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Development and assessment of 
a lysophospholipid-based deep 
learning model to discriminate 
geographical origins of white rice
Nguyen Phuoc Long1, Dong Kyu Lim  1, Changyeun Mo2, Giyoung Kim2 & Sung Won Kwon1,3

Geographical origin determination of white rice has become the major issue of food industry. However, 
there is still lack of a high-throughput method for rapidly and reproducibly differentiating the 
geographical origins of commercial white rice. In this study, we developed a method that employed 
lipidomics and deep learning to discriminate white rice from Korea to China. A total of 126 white rice 
of 30 cultivars from different regions were utilized for the method development and validation. By 
using direct infusion-mass spectrometry-based targeted lipidomics, 17 lysoglycerophospholipids were 
simultaneously characterized within minutes per sample. Unsupervised data exploration showed a 
noticeable overlap of white rice between two countries. In addition, lysophosphatidylcholines (lysoPCs) 
were prominent in white rice from Korea while lysophosphatidylethanolamines (lysoPEs) were enriched 
in white rice from China. A deep learning prediction model was built using 2014 white rice and validated 
using two different batches of 2015 white rice. The model accurately discriminated white rice from two 
countries. Among 10 selected predictors, lysoPC(18:2), lysoPC(14:0), and lysoPE(16:0) were the three 
most important features. Random forest and gradient boosting machine models also worked well in 
this circumstance. In conclusion, this study provides an architecture for high-throughput classification 
of white rice from different geographical origins.

The abiotic stress has a large impact on the constituents of plant sources, such as food additives, pharmaceuticals, 
flavors, and industrially important biochemicals1. In recent years, the demand for high-quality food products 
with geographical indications has substantially increased2. Adulteration practice, especially the falsification of 
food origins, is prejudicial to consumers as well as authorized producers and distributors2, 3. Therefore, the geo-
graphical origin determination and authenticity of food products have become the major issues of food industry. 
White rice, a main staple food of many countries in Asia and Africa, has been a potential target to adulteration 
regarding their similar physical properties4. Better authentication methods to detect the geographical origin are, 
indeed, required.

Trace elements and stable isotope ratios have been widely used to discriminate the geographical origins of 
rice5–8. When search for other potential chemical compositions that are capable to predict the geographical ori-
gins of commercial white rice, we found that phospholipids (PLs) are the attractive targets. Environmental factors, 
which are essentially different from countries to countries, greatly affect the concentrations of PLs in white rice. 
In addition, the deterioration of some PL species during storage contributes to the degradation of white rice9. In a 
previous preliminary experiment, we demonstrated that the differences of lysoglycerophospholipids (lysoGPLs) 
might be proper to differentiate white rice originated from different countries10.

There are many analytical methods for the determination of white rice geographical origins based on their 
chemical compositions2. In addition, chemometric-based classification techniques, especially partial least squares 
discriminant analysis (PLS-DA), have been formally applied for the authenticity of food products and herbal 
medicines, including white rice11–14. Interestingly, a recent survey provided a background about the statistical 
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methods the researchers have used in metabolomics-related studies15. Univariate statistic has been a common 
practice, especially Student t-test (91%) and analysis of variance (89%). Other methods include Mann–Whitney 
U test (54%), Benjamini–Hochberg false discovery rate correction (50%), and Kruskal Wallis (44%). In multi-
variate analysis, principal component analysis (PCA) (96%) and PLS-DA (73%) are the two most widely used 
methods. However, random forest (RF) was employed in only 27%. It is worth mentioning that overoptimistic 
and overfitting results are the common problems of the PLS-DA and the abovementioned methods, except RF, 
are not the preferred options for the classification study16. Besides these well-known statistical and chemometric 
methods, the application of sophisticated machine learning techniques in the geographical classification has also 
emerged in recent years17. Supervised machine learning algorithms are very powerful and they can additionally 
be applied to get better insights into the alteration patterns of the biological targets under specific conditions18. 
Maione et al. successfully employed machine learning to classify the origins of rice of different regions within a 
country19. The experiment was executed using 20 trace elements and the origins of the samples was predicted by 
support vector machines, RF, and neural network20–22. The applied models were validated using repeated 10-time 
10-fold cross-validation. Although the sample size was relatively small and there was no independent validation 
sample, the results demonstrated the great potential of the supervised learning techniques in geographical clas-
sification of white rice. Additionally, deep learning is an advanced machine learning approach and has recently 
become the cutting-edge algorithm because of its extraordinary performance of the prediction accuracy in many 
fields23–28. The good profile and advancement of deep learning encourage us to utilize this approach for the geo-
graphical classification of commercial white rice.

In the current paper, we developed a method for rapid, accurate, and reproducible discrimination of the geo-
graphical origins of white rice from different countries. Since the generalization of the results is crucially impor-
tant in class prediction study, we have collected a large number of white rice samples belonging to 30 different 
cultivars (11 from Korea and 19 from China). In addition, white rice cultivated in two different years, 2014 and 
2015, were collected in three different time points. Sixty representative samples of white rice cultivated from 
2014 was collected in 2015. White rice cultivated from 2015 was collected in April (40 representative samples) 
and August 2016 (26 representative samples). Moreover, our recent developed method for simultaneous pro-
filing of 17 prominant lysoGPLs in white rice using direct infusion-electrospray ionization-multiple reaction 
monitoring-mass spectrometry (DI-ESI-MRM-MS) was applied in this study10. This significantly reduced the 
time required to analyze data for the classification down to few minutes compared to the conventional chroma-
tography coupled with MS methods. lysoGPL data were further processed, visualized, and analyzed using a wide 
range of techniques for data exploration and machine learning-based classification. Finally, the proposed predic-
tion model from white rice cultivated in 2014 was implemented to predict the origins of the samples from two dif-
ferent batches of white rice cultivated in 2015. Our results indicate that the combination of DI-MRM-MS-based 
targeted lipidomics with the cutting-edge deep learning algorithm provides an effective framework for the 
authenticity and geographical origin determination of white rice.

Results and Discussion
Summary of 2014 white rice, 2015-early white rice and 2015-late white rice. A total of 126 sam-
ples belonging to 30 different cultivars were purchased in April-2015 (2014 white rice, batch 1), April-2016 (2015 
white rice, batch 2), and August-2016 (2015 white rice, batch 3) at local markets. There were 60, 40, and 26 sam-
ples in batch 1, batch 2, and batch 3, respectively. The detailed information can be found in Table 1.

In general, the geographical classification of white rice from different countries is difficult because there are 
many factors such as water, temperature, light, ion, nutrient, and reactive oxygen species that greatly affect the 
reproducibility of the results29. The cultivation and harvest time (within-year or different years), the diversity of 
white rice cultivars (genetically modified or not), and storage conditions are also particularly significant. From the 
practice aspect, the influence of the quality of the sample preparation and data gathering methods are remarkable. 
In this study, we developed an experimental design that aimed to partially overcome the abovementioned difficul-
ties and to achieve the results with generalization. Indeed, we collected white rice that was cultivated in different 
years (2014 white rice and 2015 white rice), white rice that was cultivated in the same year but the farming season 
and storage period were different (early 2015 white rice and late 2015 white rice). The sample collection was per-
formed with the intention to maximize the heterogeneity of the samples by sampling many cultivars or white rice 
with different within-country origins. Finally, it is also worth pointing out that lysoGPLs profiling of white rice 
were conducted in three different periods.

Characterization of lysoGPLs in white rice. Although the quantity of PLs is much lower than other 
compounds in white rice, nutritional impact of PLs has been regconized30. Furthermore, lysoGPLs, a member 
of PLs, has an important role in determining rice quality. lysoPCs and lysoPEs are two major types of lysoGPLs 
in white rice and lysoPEs are particularly vulnerable to environmental changes. lysoPGs, however, just occupy a 
very small quantity in rice endosperm9. The existent of other lysoGPLs such as lysophosphatidylinositol (lysoPIs), 
lysophosphatidylserine (lysoPSs), and lysophosphatidic acid (lysoPAs) are as-yet unknown. Our investigation 
aimed to characterize six classes of lysoGPLs in commercial white rice, including lysoPCs, lysoPEs, lysoPGs, 
lysoPIs, lysoPSs, and lysoPAs. However, only 17 lysoGPLs of lysoPC (6 species), lysoPE (7 species), and lysoPG (4 
species) were capable to be detected10. Moreover, the divergence of the lysoGPLs in white rice samples originating 
from different countries was described. The study implemented DI-MRM-MS, which substantially reduces the 
quantity of samples and the analysis time yet yields valuable data. Therefore, 17 lysoGPLs were initially profiled 
in this study in search for an effective classification model to discriminate white rice between Korea and China.

lysoGPLs variation of white rice from different countries: data exploration and visualiza-
tion. The density plots in Fig. 1 show the distribution of the intensities of 17 lysoGPLs in white rice originated 
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Group
Korea China
Label* Origin Cultivar Label* Origin Cultivar

Batch 1 Training set

KR1 Gyeonggi Choochung CN1 Heilongjiang Jinjingdao
KR2 Gyeonggi Samgwang CN2 Heilongjiang Youjida
KR3 Gangwon Ode CN3 Liaoning Dongbeida
KR4 Jeonnam Hopyeong CN4 Shandong Dongbeida
KR5 Jeonnam Ode CN5 Heilongjiang Wuchangxiang
KR6 Jeonbuk Shindongjin CN6 Liaoning Zhenzhu
KR7 Jeonnam Ode CN7 Jilin Daohuaxiang
KR8 Gangwon Ode CN8 Liaoning Daohuaxiang
KR9 Jeonnam Ilmi CN9 Heilongjiang Zhanglixiang
KR10 Jeonnam Ode CN10 Jilin Baijinxiang
KR11 Gyeongbuk Ilmi CN11 Liaoning Zhenzhu
KR12 Jeonnam Samgwang CN12 Heilongjiang Fuxiangdao
KR13 Chungnam Samgwang CN13 Liaoning Yalujiang 7 xi
KR14 Gyeongbuk Ilpum CN14 Jilin Youjida
KR15 Chungnam Samgwang CN15 Liaoning Yalujiang 3 xi
KR16 Gyeongbuk Senoori CN16 Shandong Dongbeida
KR17 Gyeonggi Choochung CN17 Heilongjiang Zhanglixiang
KR18 Gangwon Ode CN18 Heilongjiang Yatian
KR19 Gyeonggi Choochung CN19 Heilongjiang Xuejingdao
KR20 Gangwon Choochung CN20 Heilongjiang Zhonghuahe
KR21 Jeonbuk Shindongjin CN21 Heilongjiang Wuchangda
KR22 Gyeongnam Samgwang CN22 Jilin Youjida
KR23 Chungbuk Choochung CN23 Jilin Daohuaxiang
KR24 Jeonnam Hitomebore CN24 Shandong Zhanglixiang
KR25 Jeonnam Ilmi CN25 Heilongjiang Youjida
KR26 Gyeonggi Samgwang CN26 Liaoning Daohuaxiang
KR27 Gyeonggi Koshihikari CN27 Heilongjiang Shengtaidao
KR28 Gyeongbuk Ilmi CN28 Jilin Luseda
KR29 Gyeonggi Shindongjin CN29 Liaoning Dongbeida
KR30 Gyeonggi Jinsang CN30 Heilongjiang Yueguangdaoxi

Batch 2 Test set 1

KR1 Chungnam Samgwang CN1 Jilin Youjida
KR2 Gyeongbuk Ilpum CN2 Heilongjiang Shengtaidao
KR3 Gyeonggi Shindongjin CN3 Heilongjiang Yatian
KR4 Gyeongbuk Ilmi CN4 Jilin Luseda
KR5 Gangwon Choochung CN5 Jilin Daohuaxiang
KR6 Jeonnam Ode CN6 Heilongjiang Fuxiangdao
KR7 Gyeonggi Choochung CN7 Liaoning Daohuaxiang
KR8 Gyeongbuk Ilmi CN8 Heilongjiang Xuejingdao
KR9 Gangwon Ode CN9 Liaoning Zhenzhu
KR10 Gyeonggi Choochung CN10 Jilin Daohuaxiang
KR11 Gyeongnam Samgwang CN11 Jilin Youjida
KR12 Jeonnam Ilmi CN12 Shandong Zhanglixiang
KR13 Gangwon Ode CN13 Heilongjiang Zhanglixiang
KR14 Gyeonggi Jinsang CN14 Liaoning Zhenzhu
KR15 Jeonnam Hopyeong CN15 Liaoning Yalujiang 7 xi
KR16 Jeonnam Hitomebore CN16 Heilongjiang Wuchangda
KR17 Chungnam Samgwang CN17 Liaoning Dongbeida
KR18 Chungbuk Choochung CN18 Heilongjiang Zhanglixiang
KR19 Jeonbuk Shindongjin CN19 Liaoning Dongbeida
KR20 Gyeonggi Koshihikari CN20 Jilin Baijinxiang

Batch 3 Test set 2

KR1 Gyeonggi Jinsang CN1 Heilongjiang Fuxiangdao
KR2 Gyeonggi Choochung CN2 Liaoning Yalujiang 7 xi
KR3 Gyeonggi Koshihikari CN3 Heilongjiang Dongbeida
KR4 Gyeongnam Samgwang CN4 Jilin Luseda
KR5 Chungnam Samgwang CN5 Liaoning Shengtai
KR6 Jeonbuk Shindongjin CN6 Jilin Baijinxiang
KR7 Gangwon Ode CN7 Heilongjiang Daohuaxiang
KR8 Gangwon Ode CN8 Heilongjiang Fuxiangdao
KR9 Gyeonggi Choochung CN9 Jilin Baijinxiang
KR10 Jeonbuk Shindongjin CN10 Heilongjiang Dongbeida
KR11 Gyeonggi Choochung CN11 Jilin Yatian
KR12 Gyeongbuk Samgwang CN12 Heilongjiang Daohuaxiang
KR13 Jeonnam Ilmi CN13 Liaoning Zhenzhu

Table 1. The geographical origins and the cultivars of white rice from Korea and China. Some cultivars were 
purchased at the same province. However, they were cultivated in different areas and processed by different 
companies.
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from Korea and China of batch 1. The density plots of two batches of 2015 white rice are provided in Figure S1. In 
general, the relative differences in terms of the concentrations of 17 species among samples between two countries 
were small. Among three batches of samples, the concentrations of lysoPCs were higher in white rice from Korea. 
In contrary, the concentrations of lysoPEs were elevated in white rice from China. lysoPGs were likely enriched in 
Korean group, however, the results were not consistent. The fold change, P-value, and FDR of 17 lysoGPLs among 
three batches of samples can be found in Table 2. In 2014 white rice, the concentrations of 14 species were sta-
tistically significant differences, except lysoPC(14:0) and lysoPG(14:0), and lysoPG(18:2). Similarly, the concen-
trations of 12 species were statistically significant differences, except lysoPC(16:1), lysoPE(14:0), lysoPG(14:0), 
lysoPG(18:1), and lysoPG(18:2) in 2015-early white rice. Finally, the concentrations of 13 species were statistically 
significant differences, except lysoPC(16:0), lysoPC(16:1), lysoPC(18:2), and lysoPE(18:0), in 2015-late white 
rice. Noticeably, the values of fold changes were relative small and there was no big difference between two groups 
(with the criterion of 2). Collectively, these results suggested a slight deviation in terms of the lysoGPLs concen-
trations of white rice and this is likely results from the heterogeneity of many affecting factors, such as cultivation 
year and storage conditions.

Univariate analysis does not consider the correlations among features, thus, we further conducted unsuper-
vised multivariate exploratory data analyses to get better insights into our data sets31. PAM cluster analysis was 
first applied to observe the dissimilarity of the samples of three data sets. This algorithm is preffered because 
it is robust to outliers32. Unexpectedly, many samples that belonged to Korean group were clustered together 
with Chinese group (Fig. 2a) in 2014 white rice. In other two batches of samples from 2015 white rice, this 
unsupervised analysis showed a similar clustered tendency, however, with a lower degree since some samples of 
Korean group were clustered together with the samples from Chinese group (Fig. 2b and c). PCA, a data reduc-
tion unsupervised method, was conducted to explore the patterns of difference between white rice from Korea 
and China. As shown in Fig. 2d, a partly overlap (95% confident interval (CI)) between two groups was observed 
(PC1 + PC2 = 60.2%). Significantly, lysoPCs were shown to be important in Korean group while lysoPEs were 
prominent in Chinese group. Similar trends were also observed in two batches of 2015 white rice (Fig. 2e and f). 
Heatmap was also applied to get the intuitive visualization of our data sets. As shown in Fig. 3, the stronger colors 
focused on the lysoPEs and lysoPCs of Chinese groups and Korean groups, respectively. In general, there was no 
feature with unusually extremely colors in the three data sets. Collectively, the univariate analysis and multivariate 
unsupervised data exploration revealed that there was an overlap in some degree of white rice originated from 
two countries and cultivated in different years. The observation also implied that the geographical classification 
of white rice might be difficult for conventional methods. Consequenly, sophicated classification algorithms are 
more proper for this task.

Development and validation of white rice geographical classification. Highly correlated varia-
bles, which include lysoPG(14:0), lysoPE(18:1), lysoPC(18:1), lysoPE(18:0), lysoPG(18:2), lysoPE(16:1), and lys-
oPG(18:1) were removed from the data sets. The correlation matrix can be seen in Figure S2. The 10 remaining 
predictors with a two-class label of 2014 white rice data set was finally used to train the deep learning model 
for geographical classification of white rice. The model was trained with an input layer, four hidden layers (200 
neurons/layer), and an output layer. The iteration (epochs) of 10 was set. A five-fold cross-validation was applied 
to estimate the prediction performance of the model in the training set. We used the adaptive learning rate algo-
rithm, as recommended by H2O. There are several regularization method options. Among them, dropout is 
currently the method of choice to prevent overfitting33. When select dropout regularization, random neurons in 
hidden layers will be excluded during the training process to prohibit the dependencies that might occur34. Thus, 
the rectified activation function with dropout (the dropout ratio – 0.5) was selected in this study. Early stopping 
was applied with the stopping metric – log loss, stopping tolerance – 0.001, and stopping rounds – 5. The variable 
importance was extracted from the prediction model. A seed number was set to get the reproducible results. 
Other parameters were kept as default.

The trained prediction model was then applied to predict the class of unseen samples from two batches of 
2015 white rice. The two batches are different in terms of the collection time (April and August 2016). The results 
were surprisingly encouraging. As shown in Table 3, the RMSE and log loss values of three different classification 
analyses were small. For instane, the RMSE of the training set, test set 1, and test set 2 were 0.45, 0.54, and 0.46, 
respectively. Similarly, log los values of the training set, test set 1, and test set 2 were 0.55, 0.83, and 0.59, respec-
tively. There was no class error so the MCE of classification analyses was 0 in three data sets. Furthermore, AUC, 
Gini, accuracy, sen, spec, TPR, and TNR were as the highest level (1.00). Look at the variable importance (Fig. 4), 
10 predictors contribute significantly to the deep learning model. However, lysoPC(16:0) tended to be the least 
important predictor. The top three predictors were lysoPC(18:2), lysoPC(14:0), and lysoPE(16:0). Last, but not 
least, we were aware of the architecture of the above settings, which might be more complicated than needed. For 
example, the number of the layers could be decreased down to two, each with 200 neurons. Of note, we are free 
to tune the model using the training set as long as the tuned model is capable to predict the origins of the samples 
correctly. Nevertheless, the act of “training on the test set” should be avoided. The three data sets and correspond-
ing R commands for deep learning classification are provided in Spreadsheet S1.

Next, we examined the geographical classification of the RF model with the settings of followings: the num-
ber of tree in the forest (ntrees) – 1000, five-fold cross-validation, and other parameters were set at default. In 
addition, the parameters of the GBM for geographical classification were: ntrees – 100, five-fold cross-validation, 
learn rate – 0.1, stopping metric – log loss, stopping round – 5, stopping tolerance – 0.0001, score tree interval – 
10. Other parameters were set as default. The results of both RF and GBM were convincing since there was only 
one sample from Chinese group (RF) and one sample from Korean group (GBM) of the 2015 white rice of the 
test set 1 were misclassified. The information of RMSE, log loss, MCE, AUC, Gini, and variable importance of 
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the RF and GBM optimal models can be found in Figure S3. In the RF model, lysoPE(18:2), lysoPE(16:0), and 
lysoPC(18:2) turned out to be the top three important predictors whilst the role of lysoPC(18:0), lysoPC(14:0), 
and lysoPC(16:0) were insignificant. However, in the GBM model, lysoPE(18:2) and lysoPE(16:0) were the two 
most important features and the role of others appeared to be negligible.

Our study has several limitations. First, the sample size was relatively small due to the practical reasons. This 
might increase the overfitting of the classification models. However, we applied dropout and early stopping as 
well as external validation method using within-year and between-year samples to guarantee the regularization 
of the results. The sample size issue may also be solved when new white rice samples are available in the market. 
Second, the intended mixing ingradients of the samples between two countries were not investigated. Finally, the 
scope of the study was limitted to commercial white rice of Korea and China. Further investigations, therefore, 
are warranted to extend the utility of this approach to the real-world applications.

Conclusion
lysoGPLs can be considered as the potential features for geographical authenticity of white rice. In fact, our find-
ings demonstrate the combination of simultaneous lysoGPL profiling method and advanced supervised learning 
algorithms can effectively predict the origins of the white rice. In addition to deep learning, random forest and 
gradient boosting machine techniques have proven to be the probable methods. In conclusion, this study sug-
gests that machine learning algorithms possibly improve the geographical discrimination of white rice as well as 
other food products. Owing to the great potential of this approach, prospective studies are needed to broaden its 
application to a larger scale either in the coverage of geographical origins or the geographical authencity of other 
food products.

Materials and Methods
Materials and reagents. One hundred twenty-six white rice samples were randomly collected from local 
markets in Korea and China. After collection, the samples were immediately stored at −70 °C until further pro-
cessed. The solvents (analytical grade), including methanol, acetonitrile, and isopropanol, were purchased from 
J. T. Baker (Avantor, Phillipsburg, NJ, USA). Caffeine was obtained from Sigma-Aldrich (St Louis, MO, USA). 
Polytetrafluoroethylene (PTFE) syringe filter (0.20 µm) was purchased from Advantec (Tokyo, Japan).

Sample preparation. White rice was freeze-dried and finely grinded to powder. The powder was then 
strained using two sieves with different sizes (250 µm and 125 µm) and extracted using a previously described 
protocol30. Concisely, 1 mg caffeine was added to 150 mg of powder samples. The mixture was extracted using 
6 mL of 75% isopropanol in a water bath at 90 °C for 2 h and centrifuged at 16,000 g for 5 min. Thereafter, 1 mL 
of supernatant filtered by a PTFE syringe filter was transferred to a Agilent 1.5 mL screw vial (Agilent, CA, USA) 
for the analysis.

DI-MRM-MS analysis conditions. A triple-quadrupole mass spectrometry system (6460 QqQ 
LC-ESI-MS/MS, Agilent, CA, USA) was exploit to perform every experiment in order to ascertain the practical 
instrumental conditions. The following settings were adopted from our previously developed method10. The anal-
ysis of lysoPCs was conducted in positive ion mode. lysoPEs and lysoPGs, on the other hand, were characterized 

Figure 1. Density plots of 17 lysGPLs of 2014 white rice from Korea and China. lysoPCs are enriched in white 
rice from Korea while lysoPEs are prominent in white rice from China.

http://S3
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in negative ion mode. The contamination of ion source by sample injection was minimized using a constant flow 
of 50% acetonitrile (0.2 mL/min). The sample sequences of every experiment were set randomly to avoid possi-
ble technical bias. The mass spectrometer was following the acquisition settings: scan time −200 scans/sec, cell 
accelerator voltage −7 V, fragmentor voltage −135 V, nebulizer pressure −40 psi, dry gas temperature −325 °C, 

Group Compound Fold change (K/C) P-value FDR

Batch 1

lysoPC(14:0) 1.08 8.78E-2 8.78E-2

lysoPC(16:0) 1.08 1.44E-3 2.04E-3

lysoPC(16:1) 1.17 8.68E-8 2.46E-7

lysoPC(18:0) 1.14 1.91E-2 2.32E-2

lysoPC(18:1) 1.22 2.91E-6 6.19E-6

lysoPC(18:2) 1.17 2.49E-13 1.41E-12

lysoPE(14:0) 0.74 1.17E-5 2.20E-5

lysoPE(16:0) 0.69 1.18E-16 2.01E-15

lysoPE(16:1) 0.81 1.58E-4 2.68E-4

lysoPE(18:0) 0.76 9.26E-4 1.43E-3

lysoPE(18:1) 0.70 3.09E-10 1.31E-9

lysoPE(18:2) 0.66 3.21E-16 2.73E-15

lysoPE(18:3) 0.65 1.43E-8 4.86E-8

lysoPG(14:0) 1.07 8.10E-2 8.61E-2

lysoPG(16:0) 1.24 4.22E-7 1.02E-6

lysoPG(18:1) 1.13 8.68E-3 1.13E-2

lysoPG(18:2) 1.08 6.68E-2 7.56E-2

Batch 2

lysoPC(14:0) 1.50 2.32E-8 9.85E-8

lysoPC(16:0) 1.09 2.88E-6 5.45E-6

lysoPC(16:1) 1.08 4.82E-1 5.12E-1

lysoPC(18:0) 1.27 4.07E-7 1.10E-6

lysoPC(18:1) 1.30 7.37E-9 4.18E-8

lysoPC(18:2) 1.17 2.02E-9 1.71E-8

lysoPE(14:0) 0.91 2.91E-1 3.30E-1

lysoPE(16:0) 0.71 4.53E-7 1.10E-6

lysoPE(16:1) 0.89 4.52E-2 6.41E-2

lysoPE(18:0) 0.79 3.75E-4 6.37E-4

lysoPE(18:1) 0.75 9.25E-7 1.97E-6

lysoPE(18:2) 0.69 1.45E-11 2.47E-10

lysoPE(18:3) 0.71 2.96E-7 1.01E-6

lysoPG(14:0) 1.09 6.34E-2 8.30E-2

lysoPG(16:0) 1.08 1.23E-2 1.91E-2

lysoPG(18:1) 0.98 6.65E-1 6.65E-1

lysoPG(18:2) 0.93 7.18E-2 8.72E-2

Batch 3

lysoPC(14:0) 1.13 1.02E-2 1.44E-2

lysoPC(16:0) 1.07 8.11E-2 9.20E-2

lysoPC(16:1) 1.04 4.88E-1 5.19E-1

lysoPC(18:0) 1.38 2.67E-5 9.09E-5

lysoPC(18:1) 1.23 1.30E-4 3.69E-4

lysoPC(18:2) 1.00 9.60E-1 9.60E-1

lysoPE(14:0) 0.62 4.93E-4 1.05E-3

lysoPE(16:0) 0.66 1.92E-7 1.09E-6

lysoPE(16:1) 0.79 1.96E-2 2.56E-2

lysoPE(18:0) 0.86 7.26E-2 8.82E-2

lysoPE(18:1) 0.78 6.28E-4 1.19E-3

lysoPE(18:2) 0.63 1.92E-7 1.09E-6

lysoPE(18:3) 0.62 1.25E-3 2.08E-3

lysoPG(14:0) 1.31 1.35E-3 2.08E-3

lysoPG(16:0) 1.52 1.92E-7 1.09E-6

lysoPG(18:1) 1.55 5.77E-6 2.45E-5

lysoPG(18:2) 1.32 4.93E-4 1.05E-3

Table 2. The fold change, P-value, and FDR of 17 lysoGPLs among three different batches of samples.
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dry gas flow −11 L/min, and capillary −4 kV. Nitrogen was used as the collision, nebulizing, and drying gas. The 
system was operated at a collision energy of 20 eV for positive and negative ion modes. MRM transitions of each 
compound were set in accordance to the mass per charge ratios (m/z) of the highest intensity fragments of prod-
uct ions. The experiment was tightly controlled and a variation criterion of 10% of relative standard deviations 
(RSD) in quality control (QC) samples was used to consider the quality of the analysis of targeted lipid species. 
Lastly, the lipid identification was confirmed using our in-house library.
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Figure 2. PAM and PCA analyses for data exploration. (a–c) Show two clusters of PAM of 2014 white rice, 
2015-early white rice, and 2015-late white rice, respectively. (d–f) Show PCA biplots of 2014 white rice, 2015-
early white rice, and 2015-late white rice, respectively. (a) 1–30: white rice from Korea, 31–60: white rice from 
China. (b) 1–20: white rice from Korea, 21:40: white rice from China. (c) 1–13: white rice from Korea, 14–26: 
white rice from China.

Figure 3. Heatmaps show the relative difference of concentrations of 17 lysoGPLs of (a) 2014 white rice, (b) 
2015-early white rice, and (c) 2015-late white rice, respectively.
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Data preprocessing and univariate statistical analysis. DI-MRM-MS data were processed using 
Agilent Mass Hunter Workstation software version B.06.00. The peak intensities of 17 lysGPLs were normalized 
using peak intensities of caffeine. There were no near zero-variance and missing values in the three data sets. 
Density plots were used to visualize the intensity distributions of samples between two countries and Wilcoxon 
rank-sum test was performed to detect differentially expressed features. A P-value of <0.05 and a false discovery 
rate (FDR) for multiple testing of <0.1 were considered to be the level of statistical significance. The univariate 
analysis was performed using Metaboanalyst 3.0 and the density plot was illustrated using ggpubr 0.1.2 in R 
language 3.3.335–37.

Data visualization and multivariate Data Analysis. Since multivariate analysis does take the correla-
tions among variables into account, it is considered particularly suitable for analyzing high-dimensional omics 
data31. In this study, partitioning around medoids clustering analysis (PAM), PCA, and heatmap analysis were 
applied to visualize the data and explore the tendency of separation among samples. Except heatmap analysis 
that was performed using metaboanalyst 3.0, other analysis and visualization techniques were performed using 
FactoMineR version 1.35, factoextra 1.0.4, and ggplot 2 2.2.1 in R language version 3.3.337–40.

Highly correlated predictor removal. Highly correlated predictors might affect the performance of the 
prediction models. Therefore, we removed all the predictors with absolute correlations of 0.70 or higher. The pro-
cess was conducted using caret package 6.0–73. Correlation matrix was visualized using corrplot 0.77 package41, 

42.

Deep learning classification. In this study, a feedforward deep neural network model for class prediction 
was established using 60 white rice samples cultivated in 2014. A five-fold cross-validation was utilized during 
training process as a model validation technique. The performance of the model was further validated using 
two independent batches of white rice cultivated in 2015. The training and testing processes were carried out 
using H2O package 3.10.3.6 in R language version 3.3.3. H2O provides cutting-edge machine learning algorithms 
and well-known regularization tools for big data analysis43. Although deep learning includes unsupervised and 
supervised settings, H2O provides a purely supervised learning protocol together with many innovative features 
that help getting the optimal prediction models in a short period. In addition, RF and gradient boosting machine 
(GBM), two major machine learning techniques, were additionally employed to build classification models37, 44, 45.  
The metrics to evaluate the model included root mean squared error (RMSE), cross-entropy loss function (log 
loss), mean per-class error (MCE), the area under the receiver operating characteristic (ROC) curve (AUC), and 
Gini coefficient (Gini) along with the prediction accuracy, sensitivity (sen), specificity (spec), true positive value 
(TPV), and true negative value (TNV).

Data set Total samples RMSE log loss MCE AUC Gini Accuracy Sensitivity Specitivity TPV TNV

White rice 2014 
(Training set) 60 0.45 0.55 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

White rice 2015 
(A) (Test set 1) 40 0.54 0.83 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

White rice 2015 
(B) (Test set 2) 26 0.46 0.59 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3. The performance of the deep learning prediction model on training and test sets. RMSE: Root mean 
squared error. LogLoss: Logarithmic loss. MCE: Mean per-class error. AUC: Area under the ROC curve. Gini: 
Gini coefficient. TPR: True positive rate. TNR: True negative rate.

Figure 4. Variable importance plot of the optimal deep learning model. Top three predictors are lysoPC(18:2), 
lysoPC(14:0), and lysoPE(16:0).
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