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MatCol: a tool to measure 
fluorescence signal colocalisation in 
biological systems
Matloob Khushi   1, Christine E. Napier   2, Christine M. Smyth3, Roger R. Reddel2 & Jonathan 
W. Arthur1

Protein colocalisation is often studied using pixel intensity-based coefficients such as Pearson, Manders, 
Li or Costes. However, these methods cannot be used to study object-based colocalisations in biological 
systems. Therefore, a novel method is required to automatically identify regions of fluorescent signal in 
two channels, identify the co-located parts of these regions, and calculate the statistical significance of 
the colocalisation. We have developed MatCol to address these needs. MatCol can be used to visualise 
protein and/or DNA colocalisations and fine tune user-defined parameters for the colocalisation 
analysis, including the application of median or Wiener filtering to improve the signal to noise ratio. 
Command-line execution allows batch processing of multiple images. Users can also calculate the 
statistical significance of the observed object colocalisations compared to overlap by random chance 
using Student’s t-test. We validated MatCol in a biological setting. The colocalisations of telomeric 
DNA and TRF2 protein or TRF2 and PML proteins in >350 nuclei derived from three different cell lines 
revealed a highly significant correlation between manual and MatCol identification of colocalisations 
(linear regression R2 = 0.81, P < 0.0001). MatCol has the ability to replace manual colocalisation 
counting, and the potential to be applied to a wide range of biological areas.

Protein-DNA and protein-protein interactions are known to be markers and regulators of cellular and biolog-
ical processes. For instance, the colocalisation of telomeric DNA and promyelocytic leukaemia (PML) protein 
is a marker of cells that utilise the alternative lengthening of telomeres (ALT) mechanism to maintain tel-
omere length1, while the E3 ubiquitin ligase Mdm2 binds and negatively regulates the tumour suppressor p532. 
Fluorescence microscopy can be used to visualise protein, DNA, and cell structures labelled with different fluoro-
phores. The overlap of signal between the different channels can be analysed in the resultant images, and this 
serves as a measure for colocalisation of the biological entities labelled by the fluorophores.

Two types of quantitative colocalisation measures are currently used. The first type of measure is pixel 
intensity-based coefficients where overlapping fluorescent pixel intensities of two channels are used to calcu-
late Pearson, Manders (M1 or M2), Li or Costes coefficients3–5. A number of commercial tools are available for 
studying these coefficients, as well as various open source ImageJ plugins, the most cited of which is JACoP6, 7. 
However, a researcher may experience one or more limitations as discussed here. The pixel intensity-based coef-
ficients provide significantly varied results depending on the method selected, background pixel pre-processing, 
and whether a region of interest (ROI)-based approach is taken into account8, 9. Coefficients can be reported 
within individual ROIs, therefore, it is important to select biologically relevant ROIs. However, the inability to 
automatically select ROIs makes analysis of a large number of images extremely difficult10. Background can vary 
significantly in different portions of the images; therefore, global thresholding to remove background is not a 
suitable option as discussed by Regeling et al., as well as Adler and Parmryd11, 12. Different coefficients report 
colocalisation using a range of 0 to 1 or −1 to 1, which may lead to investigators considering different coefficients 
significant8, 13. For example, 0.51 may indicate a strong colocalisation to one researcher and a moderate colocal-
isation to another researcher. Finally, the tools used in pixel intensity-based coefficients do not report the exact 
number of colocalised objects found per ROI.

1Bioinformatics Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia. 
2Cancer Research Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia. 
3Gene Therapy Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia. 
Correspondence and requests for materials should be addressed to M.K. (email: mkhushi@uni.sydney.edu.au)

Received: 15 November 2016

Accepted: 13 July 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-7792-2327
http://orcid.org/0000-0001-8009-7735
mailto:mkhushi@uni.sydney.edu.au


www.nature.com/scientificreports/

2SCIeNTIfIC Reports | 7: 8879  | DOI:10.1038/s41598-017-08786-1

The second type of measure is an object-based counting of colocalised objects. In this method, if a segmented 
object on one channel having a specified number of overlapping pixels with a segmented object on the other 
channel then this is counted as a colocalisation7, 14, 15. The two types of colocalisation methods should not be 
considered competing as both could be used to address different quantification needs. Some results have demon-
strated the usefulness and statistical robustness of such object-based quantification of molecules in cell biology7. 
Thus, object-based quantification would be more appropriate for studying colocalisation of small objects such 
as ALT-associated PML bodies (APBs), defined as the colocalisation of PML protein and telomeric DNA, as 
presented in this study. There is, however, a lack of tools available that can report the exact count of segmented 
objects in one channel that are colocalised with those in another channel. The ImageJ macro developed by Moser 
et al. calculates object-corrected Pearson coefficient9. In this method, objects are segmented with a threshold algo-
rithm and Pearson coefficient weighted by the fraction of colocalisation. However, the macro does not report the 
count of colocalised objects. Verdoodt et al. devised a Fiji-based macro that can count colocalised objects, how-
ever, the link to download the code is broken16. CellProfiler17 provides another object-based colocalisation count-
ing method, but the thresholding techniques available to analyse colocalisations did not work well for our images. 
Determining the optimal tool for image processing is a challenge for researchers in the biological sciences.

To address the limitations of currently available colocalisation tools, we have developed a novel object-based 
colocalisation tool called MatCol. The improvements made include automatically selecting ROIs, removing back-
ground by a novel thresholding algorithm, and calculating the statistical significance of the colocalisations.

Results
General MatCol features.  MatCol has a graphical user interface (GUI) that helps visualise an area of inter-
est and fine tunes various parameters, if required, in order to complete an analysis of the defined area (Fig. 1). 
When an RGB TIFF image is opened in MatCol, the image is split across the red, green, and blue channels 
(Fig. 1A–C). MatCol is designed to study object-based colocalisation instead of pixel intensity-based correla-
tion. In order to correctly recognise the object of interest, de-noising options (median and Wiener filters, and 
threshold multipliers) are provided in the GUI. Threshold multiplier is a user defined constant which is designed 

Figure 1.  The MatCol graphical user interface (GUI). Six windows showing the red (A), green (B), and blue 
(C) channels in a single nucleus, along with their respective binary versions after removing the background 
(D,E,F). The screen shot has been zoomed to better display colocalised objects in the ROIs. Colocalisations of 
the two channels are shown in yellow in windows D and E. The coded ROI binary mask (F) enumerates the ROI 
sequence number (#), the red (“R”) and green (“G”) signals, as well as their overlap (“O”) in this single nucleus. 
The Results panel describes the features of the entire image, which has numerous ROIs. The remaining MatCol 
features in the GUI are described in the Results section. The entire image from which A–F was taken is shown in 
Supplementary Figure S1.
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to filter the background as explained in the Equation 1 in the Methods. Removal of background reduces the 
identification of false-positive signals and also helps in correctly identifying the volume and edges of the object 
of interest images18. Default optimal threshold multiplier and window sizes for median and Wiener adaptive fil-
ters are those that worked well in various test images with different level of noise, and users are able to adjust the 
de-noising options as required. Generally, the criteria for determining protein locations become more stringent 
as the threshold multiplier increases. Pressing the “Find Coloc.” button results in each ROI image being labelled 
with red or green where the signal is above the threshold level (Fig. 1D,E). Overlapping red and green signals are 
coloured yellow in each ROI. Under the Configuration tab, the user can set the percentage or minimum number 
of pixels that must spatially overlap between the two channels in order to report a colocalisation of two objects 
(Supplementary Figure S2). The ROI binary mask (Fig. 1F) shows the ROI sequence number, and the total num-
ber of red, green and overlapping signals. Automatic selection of ROIs is the default setting; however, ROIs can 
be selected manually by clicking the “Manually select ROI” button. MatCol automatically selects ROI from the 
blue channel. If the ROI needed to be selected from red or green channel then images can be pre-processed using 
ImageJ/Fiji, as described in the Supplementary Information S1. In addition, objects touching the border are auto-
matically included. These border-touching regions can be excluded by checking the “Remove objects touching 
border” checkbox and running the analysis again.

The “Save” button in the toolbar saves all channels in separate lossless TIFF files at the location of the originally 
opened file, appending the channel name to the filename to avoid overwriting the original data. Zooming and 
panning on any window is synchronised to all windows allowing easy comparison of the applied filters.

Subsequent to running the analysis, the Results window shows information regarding the colocalisations, and 
the red and green channels: the total number of objects, the total number of pixels, and the localised pixel inten-
sity sum as described in the Methods section.

Statistical significance of colocalisation.  The statistical significance of the observed object colocalisa-
tions against overlap by random chance is computed using a one sample Student’s t-test19, 20. The randomisation 
process was achieved using Monte Carlo simulation21. After identifying the number of colocalised objects, use 
of the “Statistics” button randomly scatters the detected objects, keeping their size and shape consistent in their 
respective red or green channel within the ROIs. MatCol then counts the colocalised objects resulting from this 
random distribution of the objects. The random scattering is repeated according to the number of iterations spec-
ified by the user and the significance of colocalisation is calculated, as described in the Methods section.

ROI-based background intensity selection.  Experimental variation in fluorescent labelling may lead 
to areas of an image with higher background than other regions. As a result, MatCol was developed to calculate 
individual background intensities of the red and green channels specifically within each ROI. This ROI- and 
channel-based processing allows robust and dynamic identification of different background luminance in various 
cells. Figure 2 shows nuclei from three cell lines that have different background. For example, the background 
fluorescence of the green channel in the JFCF-6/T.5K-sc1 nucleus is higher compared to the U-2 OS nucleus, 

Figure 2.  Background varies among cell lines and channels. Examples of three nuclei with varying degrees 
of background in the red and green channels. Cell line names are indicated to the left of each row. GM847 
and JFCF-6/T.5K-sc1 cells were stained with antibodies recognising PML protein (red) and TRF2 protein 
(green), while U-2 OS cells were stained for PML protein (red) and telomeric DNA (green). 4′,6-diamidino-2-
phenylindole (DAPI; blue) was used as a DNA counterstain. Scale bar indicates 10 μm.
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making it difficult to discern signal from background in the JFCF-6/T.5K-sc1 nucleus. The entire image from 
which the JFCF-6/T.5K-sc1 nucleus was isolated has been included in order to demonstrate this is a rare nucleus 
with a high degree of background staining (Supplementary Figure S3). The nucleus can still be included in the 
analysis due to the method of background subtraction available in the MatCol program. Consequently, MatCol 
removed more background from the higher level of background in the green channel ROI so that all objects were 
clearly detected in the RGB image.

Validation of colocalisations identified by MatCol.  We selected three cell lines and immunofluo-
rescently labelled the proteins PML and TRF2, or PML and telomeric DNA, as detailed in the Methods sec-
tion. Colocalisations in a total of 12 images (five from GM847, four from JFCF-6/T.5K-sc1 and three from U-2 
OS), which included 370 ROIs, were counted manually. Manual counting to quantitate colocalised objects is 
still considered the established “gold standard” even though the process is laborious, prone to human error and 
time-consuming. The results of manual counting were compared to those obtained by analysis using MatCol and 
CellProfiler17.

CellProfiler’s colocalisation pipeline (available from http://cellprofiler.org/examples/) was employed to com-
pare MatCol’s ROI-based thresholding approach against the global thresholding methods available in the pipe-
line. The pipeline defines colocalisation based on touching or overlapping of two objects. If an object was touching 
multiple parent objects, the object was assigned to the parent with maximal overlap. Using the default setting of 
the pipeline seven different global thresholding methods were assessed: default (Otsu), Background, Kapur, MCT, 
MoG, Ridler Calvard and Robust background. The colocalisation results obtained using CellProfiler’s default 
thresholding method, Otsu, were significantly different from the manual counting (Wilcoxon matched pairs 
signed-rank two-tailed test; P = 0.0005; Supplementary Figure S4; Supplementary Table S1). The mean number 
of colocalisations identified by manual counting was 168 (median: 166), while the mean generated by the Otsu 
method was 1679 (median: 1563). Since there was a ten-fold difference between the Otsu method result and man-
ual counts, we removed the Otsu results to avoid false significance values during multiple comparison post-hoc 
ranking22.

We next compared manual colocalisation results with the results generated by MatCol and CellProfiler using 
other six different global thresholding methods. There was a statistically significant difference between manual 
counting and the group consisting of MatCol and the CellProfiler results (Kruskal Wallis; P = 2.7 × 10−12). Further 
multiple comparison post-hoc testing using Tukey-Kramer revealed that results from five methods (Background, 
Kapur, MCT, MoG and Ridler-Calvard) were significantly different from the manual counting (Fig. 3A,B). The 
mean ranks of MatCol and Robust background were not significantly different as their comparison intervals 
overlap. Wilcoxon matched-pairs signed ranked two-tailed test confirmed that counting obtained from MatCol 
was not significantly different from the manual (P = 0.17). However, there was a significant difference between 
the medians of the Robust background method versus manual (Wilcoxon test; P = 0.002), demonstrating that use 
of the Robust background global thresholding method is not ideal. This analysis showed that, at an image level, 
MatCol results were similar to that identified manually.

Figure 3.  Comparison between the number of colocalisations by various methods. (A) Spread of total 
colocalisations in 12 images from three cell lines obtained by manual counting and automatically by either 
MatCol or CellProfiler using six different global thresholding methods: Kapur, MoG, Robust background, 
Background, MCT and Ridler Calvard. P = 0.002 comparing manual and Robust background CellProfiler 
results using Wilcoxon signed-rank test; ns = not significant when comparing manual and MatCol 
colocalisations using a Wilcoxon signed-rank test (P = 0.17). (B) Significance of difference in mean ranking by 
Kruskal Wallis followed by Tukey-Kramer post hoc test of the total number of colocalisations. C) Scatter plot 
of colocalisations detected in 370 ROIs total from three cell types identified by manual counting and MatCol. 
Note there are 111 unique values plotted on the graph, while 259 values overlapped as there were ROIs with the 
same manual and MatCol counts. Key defines the range of number of colocalisations. Linear regression analysis 
shows the line of best fit with R2 = 0.81 (P < 0.0001).
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We further studied the correlation between MatCol counting for each ROI (nucleus) against manual, since, 
in telomere biology it is important to know how many nuclei contain objects that are positively colocalised. The 
MatCol GUI reports the total number of colocalised objects in an image and in an ROI visually, but does not write 
output to a text file. Therefore, we used MatCol command-line utility (matcolcli.m) to run the tool on all images 
and the results for each ROI were transcribed to a text file. Plotting the number of colocalisations identified via 
manual counting versus MatCol (from all cell lines examined) shows a linear pattern, as described by the linear 
regression line of best fit with R2 = 0.81 (P < 0.0001; Fig. 3C). The highly significant P-value indicates that the 
correlation between MatCol and manual counting occurs more often than by random chance. Moreover, when 
control images were quantified using MatCol, and the results included in the data set used to generate Fig. 3C, the 
R2 value was not significantly changed (R2 = 0.83). These data suggest a strong agreement between manual and 
MatCol quantification with ROI-based thresholding - thus validating that MatCol could be used to accurately 
quantify signal colocalisations. In contrast, global thresholding, as commonly applied in many other software 
packages and CellProfiler, resulted in poor agreement between manual and MatCol quantification in our appli-
cation to telomere biology.

Modular software design.  The modular design of MatCol makes it easy to reuse the code components 
(Fig. 4). The GUI is more appropriate for the analysis of a few images, while an alternative command-line inter-
face can be used to automate the batch processing of a large number of images. In this case, results are written to 
a tab-delimited text file.

Discussion
In recent years, computational algorithms have played a vital role in unveiling systems biology. Image analysis 
techniques have been widely used to identify the colocalisation of two fluorescently labelled targets, which is a 
necessary first step in determining whether the two targets interact with each other. Colocalisation identification 
has generally been performed manually with the assistance of image analysis software. Advances in microscopy 
make it easier to automatically generate a large number of images. In our study, requiring large cell numbers, 
images were taken using widefield microscopy. Rather than confocal Z-stack images, widefield microscopy of the 
thin cytocentrifuged samples was considered an appropriate tool to compare manual and MatCol quantification. 
Out of focus blurring is inherently low in thin cytospins. Moreover, compared to the photomultiplier tube (PMT) 
detectors in confocal microscopes, the larger dynamic range of the charge coupled device (CCD) detector used in 
widefield microscopes is more suitable for quantification. Thus, researchers require new methods to rapidly and 
accurately analyse colocalisations. In addition, manual colocalisation quantification can be subjective and prone 
to human error.

In many colocalisation studies, researchers illustrated ROIs by hand, presented colocalisations as scatter plots, 
and tried to deduce biology based on the value of various coefficients determined from these scatter plots23, 24. 
This method may be suitable for some cell biology studies, however, for biological studies where large numbers 
of objects require a precise count of colocalisation of two proteins, a more objective and automated method is 
required16. Furthermore, automatic global or manual thresholding to remove the background has been criticised 
and is controversial25. ImageJ and CellProfiler have many thresholding methods available. Use of the default 
thresholding methods in ImageJ or CellProfiler did not adequately remove background in our images, however, 
ImageJ and CellProfiler are still the preferred platforms for the calculation of pixel-intensity based coefficients. 
Since there was no default object-based colocalisation counting module in ImageJ, we compared MatCol count-
ing against CellProfiler’s colocalisation pipeline. The CellProfiler pipeline offers a large range of thresholding 
methods, and as such, we did not test every possible configuration. Therefore, it is possible that a particular 
configuration of CellProfiler would provide a similar result to MatCol. MatCol uses local ROI-based background 
thresholding. If there are ROIs in an image with different levels of background, MatCol will remove more or less 
background from the ROI, according to the level of background luminance in the ROI. The thresholding method 
used by MatCol (Equation 1) required designing a multiplier factor. In all our test settings, a multiplier factor of 

Figure 4.  An overview of the MatCol software design in MATLAB. The main code file responsible for the 
execution of the identified component of the workflow is specified within brackets.
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two worked well. However, instead of hard coding this number into MatCol we made this available as a configur-
able setting for investigators. In comparison, manual thresholding, that many tools offer, applies a single cut-off 
across the image and needs to be adjusted for every image, whereas our multiplier factor was designed to work 
well for all images in an experiment. We acknowledge that results obtained by MatCol, as well as other tools, will 
vary if parameters in the tools are modified.

We analysed 12 images having 370 nuclei to validate the accuracy of MatCol across three different cell lines 
under varying conditions. Finding a universal algorithm that could remove background and identify signal loca-
tions in the three cell lines was challenging as some of the tested images had different levels of background. The 
green fluorescent channel background in the JFCF-6/T.5K-sc1 nuclei shown in Fig. 2 was high compared to 
other nuclei in the same field of view (Supplementary Figure S3), making separation of signal from background 
difficult. In such a case, manual counting of colocalisations would also be subjective. In fluorescence microscopy 
variation in signal to noise ratio is also acknowledged, and as a consequence MatCol misidentified some objects 
resulting in some disagreement in certain ROIs (Fig. 3C). Nevertheless, comparisons between MatCol and man-
ual counting showed that the MatCol algorithm identified signal colocalisations in all three cell lines (Fig. 3) 
as evidenced by the high correlation observed between the manual and MatCol counting. This validation also 
showed that default MatCol values for median, Wiener and threshold multiplier performed well on a range of 
cells; therefore, we submit MatCol as a tool to count colocalised objects.

MatCol is a specialised tool and, unlike ImageJ or CellProfiler, it was designed to produce reproducible meas-
urements and increase the speed at which object-based colocalisations can be quantified. MatCol reports colo-
calisations as the number of objects found to overlap between two channels. This number could be saved in a 
database which could allow machine learning of large scale analysis among different cell-lines and treatment 
conditions26, 27. The thresholding method used by MatCol (Equation 1) is simple to understand and implement in 
other tools, if the maintainability of MatCol becomes an issue in the future.

MatCol calculates the significance of colocalisations quantified within an image as a P value: an easily inter-
preted measure of significance. This option is only useful when analysing whether signal overlaps are indeed real 
or a consequence of random chance in a single image, however this is a rarely used feature in biological settings 
where generally large number of images are quantified. In order to compute the statistical difference between 
two groups (e.g. control versus treatment), MatCol colocalisation counts from a larger set of images should be 
analysed for statistical significance using other tools. Colocalised objects in our analysed images were small, 
generally 10–15 pixels. Therefore, randomising within a much larger ROI (>20,000 pixels) provided us a working 
spatial ratio of ≤1:667. The P value will not be a valid indicator of significance if the object to ROI ratio is greater 
than the object to ROI ratio used in our analysis. We recommend the ROI be >600-fold larger than the object 
of interest. We used a minimum of 3 pixels overlap in our validation example which is 20–30% overlap for our 
objects having general size of 10–15 pixels. We consider this a weak proximity assay for studying colocalisation of 
objects, however, a researcher can make the criteria stringent by requiring more pixels overlap for larger objects. 
In conclusion, MatCol is a novel, open source and user-friendly tool that addresses the needs of studying the 
object-based counting of colocalisations of two biological features.

Methods
Cell culture.  JFCF-6/T.5K-sc1 and GM847 cells were described previously28, 29. U-2 OS cells were obtained 
from American Type Culture Collection. All cultures were maintained in Dulbecco’s modified Eagle media sup-
plemented with 10% foetal bovine serum in a 37 °C, 10% CO2 incubator.

Immunofluorescence staining and imaging.  Single cell suspensions of 7 × 104 cells were cytospun onto 
SuperFrost Plus microscope slides using a Shandon Cytospin 4. The thin cytocentrifuged samples with nuclei 
flattened to a similar depth as the cytoplasm (approximately 3 µm) were optimal for imaging large numbers of 
nuclei using widefield microscopy. Fixation was performed using 4% formaldehyde in PBS and permeabilisation 
with 0.1% Triton X-100 in PBS. Cells were then simultaneously blocked and RNase A-treated by incubation with 
0.1 mg/mL RNase A diluted in antibody dilution buffer (ABDIL; 20 mM Tris-HCl, pH 7.5, 0.2% fish gelatin, 2% 
BSA, 0.1% Triton X-100, 150 mM NaCl, 0.1% sodium azide). JFCF-6/T.5K-sc1 and GM847 cells were stained with 
antibodies specific for TRF2 and PML diluted in ABDIL for 2 hr at 37 °C in a humidified chamber. Subsequent to 
washes in PBS with 0.1% Tween-20 (PBST), cells were stained with appropriate Alexa Fluor secondary antibodies 
(donkey anti-goat 647 [PML] and donkey anti-mouse 594 [TRF2]) for 30 min at 37 °C in a humidified chamber. 
After an additional set of PBST washes, DNA was counterstained with DAPI, and cells were mounted using 
DABCO anti-fade mounting media29. For U-2 OS cells, cells were stained with an antibody against PML and the 
secondary antibody donkey anti-goat 647, as detailed above. Fixation was then performed with 4% formaldehyde 
in PBS in order to fix the antibody staining. Cells were rinsed twice in milliQ H2O (mqH2O), dehydrated in an 
ethanol series (2 min each in 70, 90 and 100% ethanol) and allowed to air dry. The cells were then overlaid with 
FITC-conjugated telomere probe, denatured at 80 °C for 3 min and incubated in the dark at room temperature 
(RT) for 3 hr. Following washes in 65 °C and RT 2x SSC/0.1% Tween 20, the cells were counterstained with DAPI 
and mounted in DABCO30. DAPI was used to identify individual nuclei (ROIs). Control slides were prepared in 
a similar manner, apart from exclusion of primary antibodies i.e. cells were cytospun, fixed, permeabilised, incu-
bated with secondary antibodies, and DAPI counterstained.

Acquisition of digital images was performed using AxioImager.Z2 (pixel size 0.144 µm × 0.144 µm) or Axio 
Imager M1 (pixel size 0.102 µm × 0.102 µm) widefield (epifluorescence) microscopes with AxioCam MRm mon-
ochrome CCD cameras and HXP-120C mercury short-arc fluorescence illuminator lamps (Zeiss, Germany). 
Images were acquired and processed using ZEN 2 software (Zeiss) and saved as RGB (red, green, blue) lossless 
TIFF files. Filter sets specific for each fluorescent image included DAPI (excitation [ex] 365, emission [em] BP 
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445/50), FITC (ex 475/40, em BP 530/50), Alexa Fluor 594 (ex 560/40, em BP 630/75), and Alexa Fluor 647 (ex 
640/30, em BP 690/50). Plan-Apochromatic 63X oil immersion objectives (NA 1.4) were used.

MatCol algorithm.  MatCol is written in MATLAB 2016b (Mathworks, USA) and can be obtained from 
http://bioinformatics.cmri.org.au with test images. MatCol identified signal locations within each ROI where 
luminance exceeds local threshold value T, where T is calculated as:

= µ + σT M[ ] [ ] (1)

In the above equation, [μ] is the rounded mean to the least integer greater than or equal to the mean (ceiling 
rounding), M is a user-defined multiplier factor and [σ] is the ceiling rounded standard deviation of pixel inten-
sities in an ROI. For example, if the mean intensity (μ) within an ROI is 25 and standard deviation (σ) is 3, then 
for M = 2 (the MatCol default value), all pixels having a value less than 31 are considered as background. We have 
used the blue channel to mark ROIs by the Otsu thresholding method31. We used ‘8-connected’ to define pixel 
connectivity in segmenting connected objects. This means that pixels with coordinates (x ± 1, y ± 1) are consid-
ered connected to a pixel with coordinate (x,y).

The lateral resolution is the smallest distance two spots can be resolved in a two-dimensional image. This 
minimum resolvable distance is calculated using the Rayleigh Criterion (d) = 0.61λ/NA (λ is the wavelength of 
emitted light, and NA is the numerical aperture of the objective). For our analysis using the longer emission wave-
length, d = 0.29 µm and with a pixel size of 0.14 µm, the minimum spatial overlap of two objects requires three 
pixels. For validation analysis presented in the Results section, a colocalisation is defined as at least three pixels in 
each red and green channel occupying the same space. In effect, colocalisation in which three overlapping pixels 
is our minimum requirement is effectively a weak proximity assay. The number of pixels defining a colocalisation 
can be modified by the user in the Configuration tab (Supplementary Figure S2). When two objects in a channel 
overlap with an object in another channel, two colocalisations are reported. Object size restrictions in pixels can 
also be defined in the Configuration tab.

We provide the widely used median and Wiener filters in the GUI allowing the user to fine-tune the removal 
of background32. Both of these filters require specifying a window, and based on our testing we recommend the 
default window sizes of 3 × 3 for the median filter and 5 × 5 for the Wiener filter. The non-linear median filter 
selects the middle value within a specified window and thus removes any outlier intensities. This filter is widely 
used to remove “salt and pepper” type noise within an image. In contrast, the Wiener filter is an adaptive linear 
filter that applies less smoothing to an image area where variance in a window is high and applies greater smooth-
ing where variance is low33. The mean (μ) and variance (σ2) value of pixels a within a window of size N × M is 
calculated by the following formulas34, 35:
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where n1 and n2 are coordinates of pixel set η. Noise variance v2 is calculated by the average of all local calculated 
variances and the Wiener value for each pixel ‘b’ is calculated by:
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(4)1 2

2 2

2 1 2

The ROI is identified using the blue channel. In order to use other channels as the ROI, the user needs to 
change channels before feeding the images through MatCol. Other third party software such as ImageJ can be 
used to change channel colours.

Statistics.  The statistical significance of the MatCol computed colocalisation is calculated by Monte Carlo 
simulation36, which randomises the detected red and green channel objects within all ROIs in their respective 
channels. During randomisation, the shape and size of the segmented objects are kept the same however they 
are allowed to overlap as in a true randomisation process when two objects can overlap, resulting in a larger 
object. Objects are not separated if they appear to overlap, as the tool is best configured to study small objects 
as described in our biological application. The colocalisation of this randomness is calculated and the process is 
repeated to acquire a user-specified number of random results. These randomly calculated colocalisation num-
bers were compared against the actual measured colocalisation by the Student’s t-test to generate a P-value. This 
P-value estimates the statistical significance of the experimental observed colocalisation against random chance 
of obtaining the same colocalisation count, and is performed on a single image.

Statistical tests for the validation study described in the results section were performed using GraphPad Prism 
5.04 and MATLAB. Nonparametric statistical tests (Kruskal Wallis and Wilcoxon) were chosen because the data 
were not normally distributed.
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