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Sample entropy reveals an age-
related reduction in the complexity 
of dynamic brain
Yanbing Jia1, Huaguang Gu1 & Qiang Luo2,3

Dynamic reconfiguration of the human brain is characterized by the nature of complexity. The purpose 
of this study was to measure such complexity and also analyze its association with age. We modeled the 
dynamic reconfiguration process by dynamic functional connectivity, which was established by resting-
state functional magnetic resonance imaging (fMRI) data, and we measured complexity within the 
dynamic functional connectivity by sample entropy (SampEn). A brainwide map of SampEn in healthy 
subjects shows larger values in the caudate, the olfactory gyrus, the amygdala, and the hippocampus, 
and lower values in primary sensorimotor and visual areas. Association analysis in healthy subjects 
indicated that SampEn of the amygdala-cortical connectivity decreases with advancing age. Such age-
related loss of SampEn, however, disappears in patients with schizophrenia. These findings suggest that 
SampEn of the dynamic functional connectivity is a promising indicator of normal aging.

Complexity is one of the defining natures of the brain. Brain signals measured by neuroimaging techniques reflect 
the collective activities of populations of neurons with different rhythms. Because the rhythm of neurons can be 
periodic, chaotic, or random1–3, brain signals would show different levels of complexity, which has been demon-
strated by entropy analysis of blood oxygenation level–dependent (BOLD) signals4–9. Recently, neuroimaging 
studies have begun to reveal the dynamic reconfiguration of brain functional architecture using dynamic func-
tional connectivity (i.e., time-varying correlations in BOLD signals between distinct brain regions across different 
time windows) and to demonstrate its relevance to cognitive functions and diseases10–12. As the complexity within 
the BOLD signal varies across different brain regions4, 5, we expect to see a distribution of the complexity within 
the dynamic functional connectivity of different brain regions. However, the complexity within the dynamic 
functional connectivity has yet to be quantitatively characterized.

Apart from complexity, several methods have been proposed to measure different aspects of dynamic func-
tional connectivity12–15. For example, patterns of the functional connectivity were clustered into distinct classes, 
and the functional reconfiguration among these classes was modeled as a Markov chain13. To characterize the 
temporal variability of a brain region, resting-state BOLD signals were segmented into nonoverlapping windows 
and the functional connectivity patterns of this region were compared among these windows15. These methods, 
however, cannot estimate the complexity within the dynamic functional connectivity (see the supplementary 
information). Entropy is a well-defined statistical concept used to measure the complexity within dynamic pro-
cesses, with larger entropy corresponding to greater complexity16. Given the limited number of sampling points 
in an functional magnetic resonance imaging (fMRI) experiment, the classical estimations of the entropy are 
inaccurate5, 6. Sample entropy (SampEn)17 can overcome this drawback and has been used commonly in entropy 
analysis of fMRI data5, 6, 18.

As a universal and secular phenomenon, the aging process has been suggested to be a progressive loss of com-
plexity within the dynamics of physiologic outputs19. This age-related loss is believed to stem from the gradual 
deterioration of the underlying structural components of physiological systems and from alterations within the 
coupling between these systems20. Previous studies have shown that the complexity within the temporal dynamics 
of brain signals measured by electroencephalography (EEG), magnetoencephalography (MEG), and BOLD fMRI 
appears to decrease18, 20–23. Because the dynamic functional connectivity also is a typical physiologic output of the 
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brain, we expected that the complexity within the dynamic functional connectivity of some brain regions also 
would decrease with advancing age.

In schizophrenia, nonlinearity has been assumed to be underlying the irregularity in psychotic symptoms24. A 
large body of studies on electroencephalography (EEG) and magnetoencephalography (MEG) reported increased 
or reduced complexity in patients with schizophrenia compared with healthy controls. Such divergence might 
be modulated by symptomatology, age effects, and so on (for a review, see Fernandez25). More important, not 
only schizophrenia26 but also some other mental diseases, such as Alzheimer’s disease27, major depression28, and 
attention deficit-hyperactivity disorder29, disrupt the normal evolution of complexity as a function of age. If com-
plexity of dynamic functional connectivity is a promising indicator of normal aging, we would expect a disrupted 
association between complexity and age in patients with schizophrenia.

In the present study, we used SampEn to (1) quantitatively characterize the complexity within the dynamic 
functional connectivity, (2) identify dynamic functional connectivity showing an age-related reduction in com-
plexity during normal aging, and (3) test whether these age-related reductions are disrupted by schizophrenia.

Materials and Methods
Participants. The study included 62 healthy subjects (25 males and 37 females) and 69 patients with chronic 
schizophrenia (35 males and 34 females). Exclusion criteria included the presence of DSM-IV Axis I diagnoses 
of other disorders such as bipolar disorder, history of any substance dependence, or history of clinically signif-
icant head trauma. Participants’ demographic characteristics are shown in Table 1. This dataset was selected 
from our previous resting-state fMRI study, which included multicenter datasets30, and was suitable to investigate 
the aging process because the age of healthy subjects and the age of patients with schizophrenia were both uni-
formly distributed across a relatively wide range. The age of healthy subjects was from 19 to 51 years (mean ± SD, 
29.87 ± 8.62 years) and the degree of education was from 6 to 21 years (mean ± SD, 15.29 ± 2.39 years). One of 
the healthy subjects was left-handed, and the others were right-handed. The healthy subjects were assessed in 
accordance with DSM-IV criteria as being free of schizophrenia. The age of patients with schizophrenia was from 
17 to 55 years (mean ± SD, 31.95 ± 9.60 years) and the degree of education was from 9 to 18 years (mean ± SD, 
14.19 ± 2.16 years). Two of the patients were left-handed, and the others were right-handed. Illness durations of 
the patients ranged from a few months to 30 years (mean ± SD, 7.17 ± 6.61 years). Symptom severity was meas-
ured using the Positive and Negative Syndrome Scale (PANSS) assessment, which was given to all patients either 
one week before or one week after the MRI scan. Five patients, however, were not able to complete their PANSS 
assessment because of their poor health condition. The healthy and patient groups were well matched by gender 
(χ2 = 1.4234, P = 0.2328) and age (t-test, P = 0.2836), although the healthy subjects had a slightly longer educa-
tion degree (t-test, P = 0.0064). All of the research procedures and ethical guidelines were in accordance with 
the Institutional Review Board (IRB) of the National Taiwan University Hospital. We obtained written informed 
consent from all individual participants, and IRB of the National Taiwan University Hospital approved this study.

Image acquisition. Scanning was performed on a 3 T Siemens Trio Tim MRI scanner. FMRI images were 
acquired using a gradient-echo echo planar imaging (GE-EPI) sequence. The following parameters were used: 
repetition time (TR), 2000 ms; echo time (TE), 24 ms; field of view (FOV), 256 × 256 mm2; matrix, 64 × 64; slice 
thickness, 3 mm; flip angle (FA), 90°. For each subject, 34 transaxial slices with no gap were acquired to cover the 
whole brain volume. Each scan contained 180 volumes. During the scan, participants were instructed to relax, 
remain calm, keep their eyes closed, and refrain from thinking about anything in particular.

Data preprocessing. The fMRI data were preprocessed using Statistical Parametric Mapping (SPM8; http://
www.fil.ion.ucl.ac.uk/spm) and Data Preprocessing Assistant for Resting-state fMRI (DPARSF)31. The first 10 
volumes were discarded to allow for scanner stabilization and subject adaption to the scanning environment. 
The remaining functional scans were corrected for delay in slice acquisition and interscan head movement. 
Subsequently, the functional scans were spatially normalized to the stereotactic space (Montreal Neurological 
Institute) and resampled to 3 mm isotropic voxels. All normalized images were then smoothed with an 8 mm 
Gaussian kernel. The BOLD signal of each voxel was then linearly detrended and passed through a band-pass 
filter (0.01–0.08 Hz). Nuisance covariates were regressed out using multiple linear regression, including six 
head-motion parameters, white matter signals, cerebrospinal signals, and global mean signals. We chose global 
signal removal as it has been shown to reduce physiological noise and the variance because of movement-related 
effects32, 33. To reduce the effect of head motion, we further conducted careful volume censoring (“scrubbing”) 

Healthy subjects 
(n = 62)

Patients with 
schizophrenia (n = 69)

P 
value

Age (year) 29.87 ± 8.62 31.95 ± 9.60 0.2836

Education (year) 15.29 ± 2.39 14.19 ± 2.16 0.0064

Sex (M/F) 25/37 35/34 0.2328

Illness duration (year) — 7.17 ± 6.61 —

PANSS-positive scale — 11.92 ± 4.71 —

PANSS-negative scale — 13.61 ± 6.33 —

PANSS-general scale — 27.28 ± 9.64 —

Table 1. Demographic information for the participants. PANSS, Positive and Negative Syndrome Scale.

http://www.fil.ion.ucl.ac.uk/spm
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movement correction34. The mean framewise displacement (FD) was calculated with an FD threshold of 0.5 mm 
for exclusion. Except for the frame corresponding to the displaced time point, we also removed one preceding 
and two succeeding time points to reduce the spillover influence of head motion. All participants with >10% 
displaced frames or who exhibited more than 3° of maximal rotation or 3 mm of maximal translation were com-
pletely excluded from the following analysis.

Dynamic functional connectivity analysis. We used the automated anatomical labeling atlas35 to divide 
the human brain into 90 relatively large regions of interests (ROIs). The time series was extracted in each ROI by 
averaging the BOLD signals of all voxels within that ROI. This approach reduces noise contained in these BOLD 
signals and commonly has been used in resting-state fMRI studies15, 30, 36. The names and abbreviations of the 
ROIs are listed in Supplementary Table S1. For each subject, we performed dynamic functional connectivity 
analysis using the sliding window approach13. The time window with a length of 20 TRs (40 s) slid in steps of 1 
TR12, resulting in 150 windows. Given a time window, we evaluated the functional connectivity between each 
pair of ROIs using Pearson correlation. Thus, we obtained dynamic functional connectivity matrices for each 
subject (Fig. 1a). The functional connectivity time series between each pair of ROIs then was extracted from these 
matrices (Fig. 1b). We selected the window length on the basis of the observations that window sizes in the range 
of 30–60 s produce robust results in cognitive states37, and variations of functional connectivity are not sensitive 
to the specific window size in the range of 20–40 s12, 38.

Pearson correlation only captures linear associations between time series and often results in negative corre-
lations. Indeed, we found that the mean proportion of negative correlations across all dynamic functional con-
nectivity matrices of all participants was 0.4998 ± 0.0134 (mean ± SD). Because we were mainly interested in the 
dynamic property of the functional connectivity, we did not deal with these negative correlations and directly 
calculated SampEn of each functional connectivity time series (Fig. 1b).

SampEn analysis of dynamic functional connectivity. We denote a time series of length N by x = [x1, 
x2, …, xN]. SampEn of the time series can be calculated as follows5, 6.

First, construct an embedding vector with m consecutive data points extracted from x: vi = [xi, xi+1, …, xi+m−1], 
where m is the embedding dimension.

Second, define for each i (1 ≤ i ≤ N − m)
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Here, r specifies a tolerance value and r = εσx, where ε is a scaling parameter and σx is the standard deviation of x. 
Θ ⋅( ) is the Heaviside function:

Figure 1. SampEn analysis of dynamic functional connectivity. Dynamic functional connectivity matrices at 
different time windows for one subject (a). We extracted the functional connectivity time series between each 
pair of ROIs from these dynamic functional connectivity matrices, and evaluated SampEn of each functional 
connectivity time series (b). FC, functional connectivity.
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where +Ci
m 1 represents the proportion corresponding to the dimension of m + 1; Ci

m and +Ci
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form, but embedding vectors in the two cases are defined in different phase spaces.
Third, by averaging across all embedding vectors, we get

∑=
− =

−
U

N m
C1 ,

(5)
m

i

N m

i
m

1

and

∑=
−

.+

=

−
+U

N m
C1

(6)
m

i

N m

i
m1

1

1

Fourth, SampEn of x is calculated as

= − .+U USampEn ln( / ) (7)m m1

Following these four steps, we obtained SampEn of each functional connectivity time series for each subject 
(Fig. 1b). SampEn assigned a nonnegative number to each functional connectivity time series, with larger values 
corresponding to more complexity or irregularity in the time series16. It was suggested that, for m = 1 or 2 and ε in 
the range of 0.1–0.25, SampEn shows good statistical properties18, 39. Throughout this study, m was fixed at 2 as it 
was shown that m = 2 enables more detailed reconstruction of the joint probabilistic dynamics of the time series40. 
In the main analysis, ε was fixed at 0.2.

For each subject, after SampEn of each functional connectivity time series was obtained, we further calculated 
SampEn of ROIs. We obtained SampEn of a given ROI by averaging SampEn of 89 functional connectivity time 
series corresponding to it. We also calculated SampEn of resting state networks (RSNs). Previous studies showed 
that the whole brain can be divided into six RSNs41, which can be classified as follows: a default mode network 
(RSN 1), an attention network (RSN 2), a visual recognition network (RSN 3), an auditory network (RSN 4), a 
sensorimotor network (RSN 5), and a subcortical network (RSN 6). Supplementary Table S2 lists the ROIs in each 
RSN. We obtained SampEn of a given RSN by averaging SampEn of all ROIs contained in it.

Association analysis between SampEn and age in healthy subjects. We used partial correlation 
coefficients to investigate associations between SampEn and age, conditioning on gender, education, and head 
motion. We performed the partial correlation analyses sequentially at three different levels of the brain. First, we 
obtained partial correlation coefficients of all RSNs. Second, for each RSN significantly identified in the first step, 
we calculated partial correlation coefficients of all ROIs contained in this RSN. Third, for each ROI that showed 
a significant effect in the second step, we obtained partial correlation coefficients of all functional connections 
corresponding to this ROI. We applied false-positive discovery rate (FDR) controls to correct for multiple com-
parisons in each of the three steps. The dimensions of the correction in the first step and the third step were the 
number of RSNs (=6) and the number of functional connections corresponding to an ROI (=89), respectively. 
Because the number of ROIs in different RSNs is different, the dimension of the correction in the second step was 
not a fixed constant.

Association analysis between SampEn and age in patients with schizophrenia. To test whether 
the schizophrenic disorder alters the associations between SampEn and age, in patients with schizophrenia, we 
also performed association analyses of the functional connections that were identified as significant in the asso-
ciation analysis between SampEn and age in healthy subjects. We also used partial correlation coefficients to 
investigate these associations between SampEn and age, conditioning on gender, education, and head motion. 
For each functional connection, using the webpage http://vassarstats.net/rdiff.html, we calculated a value of Z 
that could be applied to assess the significance of the difference between the partial correlation coefficient of the 
healthy group and that of the patient group. To correct for multiple comparisons, we applied the FDR control. The 
dimension of the correction was the number of functional connections identified as significant in the association 
analysis between SampEn and age in healthy subjects.

To study whether the recognized deviations from the normal aging are related to schizophrenia, we studied 
associations between SampEn of the functional connections, which show significant group differences in par-
tial correlation coefficients, and clinical variables including symptom severity scores (i.e., PANSS) and illness 

http://S2
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duration. Partial correlation coefficients were used to investigate these associations, conditioning on age, gender, 
education, and head motion.

Data Availability. The datasets generated during the current study are available from the corresponding 
author on reasonable request.

Results
SampEn varies throughout the brain. We quantified SampEn of each functional connection by the mean 
SampEn averaged across all healthy subjects. Figure 2 shows the functional connections among 90 ROIs with the 
largest and the lowest 0.5% SampEn. Supplementary Dataset 1 also lists the mean SampEn of each functional 
connection in descending order. We found that functional connections implicated in higher cognitive functions 
(e.g., memory, emotion, and reward) show larger SampEn, including the fronto-limbic system (e.g., the fron-
to-hippocampal and the fronto-amygdala connectivity) and the fronto-striatal system (e.g., the rectus-caudate 
connectivity). In contrast, functional connections in sensorimotor cortices (e.g., the lingual gyrus, the calcarine 
gyrus, the precentral gyrus, and the postcentral gyrus) show lower SampEn. We also found that the homotopic 
interhemispheric connections show lower SampEn such as functional connections of the postcentral gyrus, the 
thalamus, the calcarine gyrus, and the lingual gyrus.

The mean SampEn of each ROI across all healthy subjects is shown in Fig. 3a and also is listed in descending 
order in Supplementary Dataset 2. We found that the limbic system and its adjacent areas show higher SampEn 
(e.g., the caudate, the olfactory gyrus, the amygdala, the parahippocampus, and the hippocampus), whereas sen-
sorimotor cortices (e.g., the lingual gyrus, the calcarine gyrus, and the postcentral gyrus) demonstrate lower 
SampEn. The mean SampEn of each RSN across all healthy subjects is shown in Fig. 3b. We found that the subcor-
tical network and the auditory network show higher SampEn, whereas the sensorimotor network and the visual 
recognition network demonstrate lower SampEn.

SampEn decreases during the normal aging process. First, we detected a negative association 
between age and SampEn of the subcortical network in healthy subjects (P = 0.0022, R = −0.3744, FDR corrected; 
Table 2 and Supplementary Fig. S2). Second, for ROIs in the subcortical network, we found that SampEn of the 
bilateral amygdala, the right pallidum, the bilateral thalamus, and the left caudate negatively associates with age 
(P < 0.05, FDR corrected; Table 2 and Supplementary Fig. S2). Finally, for functional connections corresponding 
to these six ROIs in the subcortical network, we identified negative associations between age and SampEn of the 
functional connectivity between the right amygdala and the right superior orbital frontal gyrus, the left middle 
frontal gyrus, the right superior parietal gyrus, the right paracentral lobule, and the left inferior parietal gyrus 
(P < 0.05, FDR corrected; Table 3 and Fig. 4).

Schizophrenia uncouples SampEn and age. For these five functional connections that show significant 
effects in healthy subjects, SampEn of four functional connections is disassociated with age (P > 0.05; Table 3 and 
Fig. 4), including the functional connectivity between the right amygdala and the right superior orbital frontal 
gyrus, the right superior parietal gyrus, the right paracentral lobule, and the left inferior parietal gyrus. For each 
of these four functional connections, the partial correlation coefficient of the patient group is significantly larger 
than that of the healthy group (P < 0.05, FDR corrected; Table 3). Further association analysis between SampEn 
and clinical variables showed that SampEn of the functional connectivity between the right amygdala and the 

Figure 2. Connectogram of functional connections with the largest and the lowest 0.5% SampEn. Functional 
connections with the largest SampEn (a). Functional connections with the lowest SampEn (b). The left part 
and the right part of the connectogram represent the left hemisphere and the right hemisphere of the brain, 
respectively. Supplementary Table S1 lists the full name of each ROI.

http://S2
http://S2
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right superior orbital frontal gyrus is associated with the illness duration, whereas SampEn of the functional 
connectivity between the right amygdala and the left inferior parietal gyrus is associated with the general scale 
and the illness duration (Table 4).

Discussion
In summary, we applied SampEn to characterize the complexity within the dynamic functional connectivity. This 
is different from previous studies on the complexity within BOLD signals4–9. Such characterization is impor-
tant because it enables us to investigate the biological implications of changes in brain functional architecture. 
As a demonstration, we established a SampEn map of the dynamic brain, and identified an age-related reduc-
tion in SampEn, suggesting that not only SampEn of the activation in some brain regions but also SampEn of 

Figure 3. The mean SampEn of each ROI and each RSN across all healthy subjects. The mean SampEn of 
each ROI across all healthy subjects (a). The color bar indicates the values of SampEn. The mean SampEn of 
each RSN across all healthy subjects is depicted in descending order (b). The error bars represent SD. RSN1, 
the default mode network; RSN 2, the attention network; RSN 3, the visual recognition network; RSN 4, the 
auditory network; RSN 5, the sensorimotor network; RSN6, the subcortical network.

RSNs and ROIs R P value

RSNs

 RSN6 −0.3744 0.0022

ROIs

 AMYG. R −0.4234 0.0006

 PAL. R −0.3753 0.0022

 AMYG. L −0.3694 0.0025

 THA. L −0.3704 0.0025

 THA. R −0.3592 0.0033

 CAU. L −0.3005 0.0122

Table 2. Associations between age and SampEn of RSNs and ROIs in healthy subjects. R is the partial 
correlation coefficient. RSN 6, the subcortical network; AMYG, amygdala; PAL, pallidum; THA, thalamus; 
CAU, caudate; L, left; R, right.

Functional connections

HC SZ RSZ > RHC

RHC P value RSZ P value Z value P value

AMYG. R - ORBsup. R −0.4459 0.0003 0.0159 0.5488 2.73 0.0052

AMYG. R - MFG. L −0.4241 0.0006 −0.2489 0.0255 1.09 0.1379

AMYG. R - SPG. R −0.4204 0.0006 −0.0751 0.2809 2.06 0.0197

AMYG. R - PCL. R −0.4044 0.0010 −0.0378 0.3852 2.16 0.0154

AMYG. R - IPL. L −0.3847 0.0017 −0.0304 0.4073 2.07 0.0192

Table 3. Associations between age and SampEn of functional connections in healthy subjects and patients with 
schizophrenia. For the difference between RSZ and RHC, P values that could survive FDR correction are marked 
in bold. HC, healthy subjects; SZ, patients with schizophrenia; RHC, partial correlation coefficient of the healthy 
group; RSZ, partial correlation coefficient of the patient group; AMYG, amygdala; ORBsup, superior orbital 
frontal gyrus; MFG, middle frontal gyrus; SPG, superior parietal gyrus; PCL, paracentral lobule; IPL, inferior 
parietal gyrus; L, left; R, right.
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the dynamic functional connectivity evolves with age. Moreover, we found that the age-related reduction in 
SampEn could be altered by schizophrenia, calling for further research of schizophrenia on the dynamics of the 
amygdala-cortical functional connections, which show significant alterations in our study.

The brain is a complex dynamic system, and how to characterize the dynamics in the brain is nontrivial. In 
the current study, we proposed the use of a well-defined measure named SampEn to characterize the complexity 
within the dynamic functional connectivity estimated by applying the sliding-window correlation technique. 
The dynamical functional connectivity, however, might be induced by nonneuronal signals, including cardiac 
and respiratory signals. This may cause potential problems in many measures characterizing dynamic properties 
of the dynamic functional connectivity, especially when these confounding processes are periodic, because a 
periodic signal is considered to be variable regardless of its amplitude42. Unlike these previous studies, we ana-
lyzed SampEn of the dynamic functional connectivity. According to the physical interpretation of SampEn, larger 
SampEn corresponds to greater irregularity in the dynamic functional connectivity. Because periodic signals are 
characterized by regularity, SampEn of periodic signals is relatively low, and thereby, we could control the con-
founding effects of periodic signals in our analysis.

Remarkably, SampEn map of the dynamic brain captures the functionalities of different brain regions reported 
in the literature. We found that most of the brain regions with high SampEn have been implicated in key aspects 
of learning. For instance, the caudate is implicated in reinforcement-based associative learning43 and classification 
learning44, the olfactory cortex in olfactory learning45, the amygdala in emotional learning46, the hippocampus 
in many aspects of learning and memory47, and the temporal pole in visual learning48. In contrast, we observed 
that sensorimotor and visual areas show low SampEn. These results add SampEn of the dynamic functional 

Figure 4. Associations between age and SampEn of functional connections in healthy subjects and patients 
with schizophrenia. AMYG, amygdala; ORBsup, superior orbital frontal gyrus; MFG, middle frontal gyrus; 
SPG, superior parietal gyrus; PCL, paracentral lobule; IPL, inferior parietal gyrus; L, left; R, right.

Functional connections

Positive scale Negative scale General scale Illness duration

R P value R P value R P value R P value

AMYG. R - ORBsup. R −0.1329 0.1537 −0.0931 0.2378 0.1168 0.1851 0.2596 0.0208

AMYG. R - SPG. R 0.0757 0.2811 0.0936 0.2365 0.1620 0.1062 −0.1766 0.0849

AMYG. R - PCL. R 0.0259 0.4216 −0.0112 0.4660 −0.0628 0.3155 0.0058 0.4820

AMYG. R - IPL. L 0.1711 0.0937 0.0800 0.2701 0.3106 0.0075 −0.2759 0.0150

Table 4. Associations between SampEn of functional connections and clinical variables. R is the partial 
correlation coefficient. P values less than 0.05 are marked in bold. AMYG, amygdala; ORBsup, superior orbital 
frontal gyrus; SPG, superior parietal gyrus; PCL, paracentral lobule; IPL, inferior parietal gyrus; L, left; R, right.
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connectivity as a new aspect to the literature, reporting that flexibility of the brain is an important factor predict-
ing learning49 and that primary sensorimotor and visual areas show low flexibility during motor learning task50.

Aging is a fundamental process in the human brain, and deviations from the normal aging process would 
result in mental disorders. With advancing age, the complexity within the temporal dynamics of brain signals 
measured by EEG, MEG, and BOLD fMRI appears to decrease18, 20–23. Consistently, we found that SampEn of 
the dynamic brain also decreases with advancing age. These decreases may relate to the decline in capacity of 
learning and memory with normal aging that is caused by alterations in neuronal structure and losses of syn-
apses51. Moreover, we identified that the reduction in SampEn of the dynamic brain is driven mainly by the 
amygdala-cortical functional connectivity. The amygdala-cortical connectivity has been reported to be age-related 
in both structural52 and functional53, 54 neuroimaging studies, but the current study revealed the negative associa-
tion between SampEn of the amygdala-cortical functional connectivity and age. This result is complementary to a 
previous study that showed that increased resting-state functional connectivity between the amygdala and frontal 
regions is related to superior emotional regulation in aging55.

Notably, the proposed approach is clinically relevant. A most recent study reported that the subcortical-cortical 
resting-state functional connectivity decreases with advancing age in the general population, and this age-related 
decrease is insignificant in patients with autism56. These results suggest that the normal aging process is altered by 
mental disorders. In the current study, we found a similar deviation from the normal aging process as the asso-
ciation between SampEn and age significantly decreases in patients with schizophrenia. Interestingly, the most 
significant deviation was identified in SampEn of functional connectivity between the right amygdala and the 
right superior orbital frontal cortex. This is consistent with a previous study that reported the association between 
the decreased amygdala-frontal functional connectivity and emotional abnormalities in patients with schizophre-
nia57. Moreover, we found that SampEn of the functional connectivity between the right amygdala and the right 
superior orbital frontal gyrus is lower in healthy elderly subjects compared with healthy young subjects, and is 
also lower in patients with schizophrenia compared with healthy subjects (Supplementary Fig. S3). This finding 
provides new evidence for the accelerated aging in patients with schizophrenia, which already has been demon-
strated by previous studies that have reported an accelerated decline in functional brain network efficiency58 and 
an accelerated reduction of gray matter volume59.

A prominent advantage of our approach is that SampEn of the dynamic functional connectivity does not 
necessarily depend on the scaling parameter ε. As shown in Supplementary Fig. S4, SampEn of the dynamic 
functional connectivity obtained at a different value of ε (e.g., 0.12, 0.16, and 0.24) was highly correlated with 
that obtained at 0.2 (R > 0.97). The interpretation of findings in the present study, however, needs to consider 
some limitations. Because noise also shows high SampEn according to the physical interpretation of SampEn, 
the observational noise in BOLD signals may contribute to SampEn of the dynamic functional connectivity. In 
the current study, we have associated SampEn with age, which suggests that the contribution of the observational 
noise to SampEn is not significant. Additionally, because medical treatment data were not available in the current 
sample, future analyses on patients with schizophrenia with records of medical treatment would help us to assess 
the confounding effect of the medical treatment on our findings.
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