blinded to the allocation of the cups. Dead mosquitoes were removed 
from the cups daily.

Analytics and PK calculations. Blood samples were drawn in 3 ml EDTA tubes and centrifuged. Plasma 
was separated and frozen at −20 °C until analysis. CSF samples were frozen at −20 °C.

Ivermectin levels in plasma and CSF were determined using a validated adaptation of a previously described 
HPLC-FLD82. The detection limit in plasma and CSF was 0.1 ng/ml, the quantification limit was 0.5 ng/ml.

We used the lethal concentration 50 of Anopheles gambiae described by Ouedraogo50 (6 ng/ml) as tar-
get concentration and particularly aimed at increasing the time ivermectin was present in plasma above this 
level. Pharmacokinetic analyses were performed using Phoenix WinNonlin 6.4 (Certara, Princeton, NJ, USA). 
Pharmacokinetic parameters were derived from non-compartmental analyses.

Animals. Six hybrid mini-pigs (2 male, 4 female) weighing between 46 and 70 kg were procured from our 
accredited breeding centre at the University of Navarra. They were housed individually throughout the study at 
the animal research facilities in the University of Navarra. From arrival onward, the animals were assessed daily 
for general wellbeing and after the intervention, also for specific ivermectin toxicity signs.

Drugs and reagents. Ivermectin (Noromectin® 0.08% oral solution, Norbrook) and ketoconazole 
(Fungiconazol 200 mg dog tablets, Fatro) were procured from our veterinary supplier. Rifampicin (Rifaldin® 
300 mg tablets, Sandoz) was procured through the hospital pharmacy service.

European pharmacopeia standard ivermectin for HPLC calibration was procured from Sigma Aldrich.

Statistics. The comparison of PK parameters between ivermectin groups was done by means of a two-sided 
Mann-Whitney test. Comparison between combined ivermectin and ketoconazole plus ivermectin groups was 
done with a one sided Mann-Whitney test.

Survival Kaplan-Meier analysis was performed in Addinsoft’s XLSTAT ® Version 2016.04.32229 (New York, 
NY, USA). Comparisons of survival patterns were done with Log-rank test using a 5% significance level adjusted 
for cluster design.

Ethics. All procedures were reviewed and approved by the animal experimentation ethics committee of the 
Universidad de Navarra (Registry number E27-15(135-12E4)). All procedures were performed in accordance 
with the relevant guidelines and regulations.

Data availability. The datasets generated during the current study are available from the corresponding 
author on reasonable request.
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