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Evaluating agroclimatic constraints 
and yield gaps for winter oilseed 
rape (Brassica napus L.) – A case 
study
Zhi Zhang1,2, Jianwei Lu1,2, Rihuan Cong1,2, Tao Ren1,2 & Xiaokun Li1,2

Evaluating the effects of agroclimatic constraints on winter oilseed rape (WOSR) yield can facilitate 
the development of agricultural mitigation and adaptation strategies. In this study, we investigated 
the relationship between the WOSR yield and agroclimatic factors using the yield data collected from 
Agricultural Yearbook and field experimental sites, and the climate dataset from the meteorological 
stations in Hubei province, China. Five agroclimatic indicators during WOSR growth, such as ≥0 °C 
accumulated temperature (AT-0), overwintering days (OWD), precipitation (P), precipitation at 
an earlier stage (EP) and sunshine hours (S), were extracted from twelve agroclimatic indices. The 
attainable yield for the five yield-limiting factors ranged from 2638 kg ha−1 (EP) to 3089 kg ha−1 (AT-0). 
Farmers (Yfarm) and local agronomists (Yexp) have achieved 63% and 86% of the attainable yield (Yatt), 
respectively. The contribution of optimum fertilization to narrow the yield gap (NYexp) was 52% for 
the factor P, which was remarkably lower than the mean value (63%). Overall, the precipitation was 
the crucial yield-limiting agroclimatic factor, and restricted the effect of optimizing fertilization. The 
integrated data suggest that agricultural strategies of mitigation and adaptation to climatic variability 
based on different agroclimatic factors are essential for improving the crop yield.

Despite development in agricultural management and sustainable adaptation, agricultural production is still 
influenced by climatic, agronomic and/or socio-economic issues1–3. For climatic characteristics, radiation and 
temperature are yield-defining factors, rainfall and evapotranspiration are yield-limiting factors, and climatic 
conditions for pest/disease attacks are yield-reducing factors4. Oilseed rape, an oil and energy crop, is vulnera-
ble to local climatic conditions because of its lengthy growth period and overwintering ability. China produces 
approximately 20% of world’s rapeseed5, and the Yangtze River Basin, which has a subtropical monsoon climate, 
is the major production region for winter oilseed rape (WOSR). Oilseed rape yields have been stagnant in several 
European countries since the mid-1980s, and one of the reasons is related to the crop’s growing environment6. 
Weather conditions have explained approximately 40% of the WOSR yield variability during specific growth 
phases in Germany7. In the case of China, WOSR encountered not only temporal yield stagnation from 2004 to 
2014 but also spatial yield variability at provincial level8,9. Optimum fertilization has contributed greatly to WOSR 
yield10,11, but inadequate and excessive fertilization is common in Yangtze River Basin12. Identifying the agrocli-
matic constraints under climatic variability can help to explain the reasons for these yield issues.

The coincidence of variations in yield and climate was frequent for seed producing crops1. A series of agro-
climatic indices can be used to analyze the interactions between crop growth and climate variability, such as 
the decrease in the rice yield with the increase in the minimum temperature at the International Rice Research 
Institute Farm13, the positive effects of a moderate decline in precipitation on wheat production14, and the influ-
ence of extreme temperatures on rice yield in southern China15. In addition, analytical methods involving multi-
ple variables were adopted to identify site-specific yield-limiting factors16–18. Several studies have reported oilseed 
rape growth and yield responses to climatic parameters, and they have provided the biophysical basis of these 
factors1,19–22. Specifically, the temperature determines leaf area growth at early stage and the flowering period 
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duration23 (Habekotté 1997), low temperatures prolong the post-flowering phase but increase radiation intercep-
tion1,24, and limited water availability reduces the total dry matter production7.

To provide insight into the relationship between the spatial yield variability and the regional climatic charac-
teristics, scientific observations about the agroclimatic constraints on WOSR yield are essential. The objectives of 
this paper were to (i) develop agroclimatic indices representing the effects on rainfed WOSR growth and extract 
the dominant agroclimatic factors, (ii) identify the regional agroclimatic limiting factors and quantify yield losses, 
and (iii) estimate yield gaps attributed to the limiting factors and evaluate yield gap mitigation.

Results
Selection of the minimum agroclimatic dataset. The correlation coefficient matrix for the twelve agro-
climatic indices is shown in Fig. 1A. Clearly, there were some high positive and negative correlations present. 
Two principal components (PC) were extracted, and the cumulative variance was 83.8% (Fig. 1B). PC1 and PC2 
described 54.2% and 29.6% of the total variance, respectively. There were five parts in the factor loading distribu-
tion in the first, second and fourth quadrants (Fig. 1B). In the first quadrant, a ≥ 0 °C accumulated temperature 
(AT-0) was chosen as the high loading factor for PC1, which has the most significant correlation among the indi-
ces concerning temperature. In the second quadrant, both the overwintering days (OWD) and sunshine hours 
(S) were chosen as the high loading factor for PC1 and PC2, respectively. In the fourth quadrant, precipitation 
(P) was chosen from precipitation at a later stage (LP) and minimum mean monthly temperature (MTmin) for its 
higher correlation coefficient and acceptability. Additionally, precipitation at an earlier stage (EP) was chosen as 
a high loading factor for PC2. Finally, five agroclimatic indicators (AT-0, OWD, P, EP and S) were chosen as the 
dominant factors.

Boundary line analysis of the dominant agroclimatic factors. Boundary regression lines were deter-
mined by the upper boundary points for the five factors (Fig. 2). For AT-0, OWD, EP and S, the winter oilseed 
rape (WOSR) yields increased until the maximum value, followed by a decrease. For factor P, the WOSR yield 
declined with increasing precipitation. The optimum values and ranges of the dominant agroclimatic factors 
could be calculated on the basis of the boundary lines. The optimum values of AT-0, OWD, P, EP and S were 
3550 °C, 28.4 d, 489 mm, 169 mm and 1162 h, respectively. Considering the threshold of Ymax*0.9516, the opti-
mum ranges of all five factors are shown in Fig. 2. It is worth noting that the optimum precipitation range started 
at 410 mm, at which the actual yield was the maximum. The actual yield was significantly lower than the predicted 
yield at a precipitation quantity of less than at 410 mm, below which crop drought may occur.

The yield-limiting agroclimatic factors were identified using the multivariate equation (equation 2) for each 
grid point (Fig. 3). The most widespread of the limiting factor across the region was AT-0, which accounted for 
30.3% of the grid points and mainly distributed in the north-central of the region. Secondly, the limiting factor P 
accounted for 22.6% of the grid points, and distributed in the southeast. The spatial distribution of OWD (18.9%), 
S (14.9%) and EP (13.3%) were relatively random as the limiting factor.

Figure 1. Correlation coefficient matrix (A) of the meteorological factors and loading distribution (B) in 
an extracted principal component analysis. T mean temperature, Tmin mean daily minimum temperature, 
Tmax mean daily maximum temperature, AT-0 mean ≥0 °C accumulated temperature, AT-10 mean ≥10 °C 
accumulated temperature, MTmin mean minimum mean monthly temperature, OWD mean overwintering days, 
P mean precipitation, EP mean precipitation at an earlier stage, LP mean precipitation at a later stage, PD mean 
precipitation days, S mean sunshine hours.
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As for the agroclimatic constraints, the average value of the attainable yield (Yatt) was 2,854 kg ha−1 in the 
region (Fig. 3C). For the five different agroclimatic factors, EP had highest impact on the Yatt (2638 kg ha−1, 
which refers to the attainable yield under the limiting factor of EP), followed by OWD, P and S (approximately 
2,800 kg ha−1), with the lowest effect for AT-0 (3,089 kg ha−1). These results indicate that the limiting factor of 
the temperature accumulation appeared to affect the yield within a large area, but led to a small yield loss, while 

Figure 2. Relationship between the winter oilseed rape yield and the dominant agroclimatic factors. (A) AT-0, 
≥0 °C accumulated temperature; (B) OWD, overwintering days; (C) P, precipitation; (D) EP, precipitation at an 
earlier stage; (E) S, sunshine hours. The lines represent the boundary lines (n = 2144).

Figure 3. Spatial distribution (A) and proportion (B) of yield-limiting agroclimatic factors, and the attainable 
yield as predicted by the multivariate model. AT-0 mean ≥0 °C accumulated temperature, OWD mean 
overwintering days, P mean precipitation, EP mean precipitation at an earlier stage, S mean sunshine hours. 
Figure was created by ArcGIS Desktop (Version 9.3, URL: http://www.esri.com) [Software].

http://www.esri.com
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precipitation at an earlier stage (generally from September to November) appeared to affect the yield within a 
small area, but resulted in a large yield loss.

Winter oilseed rape yield. The spatial distribution of the actual farmers’ yield (Yfarm, averaged 1800 kg 
ha−1) and the experimental yield (Yexp, averaged 2461 kg ha−1) are shown in Fig. 4A and C, respectively. The 
high-value Yfarm (>2200 kg ha−1) was mainly distributed in the central of the region, and the low-value Yfarm 
(<1600 kg ha−1) was in the southeast and the west. Similarly, the high-value Yexp (>2800 kg ha−1) was mainly 
distributed in the north-central, and the low-value Yexp (<2200 kg ha−1) was in the southeast.

The two yield benchmarks for different yield-limiting agroclimatic factors were obtained by overlaying their 
spatial distribution maps. For the five factors, the Yfarm ranged from 1,540 kg ha−1 to 2,149 kg ha−1, and the Yexp 
ranged from 2,638 kg ha−1 to 3,089 kg ha−1. Coincidentally, the highest values of Yfarm and Yexp were both observed 
in the limiting factor of AT-0, and their lowest values were both observed in the limiting factor of P (Fig. 4B and D).  
By comparing the two yields, optimum fertilization was found to improve the farmers’ yield by 25~51%, with the 
largest value found in the limiting factor of EP.

Winter oilseed rape yield gap. The yield gaps of WOSR are presented in Fig. 5. The YGfarm (which was 
the difference between Yatt and Yfarm) averaged 1,054 kg ha−1, which means the farmers achieved 63% of the Yatt. 
Among the five limiting factors, the factor P had the highest value of YGfarm (1335 kg ha−1), while the factor 
AT-0 exhibited the lowest value (864 kg ha−1). For the YGexp (which was the difference between Yatt and Yexp), 
the average value was 393 kg ha−1, which means the local agronomists achieved 86% of the Yatt. In the different 
agroclimatic limiting regions, the factor P also had the maximum value of YGexp (636 kg ha−1), and the EP had the 
lowest value (249 kg ha−1).

To assess the contribution of optimum fertilization to narrowing the yield gap, NYexp was calculated using 
equation (5) and the results are shown in Fig. 5. The NYexp averaged 63%, and ranged from 52% for the factor P to 
76% for the factor EP. The results indicate that precipitation was the most significant factor in the yield-limiting 
agroclimatic factors. The effect of the limiting factor of EP on yield was weaken under the optimum fertilization.

Discussion
The boundary line approach was appropriate for the analysis of agroclimatic data in the subtropical monsoon 
region (Fig. 2), which is consistent with the proposal by Wairegi et al.25 for a single agro-ecological zone25. Our 
findings showed that precipitation was the most important agroclimatic constraint, and the optimum range for 
seasonal WOSR was from 410 to 567 mm (Fig. 2). After 567 mm, an increase of 10 mm in precipitation corre-
sponded to a decrease of 13 kg ha−1 in the attainable yield (data not presented), which was similar to that of winter 
wheat during the late growth phase in Finland19. The high correlation between precipitation and precipitation 
during the later stage (Fig. 1A) suggested that a yield reduction resulted from waterlogging from flowering to 
harvest21,26. In this case, irrigation was generally not needed, but drainage was indeed necessary for WOSR, which 
is consistent with the perceptions of local farmers. Post-anthesis growth is important for the growth of pods 

Figure 4. Spatial distribution of the actual farmers’ yield (A) and the experimental yield (C), and the values 
for different yield-limiting agroclimatic factors (B and D). AT-0 mean ≥0 °C accumulated temperature, OWD 
mean overwintering days, P mean precipitation, EP mean precipitation at an earlier stage, S mean sunshine 
hours. Figure was created by ArcGIS Desktop (Version 9.3, URL: http://www.esri.com) [Software].

http://www.esri.com
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and seed filling27, and waterlogging could reduce yields by restricting the seed number or weight as reported in 
wheat28. In contrast, the precipitation during the early stage should receive due attention because early drought 
has been considered as a key limiting factor in crop production29. Water deficit could decrease the germination 
rate and prolong germination time, leading to the reduction of root mass and leaf area in vegetative growth30.

Farmers usually changed the sowing time or selected optimum cultivars to adapt to the variable temperature. 
Elevated temperatures advanced plant maturity and interfered with seed filling, in a decrease of 10% in the WOSR 
yield in some European countries with an increase of 3 °C in the average temperature during seed filling1. The low 
temperature affected seed germination, leaf emergence and generative development27. Vernalization was required 
for the vegetative stage of winter crops during the winter, and a warming period in the spring maintained the 
regrowth20,27. In this study, overwintering generally started in the middle of December and ended in February, 
and the mean temperature in this period was about 5 °C (data not shown).

The number of sunshine hours appeared to affect the WOSR yield to a slight extent (Fig. 3C), but it supported 
photosynthetic activity. A high negative correlation was shown between the sunshine hours and precipitation at 
the early stage (Fig. 1A), which suggested that sunlight shortage during the vegetative stage interfered with leaf 
photosynthesis. During the analysis of yield-limiting factors, the interactions between the agroclimatic factors 
and the diseases, pests and weeds caused by climate variability cannot be ignored. For example, the interactions 
between rainfall and weed management in cassava production31, and the pests and soil-related factors in banana 
production25 show their importance. The leaf number and dry matter accumulation were reduced by the low 
temperature and overcast weather that is common during the winter in China, and root growth was hindered by 
early water shortage and cool temperatures during WOSR production.

The yield gap concept in this paper was different from that of Lobell et al.32, i.e., the difference between average 
and potential yield, but similar to that of Wairegi et al.25 and Wang et al.25,33, i.e., the gap between attainable yield 
and minimum predicted yield in the given region. In this paper, we did not evaluate the potential yield of WOSR4, 
but the attainable yield instead. The highest reported yield of WOSR in the region was 4,829 kg ha−1 34, implying 
the great potential for yield improvement. The total yield gap averaged 1,054 kg ha−1, and the experimental yield 
narrowed the gap by 63%, indicating that more efforts are needed to improve management practices. Optimum 
fertilization could save a significant yield loss in the Yangtze River Basin of China10,11, but adjusting management 
practices according to different weather conditions is more important for narrowing the yield gap.

Although the agroclimatic data and yield data were combined by the “site-area-point” method, the large num-
ber and extensive distribution of meteorological stations and experimental sites may result in uncertainties in the 
results. The selection of agroclimatic indices and the dominant factors were sometimes subjective, but they were 
consistent with expectation and experience. In future studies, agroclimatic indices can be more detailed with 
every growth period. In this study, we did not consider the influence of regional orography since WOSR was gen-
erally planted at a low altitude in Hubei province. We believe that these results are consistent with those of other 
similar climatological regions, and the analytical method is applicable to other climate zones.

Figure 5. Yield gaps for different yield-limiting agroclimatic factors. (A) AT-0, ≥0 °C accumulated 
temperature; (B) OWD, overwintering days; (C) P, precipitation; (D) EP, precipitation at an earlier stage; (E) 
S, sunshine hours; (F) Ave., whole region. The size of pie chart represents the Yatt, the pale gray part on the left 
represents the Yfarm, the two dark gray parts on the right represent the YGfarm, and the YGexp, and the percentage 
beside the pie chart represents the NYGexp.
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Conclusions
This paper has identified the agroclimatic limiting factors and quantified the agroclimatic-induced yield gap for 
WOSR in a subtropical monsoon climate. The yield variability was interpreted by the five dominant factors of 
≥0 °C accumulated temperature, overwintering days, precipitation, precipitation at an earlier stage and sunshine 
hours, which were found to be the major limiting factors across the region. Although the accumulation tempera-
ture affected the WOSR yield over a wide area, the precipitation appeared to be the most important agroclimatic 
constraint in the region. Optimum fertilization effectively narrowed the actual yield gap, especially under the 
limit of precipitation at an earlier stage, but its efficiency was restricted significantly by the precipitation con-
straint. The agroclimatic constraints and yield gaps presented in this study provided a basis for the development of 
mitigation and adaptation measures to respond to climatic variability in combination with agricultural strategies.

Methods
Study area. This study was conducted in Hubei province (Fig. 6) (29°05′–33°20′N, 108°21′–116°07′E), which 
is the largest winter oilseed rape (WOSR)-producing province of the Yangtze River Basin, China. The planting 
area (11.4 × 105 hm2) and production (2.3 × 106 t) accounts for 16% of China’s national WOSR production8. This 
province has a subtropical monsoon climate, with an average annual temperature of 16.7 °C and precipitation of 
1313 mm. The average temperature and total precipitation during the WOSR growing season (generally from 
September to May of the following year) were 13.1 °C and 596 mm, respectively. WOSR was generally rotated with 
rice under a double cropping system.

Data source. Daily climate variables (e.g., the average air temperature, maximum and minimum air tem-
peratures, precipitation, and sunshine hours) were collected from 31 meteorological stations (Fig. 6) in Hubei 
province during the 2005–2014 period (http://data.cma.cn/).

The actual farmers’ yield (Yfarm) data from 2005 to 2009 were collected from the Agricultural Yearbook of 
Hubei province35.

The experimental yield database were obtained from 2005 to 2009 from 245 field fertilization experiments 
conducted by the local agronomists. The yield data of optimum fertilization treatment was chosen to represent 
the experimental yield (Yexp). To compare with the farmers’ management, the fertilization practice, including fer-
tilizer rate, the ratio of NPK, and nitrogen application, was optimized for the experimental condition. The variety, 
sowing date, density and other management practices were all similar to those of the local farmers’ fields. The 
growth period was approximately 220 days, generally from 10 September to 15 May the following year. To ensure 
the data quality, outliers with the harvest index >0.5 or <0.2 were excluded.

Data analysis. Agroclimatic indices. Considering the physiological characteristics and the primary mete-
orological challenges to WOSR, twelve agroclimatic indicators for each meteorological station were selected 
in Hubei province (Table 1). The indicators covered the entire WOSR growing period, including germination, 
seedling formation, stem elongation, flowering, podding and maturation stages. The temperature, precipitation, 
and sunshine hours were calculated for the average of the whole growing cycle. The minimum mean monthly 

Figure 6. Distribution of meteorological stations, experimental sites and grid points for winter oilseed rape in 
Hubei province. Figure was created by ArcGIS Desktop (Version 9.3, URL: http://www.esri.com) [Software].

http://data.cma.cn/
http://www.esri.com
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temperature was the average temperature of the coldest month (which generally occurred in January). The over-
wintering days were calculated by using the five-day sliding average method to determine the starting and ending 
time of overwintering period, with a temperature lower than 5 °C and a minimum temperature lower than 0 °C 
for five consecutive days defined as the starting day, and when the temperature conditions were not met, as the 
ending day. Precipitation at the earlier stage and later stage was calculated from sowing to the beginning of over-
wintering and from the beginning of flowering to the harvest, respectively.

Spatial database. Spatial interpolation, including agroclimatic indicators and yield benchmarks, was per-
formed by the inverse distance weighted (IDW) method using ArcGIS (version 9.3). The ‘Extract values to points’ 
tool (in ArcGIS) was used to convert raster data to vector data. The vector data were the uniform distribution 
points in Hubei province, which were divided into grid points (10 km × 10 km resolution) (Fig. 6). Grid cells of 
50 km × 50 km or 0.5° × 0.5° resolution were extracted at a national scale36,37. A spatial vector database consisting 
of 2,144 grid points, including 12 agroclimatic indices and WOSR yield indices, was presented in the flow chart 
(Fig. 7). Therefore, the grid points (the combined meteorological data and yield data) were used in the following 
analysis.

Principal component analysis. In order to select the dominant factors from the twelve agroclimatic indices, prin-
cipal component analysis (PCA) was adopted. The PCA was used to minimize the dimensionality of indicators 
and identify new and important underlying variables. Principal components (PC) with eigenvalues ≥1 and var-
iation ≥5% were retained38. The dominant agroclimatic factors were selected by considering their higher factor 
loading in PCs as the best representative of the system. In addition, the correlation matrix and flexible norms were 
used on an auxiliary basis39 for the dominant factor selection.

Boundary line analysis. For each dataset related to the dominant agroclimatic factor (x-axis) and Yexp (y-axis), 
upper boundary points (i.e. maximum value on each x-interval which was divided at ten intervals) were estimated 
from scatter plots using the boundary line development system (BOLIDES) established by Schnug et al.16. The 

Name Unit Abbreviation Mean Min Max

Temperature °C T 13.1 10.1 14.4

Daily minimum 
temperature °C Tmin 10.1 7.0 13.6

Daily maximum 
temperature °C Tmax 17.7 13.9 19.7

≥0 °C accumulated 
temperature °C AT-0 3595 2770 3923

≥10 °C accumulated 
temperature °C AT-10 3066 2220 3416

Minimum mean 
monthly temperature °C MTmin 3.3 0.9 5.9

Overwintering days d OWD 23 1 51

Precipitation mm P 596 363 951

Precipitation at an 
earlier stage mm EP 203 69 311

Precipitation at a later 
stage mm LP 310 174 539

Precipitation days d PD 88 65 122

Sunshine hours h S 1133 663 1656

Table 1. Description of the twelve agroclimatic indices for winter oilseed rape.

Figure 7. Construction process for the spatial vector database. The color of the circle represent the value of the 
indicator.
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maximum yields showed an increasing tendency first and then a decrease. Hence, the quadratic model was fitted 
through the upper boundary points as follows:

= + +Y x xa b c (1)2

where x is the independent variable; a, b and c are the constants. Each boundary line function was the maximum 
attainable yield (YXi) for each agroclimatic factor (i = 1, 2,…, n) in each grid point. For each grid point, the 
responses were assumed according to von Liebig’s law of the minimum40, and the minimum attainable yield (Yatt, 
the attainable yield under the limiting factors) can be described by the multivariate model as follows:

= …Y Y Y YMIN( , , , ) (2)att X X Xn1 2

The limiting factor was identified as YXi (i = 1, 2,…, n), corresponding to Yatt.

Yield gap. To evaluate the yield gaps by comparison with Yatt, two yield gaps based on different yield bench-
marks were defined: YGfarm and YGexp, which were calculated using equation (3) and (4), respectively. Then, the 
contribution of optimum fertilization to narrow the yield gap (NYexp) was calculated using equation (5).

= –YG Y Y (3)farm att farm

= –YG Y Y (4)exp att exp

= −( )NY Y Y YG/ (5)exp exp farm farm
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