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Decadal trends in Red Sea 
maximum surface temperature
V. Chaidez  1, D. Dreano2, S. Agusti1, C. M. Duarte1 & I. Hoteit3

Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed 
by 0.11 °C decade−1 over the last 50 years and is estimated to continue to warm by an additional 
0.6 – 2.0 °C before the end of the century1. However, there is considerable variability in the rates 
experienced by different ocean regions, so understanding regional trends is important to inform on 
possible stresses for marine organisms, particularly in warm seas where organisms may be already 
operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest 
ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. 
We characterized the Red Sea’s thermal regimes at the basin scale, with a focus on the spatial 
distribution and changes over time of sea surface temperature maxima, using remotely sensed sea 
surface temperature data from 1982 – 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C 
decade−1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade−1, all exceeding the 
global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its 
organisms and communities.

Ocean warming with climate change1 is creating challenges for organisms, which accommodate to warming by 
shifting their distribution poleward and advancing their phenology2. While parts of the ocean may be warming 
gradually, others may experience rapid fluctuations, tipping points, or extreme weather events, such as heat waves, 
likely inducing greater impacts on biodiversity1, 3, as exemplified by the impacts of heat waves on seagrass4, 5  
and other organisms in the Mediterranean, a rapidly warming sea6. Extreme heat events such as ocean heat 
waves propagated by El Niño-Southern Oscillation are also major concerns for coral reefs as they may lead to 
bleaching7–9. The magnitude and duration of such events is important for organisms experiencing temperature 
anomalies outside their optimal thermal range and perhaps even above their thermal limits. High temperature 
anomalies of air and water are also linked to stratification of the water column, potentially diminishing oxygen 
levels and/or increasing microbial virulence, thus causing mass mortality of organisms and disrupting commu-
nity structure10–12.

Impacts of warming are likely to be greatest in semi-enclosed seas, which tend to support warming rates faster 
than average5, 13 and where the capacity of organisms to adapt to warming by shifting their biogeographical range 
poleward is limited by the presence of continental masses14, rendering most semi-enclosed seas climatic sink 
areas for marine organisms15.

The Red Sea is a semi-enclosed, extremely warm sea basin, experiencing rapid warming16–19. Between 1982 and 
2006, the average annual temperature of the Red Sea increased by 0.74 °C17, comparable to the global average of 
0.85 °C1. An intense warming event occurred in 1994 leading to a 0.7 °C increase in mean annual SST (sea surface 
temperature)18. Modern average temperatures in the Red Sea already exceed those of other tropical regions20, 21.  
Although it is considered a fast warming, large marine ecosystem, its thermal regimes and evolution remain 
largely unresolved17, 22. Yet, the Red Sea hosts one of the largest reef systems in the world, where organisms may 
be already close to their thermal limits.

Whereas most analyses focus on mean seawater temperature, maximum temperature may be a more relevant 
property in relation to some specific questions. For instance, thermal collapse is determined by temperature 
exceeding the thermal capacity of organisms23, which is, therefore, dependent on the maximum, rather than the 
mean temperature the organisms experience. This may be particularly important in the Red Sea where maximum 
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seawater temperatures are already extremely high. Yet, available analyses of thermal regimes in the Red Sea focus 
on annual mean values18, 19, 24, 25, rather than the dynamics of maximum temperature. Here we characterize the 
variability in temperature maxima across the Red Sea and over time (1982 to 2015), based on daily values, iden-
tifying rates of change in annual maximum sea surface temperature, hereafter Tmax, as well as the distribution of 
anomalies, relative to Tmax over time.

Results
Warming rates and timing. The Red Sea displays a latitudinal gradient of increasing Tmax from north to 
south with the southern Red Sea exhibiting the highest Tmax (33 °C) until the southernmost Bab-el-Mandeb Strait 
(Fig. 1). The Gulf of Suez and the Gulf of Aqaba both exhibit lower temperatures than the open Red Sea (Fig. 1).

The northern Red Sea experiences Tmax throughout July while Tmax is reached between late July and mid–
August in the southern Red Sea (Fig. 2). The area off of Al Lith, Saudi Arabia, prominently exhibits delayed Tmax 
from approximately mid August to early September (red area in Fig. 2).

We assessed the rate of change in the magnitude and timing of Tmax across the Red Sea. We observed a sig-
nificant trend toward increased Tmax across the Red Sea, at an average rate of 0.17 ± 0.07 °C decade−1 (p = 0.02, 

Figure 1. Distribution of mean (from 1982 to 2015) maximum annual temperature (Tmax) across the Red Sea. 
Insert shows the latitudinal changes in mean (from 1982 to 2015) Tmax. Values based on daily temperature data. 
Image created using R (v3.3.1, www.R-project.org)45 including packages: ggplot246 and rasterVis47, RStudio 
(v1.0.143, www.rstudio.com), and InkScape (v0.91, www.inkscape.org).

http://www.R-project.org
http://www.rstudio.com
http://www.inkscape.org
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df = 32, t = 2.437). Rates of change in Tmax varied across the Red Sea, with highest rates found in the colder areas 
of the Red Sea, including the northern Red Sea with rates for the Gulf of Suez and Gulf of Aqaba at 0.40 – 0.45 °C 
decade−1 (Fig. 3a). The region experiencing the lowest rate of warming is, again, that exhibiting a delayed Tmax off 
the coast of Al Lith, Saudi Arabia (blue area in Fig. 3a).

In addition to a general pattern toward increasing Tmax, maximum temperatures in the Red Sea are also being 
reached earlier, with an average rate of change in the timing of Tmax of 0.19 ± 0.30 days earlier decade−1 (Fig. 3b). 
Most of the Red Sea experienced progressively earlier Tmax by 0.1 to 2 days earlier decade−1, but a region in the 
southern Red Sea showed a delay in Tmax by 1 to 2 days decade−1. This is the same region that exhibits anomalous 
trends in the annual timing of Tmax (Fig. 2).

Heat anomalies. Heat waves representing anomalies of 1.0 °C above the average Tmax were observed more 
frequently in the northern half of the Red Sea over the last 34 years. The majority of the basin experienced such 
anomalies during at least one year and up to 6 years (which may or may not have been successive years). Some 
areas in the northern Red Sea, including the Gulf of Aqaba, experienced 1.0 °C magnitude heat waves as often as 
5 or 6 years over the 34 year period examined here (Fig. 4).

Tmax values 0.5 °C above the mean (1982 – 2015) values occurred 15 to 24% of the years, whereas thermal 
anomalies involving Tmax values 0.75 °C above the mean values occurred 6 to 12% of the years, and years with 

Figure 2. Average yearly timing of maximum annual temperature (Tmax) across the Red Sea. Insert shows the 
latitudinal trend in the average timing of Tmax. Image created using R (v3.3.1, www.R-project.org)45 including 
packages: ggplot246 and rasterVis47, RStudio (v1.0.143, www.rstudio.com), and InkScape (v0.91, www.inkscape.org).

http://www.R-project.org
http://www.rstudio.com
http://www.inkscape.org
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Tmax values of 1.0 °C above the mean values occurred with a probability <6% (Fig. 5). The decline in the fre-
quency of Tmax anomalies with increasing magnitude of anomalies was significant (Kruskal-Wallis, p < 2.2 e−16, 
chi-squared = 2674, df = 4, Fig. 5) and significant differences were found among all groups (Dunn’s, p < 0.05, Z 
range = [4:44]).

Discussion
The latitudinal gradient of increasing Tmax from north to south in the Red Sea is largely a consequence of the varia-
tion in solar radiation associated with these latitudinal differences, and is consistent with previous studies reporting 
the same trend based on mean temperatures, with the warmest thermal regime in the southern region19. The Gulf of 
Suez and the Gulf of Aqaba have colder thermal regimes. Previous studies reported that, in the summer, the surface 
water entering the Gulf of Aqaba from the Red Sea is about 2 °C warmer than the water inside the Gulf26.

The Red Sea basin presents a discontinuity in terms of the timing of Tmax, associated with an abrupt transition 
between 20 and 22 °N. The timing of Tmax occurs two months earlier south of this boundary compared to the timing 
north of this boundary. The distinct break between North and South (Fig. 2), may be evidence for the strong coupling 
of wind and sea surface temperatures over the basin as in other ocean systems27–29. During winter (October–April), the 
basin experiences opposing southward and northward winds, converging at about the same belt between 19 – 20 °N19 
where the divide in timing of Tmax is observed. From May to September, the major wind vector is from north to south19.

The warming rate of the Red Sea, 0.17 ± 0.07 °C decade−1, is higher than the global ocean rate of 0.11 °C 
decade−1 1. The northern Red Sea is warming faster with the Gulf of Suez and Gulf of Aqaba (0.40 – 0.45 °C dec-
ade−1) (Fig. 3a) warming four times faster than the mean global ocean warming rate. The semi-enclosed nature of 
the two gulfs as well as that of the Red Sea as a whole may account for the intense warming17, 30, 31, while the slower 
rate of increase in the southern Red Sea may be buffered by its closer connection to the Indian Ocean. Although 
the northern Red Sea is warming faster, it remains the coolest region in the basin throughout the year.

Increased Tmax will have effects on marine biota, which are particularly vulnerable to heat waves, when their 
thermal limits may be approached or exceeded23, 32. The occurrence of heat anomalies, which are also likely 
to increase in the future1, are greatly relevant to the physiology of organisms, particularly for those inhabiting 
already warm environments, like the Red Sea, where temperature anomalies may lead to thermal collapse24, 32–34. 
The years 1999 and 2001 experienced the largest anomalies across the basin (Fig. 6). During the years 1997 – 1998, 
one of the strongest El Niño events occurred, while 2000 – 2001 was considered a weak La Niña event35. The years 
2003 and 2015, also El Niño years, showed the second greatest percentage of area covered by Tmax anomalies, 
although of a relatively small, 0.5 °C, magnitude (Fig. 6).

Systematic monitoring efforts are required to detect the effect of heat anomalies on marine organisms, such 
as bleaching and mass mortality events36. Unfortunately, there is no systematic monitoring of biological events in 

Figure 3. (a) Decadal rates of warming (°C decade−1) and (b) change in timing (days decade−1) of mean 
maximum annual temperature (Tmax) across the Red Sea. Image created using R (v3.3.1, www.R-project.org)45 
including packages: ggplot246 and rasterVis47, RStudio (v1.0.143, www.rstudio.com), and InkScape (v0.91, www.
inkscape.org).

http://www.R-project.org
http://www.rstudio.com
http://www.inkscape.org
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the Red Sea, such as bleaching events, which may be affected by thermal anomalies such as those reported here. 
Extensive bleaching was reported in the southern half of the Red Sea in 2015, one of the years with extensive, but 
relatively moderate, thermal anomalies in our analysis (Fig. 6). Whether bleaching events also occurred in other 
years with extensive Tmax anomalies is unknown due to lack of long-term monitoring.

The distribution of Tmax in the Red Sea conforms to the four provinces, described by Raitsos et al.19 based on 
phytoplankton biomass. The warmer Tmax regime in the South is associated with higher phytoplankton biomass, 
while the lowest Tmax in the northern Red Sea is associated with the lowest phytoplankton biomass. However, this 
pattern may be a result of the decrease in nutrient concentrations from south to north along the Red Sea37, rather 
than its thermal regime. A region in the central Red Sea emerges as deviating from the general pattern with a 
slower rate of warming and Tmax reached later in the year over time.

That Tmax is rapidly increasing in the Red Sea, which is already one of the warmest seas, anticipates challenges 
to biota. Whereas Tmax is increasing more rapidly in the North than in the South, the warmer thermal regime 
in the South may already be near the thermal limits of organisms and, therefore, even a modest increase in Tmax 
may suffice to exceed their thermal tolerance, although experimental work is necessary to test this suggestion. 
Unfortunately, although the Red Sea ranks as the warmest sea on the planet, aside from one study examining the 

Figure 4. Distribution of the frequency, as number of years, across the Red Sea when maximum annual 
temperature (Tmax) reached 1.0 °C higher than the mean Tmax for 1982–2015. Image created using R (v3.3.1, 
www.R-project.org)45 including packages: ggplot246 and rasterVis47, RStudio (v1.0.143, www.rstudio.com), and 
InkScape (v0.91, www.inkscape.org).

http://www.R-project.org
http://www.rstudio.com
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effect of temperature on grazing rates of Red Sea parrotfish38, there is, at present, no quantitative information on the 
thermal limits of Red Sea biota. However, reports of a decline in coral growth and calcification across the thermal 
range of Red Sea corals39, together with widespread bleaching in the southern half of the Red Sea during 2015, as well 
as lower growth rates reported for brown macroalgae40, suggests that warm Red Sea temperatures already challenge 
the capacities of organisms. In addition to increasing Tmax, the general tendency towards an earlier occurrence indi-
cates that phenology patterns of organisms might need to adjust to this shift. Marine organisms generally cope with 
warming by shifting their biogeographical range poleward tracking the migration of isotherms2, 14. However, this 
strategy is not possible in semi-enclosed seas, such as the Red Sea14, 15, rendering its large pool of endemic species 
at risk of extinction unless they become Lessepsian migrants and colonize the Mediterranean Sea as a hundred Red 
Sea species have done41. Altogether, higher and earlier Tmax may challenge the capacities of Red Sea biota to cope.

Results presented here provide a context for experimental analyses examining thermal limits, by defining the 
regimes and trends in Tmax across the Red Sea, as well as the likelihood of observing anomalies of different magni-
tudes. In addition, these results may help understand biodiversity patterns and losses across natural gradients in the 
Red Sea by matching the distribution of communities and habitats with the distribution of Tmax. This will provide 
an underpinning to the assessment thermal maxima play in explaining patterns of biodiversity across the Red Sea.

In conclusion, Red Sea biota are exposed to increased ocean warming, particularly in the northern Red Sea, 
which may affect their future persistence, especially if unable to migrate into the Mediterranean. The results on 
Red Sea warming presented here, coupled with experimental evidence on the thermal limits of Red Sea organ-
isms, yet to be resolved, would provide a powerful tool to predict the future of marine biodiversity in this biodi-
versity hotspot containing a high degree of endemism.

Methods
The dataset. We used remotely sensed sea surface temperature (SST, °C) data to examine maximum temper-
atures on a basin-wide scale across the Red Sea. The AVHRR–OI (Advanced Very High Resolution Radiometer–
Optimum Interpolation) Pathfinder sensor currently provides the longest continuous daily dataset of infrared 
SST from 1981 to present42, allowing the assessment of decadal trends of temperatures. Whereas other sensors 
provide higher resolution, in terms of pixel size, they encompass a period too short to be climatically-relevant 
as yet (ERS-1/ATSR-1 and Acqua/AMSR-E)43 and do not allow us to identify, with confidence, the maximum 

Figure 5. Probability, as the frequency of occurrence between 1982–2015, of maximum annual temperature 
(Tmax) anomalies of different magnitudes. A Kruskal-Wallis test and post-hoc Dunn’s tests found significantly 
different frequencies among and between all anomalies (Kruskal-Wallis, p < 2.2 e−16, chi-squared = 2674, df = 4; 
all Dunn’s tests, p < 0.05, Z range = [4:44]).
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Figure 6. Percent of Red Sea area exhibiting maximum annual temperature (Tmax) anomalies of different 
magnitudes between 1982 and 2015. Red indicators signal the occurrence of El Niño events.
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temperature achieved over time. A daily Level-4, gap-free dataset merging day and night analysis AVHRR SST 
was obtained from NASA’s (National Aeronautics and Space Administration) National Climatic Data Center44 at 
podaac.jpl.nasa.gov accessed on January 5, 2016 encompassing 34 years over the period 1982 to 2015. This data-
set has been optimally interpolated and mapped on a 0.25° × 0.25° grid. The values in the dataset were corrected 
with in situ measurements from buoys and ships42. Daily fluctuations in daily SST time series may significantly 
affect the measurement of maximum SST phenology and magnitude, because the recurrence of the passage of 
AVHRR Pathfinder is 2 to 3 days and, the time of passage may not match the time of Tmax, typically found in the 
late afternoon with a daily range in Tmax, derived from moorings in the central Red Sea, of up to 3 °C. Moreover, 
the individual estimates may be affected by dust, which is prevalent in the region at the time of Tmax, and cloud 
cover. Whereas the data we used is interpolated, the individual daily values may be affected by the sources of error 
above, leading to underestimates of the actual Tmax. To attenuate this source of error, we extracted the maximum 
daily T value within sets of interpolated daily values over 8-day periods, and then selected, for each of the 669 pix-
els, the highest T observed in any one year as that providing the best estimate of Tmax for that pixel and year. The 
dataset can be downloaded from the Pangea open-access data repository (Chaidez et al. 2017)48.

Calculating decadal trends. The decadal trends of maximum temperatures and time of occurrence were 
estimated by fitting a linear regression relating Tmax to year for each of the pixel’s yearly time series. The slopes 
of the fitted linear regressions provide an estimate of the rates of change for each pixel in the Red Sea (units: °C 
decade−1, and days decade−1, respectively). We tested the possible occurrence of autocorrelation in Tmax among 
years, and found, for a sample of pixels, no evidence of autocorrelation, i.e. the Tmax in any one year is independent 
of Tmax in preceding year(s).

Calculating heat anomalies. For each pixel, a reference maximum temperature was computed by taking the 
mean of the highest temperatures per year over the study period. A heat wave event was defined as a yearly maximum 
temperature above the reference maximum temperature by a given threshold chosen at 0.5 °C intervals between 0.5 and 
1.5 °C. The number of heat wave events over the 34 years were counted for each pixel, as well as the area of the Red Sea 
experiencing heat waves of various magnitudes in a given year. A Kruskal-Wallis test followed by Dunn’s test for multi-
ple comparisons, was used to compare the frequencies of occurrence for all magnitudes of heat anomalies in Fig. 5. The 
percentage of area in Fig. 6 was calculated as the percentage of pixels. We are aware that the area of each pixel depends 
on latitude, as the length of a degree longitude varies with latitude. However, for the narrow range of latitude covered by 
the Red Sea, the difference is minimal, so percent of pixels and area are essentially equivalent.

All data manipulation and analyses were conducted using R (v3.3.1, www.R-project.org)45.

Data Availability. The data set supporting the analysis presented here can be found in the Pangaea open 
data repository: (Chaidez et al. 2017, http://www.pangaea.de)48.
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