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The diagnostic accuracy of 
magnetic resonance imaging for 
anterior cruciate ligament injury in 
comparison to arthroscopy: a meta-
analysis
Kun Li1, Jun Du1,2, Li-Xin Huang1, Li Ni1, Tao Liu1 & Hui-Lin Yang1

We performed this meta-analysis to examine the diagnostic accuracy of MRI for the diagnosis of 
anterior cruciate ligament (ACL) injury in comparison to arthroscopy. We also compared the diagnostic 
accuracy of MRI with magnetic field intensities (MFI) greater than or equal to 1.5T with those below 
1.5T, in addition to different MRI sequences. Studies relevant to the diagnosis of ACL injury by MRI 
and arthroscopy were analyzed. Computer and manual retrieval were carried out on studies published 
between January 1, 2006 and May 31, 2016. Twenty-one papers were included. Neither threshold nor 
non-threshold effects were present (p = 0.40, p = 0.06). The pooled sensitivity (SE), specificity (SP), 
positive likelihood ratio (LR+), negative likelihood ratio (LR−) and diagnostic odds ratio (DOR) with 
95% confidence interval (CI) were 87% (84–90%), 90% (88–92%), 6.78 (4.87–9.44), 0.16 (0.13–0.20) and 
44.70 (32.34–61.79), respectively. The area under the curve (AUC) was 0.93. The risk of publication bias 
was negligible (p = 0.75). In conclusion, examination by MRI is able to provide appreciable diagnostic 
performance. However, the principle, which states that the higher the MFI, the better the diagnostic 
accuracy, could not be verified. Additionally, conventional sequences (CSs) associated with proton 
density-weighted imaging (PDWI) are only slightly better than CSs alone, but not statistically different.

The anterior cruciate ligament (ACL) extends from the posterior surface of the medial femoral condyle and 
attaches to the intercondylar process of the tibia. Its average length is 31–38 mm and its average intersecting 
surface area is 36 mm2 in females and 44 mm2 in males1. It can be divided into anteromedial and posterolateral 
bundles. The main function of the ACL is to limit the forward slip of the tibia on the femur. The anteromedial 
bundle of the ACL can prevent excessive external rotation of the leg, whereas the posterolateral bundle prevents 
excessive internal rotation. With the posterior cruciate ligament, the ACL limits excessive flexion, and excessive 
extension in combination with the posterior cruciate ligament, the medial and lateral collateral ligaments, the 
articular capsule and the oblique popliteal ligament2. It also contributes to restriction of lateral slip and rotation 
with the articular capsule, the medial and laterial collateral ligaments and the posterior cruciate ligament3.

Injuries of the ACL are generally sports-related traumas with nearly three quarters being non-contact4. They 
are a major problem worldwide with approximately 200,000 cases per year in the United States alone5. Isolated 
injuries of the ACL are most frequently caused by forced extension stress associated with “kissing contusions” of 
the anterior portion of the lateral femoral condyle and of the lateral tibial plateau. It is less frequently caused by 
forced flexion stress associated with avulsion fracture of the tibial eminence. Associated injuries of the ACL and 
other structures are caused by a variety of events: (i) ACL injury associated with medial collateral ligament and 
medial meniscus injury is caused by forced flexion-external rotation stress; (ii) damage associated with lateral 
compartment injury is caused by forced flexion-internal rotation stress; (iii) when associated with lateral and 
medial compartment injury it is caused by different associations of varus-valgus and rotatory stress; (iv) when 
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associated with posterior cruciate ligament injury it is caused by posterior displacement of the tibia and knee 
hyperextension4, 6.

Arthroscopy allows direct visualization of all intra-articular structures and thus provides a high level of accu-
racy for both diagnosis and treatment, which makes arthroscopy the gold standard for evaluation of internal 
disorders and other lesions of the knee7. However, arthroscopy constitutes a relatively expensive and invasive 
examination8. Besides, it is less effective for the assessment of extracapsular soft tissues9.

Magnetic resonance imaging (MRI) is a non-invasive method with good soft tissue contrast, high spatial 
resolution, multi-parameter and multi-range imaging for the evaluation of knee lesions10. It can clearly display 
the injury site of the ACL, the extent of the damage, the degree of injury and the damage to the related structures. 
Although MRI has recently played an increasing role in the evaluation of knee lesions, its diagnostic potential for 
ACL injury is limited and diagnosis fallible9.

Recent studies have compared the diagnostic accuracy of 1.5T MRI with 3.0T MRI11, MRI combined with 
ultrasonography12, and MRI combined with physical examination8, 13. However, the exact diagnostic accuracy 
of MRI for ACL injury is unknown, as are the differences in diagnostic accuracy between MRI with magnetic 
field intensities (MFI) greater than or equal to 1.5T compared with those below 1.5T, or between different MRI 
sequences, The objectives of this meta-analysis were to (i) systematically examine the diagnostic accuracy of MRI 
for the diagnosis of ACL injury; (ii) compare the diagnostic accuracy of MFI greater than or equal to 1.5T with 
MFI below 1.5T; and (iii) compare the diagnostic accuracy of different MRI sequences.

Results
Study selection. A total of 1922 articles were initially retrieved for this meta-analysis: 481 from PubMed, 
783 from EMBASE, 470 from Ovid, 129 from BIOSIS Previews, 53 from the Cochrane library and 6 articles 
obtained from manual retrieval of relevant references by sending e-mails to authors. 759 reports were then elim-
inated out of 1232 duplicated reports as they originated from the same team or the same set of data. According to 
the inclusion and exclusion criteria for the initial screening, a total of 110 articles were thus selected after reading 
the title and abstract (71 from PubMed, 24 from EMBASE, 11 from Ovid and 4 from the Cochrane library) and 
the articles were marked with 1 star in EndNote software. By evaluating the full text, two researchers (K.L. and 
J.D.) then selected 31 papers that strictly complied with the inclusion and exclusion criteria and marked them 
with 2 stars in EndNote. Ten studies were excluded after re-assessing the full text during the third screening. 
Finally, 21 articles9, 14–33 were chosen and marked with 3 stars, articles for which true positive (TP), false positive 
(FP), true negative (TN) and false negative (FN) results could be extracted or accurately calculated through 2 × 2 
contingency tables (16 from PubMed and 5 from EMBASE). These articles consisted of 16 prospective studies 
and 5 retrospective studies, for a total of 1722 cases. The literature search, the screening process and the results 
are shown in Fig. 1. The basic characteristics of the studies which were included are displayed in Table 1. From a 
chronological point of view, 38% (8/21) of these studies were published between 2006–2009 inclusive and 62% 
(13/21) in the period 2012–2016.

Assessment of risk of bias within studies. The methodological quality assessment of risk of bias 
within eligible studies is shown in Fig. 2, according to the Quality Assessment of Diagnostic Accuracy Studies 2 
(QUADAS-2) tool. Overall, the number of low and unclear risk of bias was 39 and 45, respectively, for the four 
domains (patient selection, index test, reference standard, and flow and timing). The number of high, unclear and 
low concerns regarding applicability was 42, 8 and 13, respectively for the three domains (patient selection, index 
test and reference standard).

Heterogeneity test of individual studies. Results of the heterogeneity test for the threshold effect were as 
follows: the variation tendency of sensitivity (SE) and specificity (SP) or positive likelihood ratio (LR+) and nega-
tive likelihood ratio (LR−) were not negatively correlated in forest plots (Fig. 3A–D). The distribution of accuracy 
estimates of each independent study did not show the “shoulder arm” shape in the summary receiver operator 
characteristic (sROC) plane (Fig. 4). Results of the Spearman correlation (p = 0.40 and r = 0.194) between the 
logit of sensitivity and the logit of 1-specificity indicates that the threshold effect was absent. Regarding the heter-
ogeneity test for the non-threshold effect, results of the Cochran-Q test (p = 0.06) indicates that the non-threshold 
effect was also absent (Fig. 5).

A random effects model was used for pooled SE [p < 0.001, inconsistency index (I2) = 57.9%], pooled SP 
(p < 0.001, I2 = 72.7%) and pooled LR+ (p < 0.001, I2 = 64.3%) (Fig. 3A–C). A fixed effects model was used 
for pooled LR− (p = 0.12, I2 = 27.2%) (Fig. 3D) and pooled diagnostic odds ratio (DOR) (p = 0.06, I2 = 34.5%) 
(Fig. 5) respectively. The I2 statistics based on Chi square (where Q is the chi-square statistic) was used to quantify 
the degree of heterogeneity in eligible studies and expresses the percentage of total variation observed across 
studies caused by heterogeneity rather than by chance. There is no observed heterogeneity when I2 = 0, implying 
that all the variability observed in the effect estimates is due to sampling errors rather than because of heteroge-
neity amongst trials. Heterogeneity that is low, moderate, or high relates to I2 < 25%, 50% < I2 < 75%, I2 > 75% 
respectively. Values of I2 = 25%, 50% or 75% are defined as 1/4, 1/2 or 3/4 of the variability observed in the effect 
estimates being attributable to inconsistency among trials.

Synthesis of results. The pooled SE was 87% [95% confidence interval (CI), 84–90%] and the pooled SP 
90% (95% CI, 88–92%), whereas the pooled LR+ was 6.78 (95% CI, 4.87–9.44) and the pooled LR− 0.16 (95% 
CI, 0.13–0.20) (Fig. 3). The pooled DOR was 44.70 (95% CI, 32.34–61.79) (Fig. 5) and the area under the curve 
(AUC) was 0.93 (Fig. 4).

Subgroup analysis. The differences between subgroups were calculated according to the MFI, the year of 
publication and the type of MRI sequence [conventional sequences (CSs) and CSs with proton density weighted 
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imaging (PDWI)]. The results are listed in Table 2 and include the pooled SE, SP, LR+, LR−, DOR and AUC 
values.

Publication bias in the literature evaluation. The Deeks’ funnel plot asymmetry test for DOR presented 
basic symmetry (Fig. 6). Nevertheless, results showed no significant risk of publication bias (p = 0.75).

Discussion
Overall, ACL injury is a common clinical form of knee damage. Timely and accurate diagnosis and treatment 
could prevent the emergence of cartilage degeneration, the progression of bone contusion, the aggravation of 
traumatic arthritis or the occurrence of knee joint dysfunction34.

Magnetic resonance imaging is a noninvasive technique that remains a physician’s first choice for the clinical 
diagnosis of ACL injury. It has the advantages of good soft tissue contrast, high spatial resolution and allows 
multi-parameter evaluation of morphological changes in an injured ACL. However, it is likely that overuse of the 
MRI technique in the diagnosis of ACL injury leads to misdiagnosis (estimated at 47%), especially in a chronic 
incomplete tear which might be due to the special sensitivity to the hydrogen atom and could be associated with 
volume effects and synovial hyperplasia18. Additionally, different studies have attributed different values for sen-
sitivity and specificity, ranging from 63.6%14 to 100%9, 19, 29 and from 68.4%26 to 100%16, 19, 28 respectively, owing to 
the slightly oblique angle of the ACL crossing the knee joint and to the difficulty of displaying the full ACL in the 
true sagittal plane via a single MRI scan22. Meanwhile, the accuracy of MRI diagnosis depends on the scanning 
technique and the experience of the musculoskeletal radiologist30. Thus, the precise diagnostic accuracy of MRI 
for ACL injury is unknown. It is necessary, therefore, to carry out high level evidence-based medical research on 
the accuracy of MRI diagnosis for ACL injury.

Our meta-analysis focused on the diagnostic accuracy of MRI for ACL injury compared with arthroscopy. 
The pooled SE and SP are 87% (95% CI, 84–90%) and 90% (95% CI, 88–92%) respectively, indicating that the 
rate of missed diagnosis and misdiagnosis reach 13% and 10%, respectively. Furthermore, a good diagnostic test 
may have a LR+ superior to 10 and a LR− inferior to 0.1. Our study revealed that the pooled LR+ reaches 6.78 
(95% CI, 4.87–9.44), which means that it is possible that ACL injury occurred in suspected cases when the MRI 
result was positive. Moreover, the pooled LR− had a value of 0.16 (95% CI, 0.13–0.20). In other words, there is 
a real possibility of excluding an ACL injury in suspected injured patients when the MRI result was negative. In 
addition, DOR represents a summary measure of the power of the test and the higher this measure, the better the 
performance of the inspection method35. The pooled DOR was 44.70 (95% CI, 32.34–61.79) in the present study, 

Figure 1. Flow of information through the different phases of the meta-analysis. From: Moher, D., Liberati, A., 
Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA 
statement. PLoS medicine 6, e1000097, doi:10.1371/journal.pmed.1000097 (2009).

http://dx.doi.org/10.1371/journal.pmed.1000097
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which predicts that the odds of obtaining a positive result using MRI are 44.7 times higher for an ACL injury than 
for an intact knee. In addition, the area under the curve (AUC) was 0.93, which indicates that MRI examination 
has a high diagnostic accuracy. Low, medium and appreciable accuracies of diagnosis are considered for AUC 
values ranging from 0.5 to 0.7, 0.7 to 0.9 and ≥0.9, respectively. The maximum AUC value of 1 predicts that the 
diagnostic test is perfect for differentiation in diagnostic test evaluation. In contrast, an AUC value < 50% indi-
cates a poor performance of the diagnostic test13.

The MFI of MRI is one of the most important factors affecting accuracy of diagnosis. Smith et al. (2016) 
proved that there is no evidence that 3T scanners had superior diagnostic efficacy for ACL injury when compared 
with 1.5T machines11. Similarly, Phelan et al. (2015) and Smith et al. (2012) also reported that magnetic field 
strength had no significant effect on accuracy12, 36. Our results indicate that there are no significant differences in 
SE, SP, LR+, LR− and DOR between MFI greater than or equal to 1.5T and MFI below 1.5T (p = 0.85, p = 0.76, 
p = 0.84, p = 0.75, p = 0.84, respectively), which is not only consistent with the results of previous studies, but also 
corroborate previous studies.

Included studies PD Country SD MFI

Study population Age 
(year) Blinding TP FP FN TN

SE 
(%)

SP 
(%)NO. M F

S. Thomas et al. 2007 UK RC 1.5T 102 74 27 42 SB 7 5 4 86 63.6 94.5

Mohammed Azfar Siddiqui et al. 2013 India PC 1.5T 51 31 20 41 SB 8 2 1 40 88.9 95.2

Fritz K.W. Schaefer et al. 2006 Germany PC 1.5T 31 16 15 41 DB 16 0 3 12 84.2 100

F. Rayan et al. 2009 UK PC — 131 — — — DB 22 4 5 100 81.5 96.2

Nilton Orlando Júnior et al. 2015 Brazil PC — 72 61 11 34 SB 46 5 7 14 86.8 73.7

M. J. Sampson et al. 2008 Ireland PC 3T 61 52 9 30 SB 28 0 0 33 100 100

Amir Mohammad Navali et al. 2013 Iran PC — 120 108 12 29 DB 71 8 1 40 98.6 83.3

Christopher S. Lee et al. 2013 USA RC 0.2T 379 206 173 48 DB 46 21 8 304 85.2 93.5

Hristijan Kostov et al. 2014 Macedonia PC 1.0T 103 81 22 30 DB 60 5 13 25 82.2 83.3

Gul-e-khanda et al. 2008 Pakistan PC 1.5T 50 32 18 — DB 13 3 2 32 86.7 91.4

Hayat Ahmad Khan et al. 2015 India PC — 26 20 6 — — 16 2 0 8 100 80

I. C. Helmark et al. 2007 Denmark PC 1.5T 50 25 25 28 DB 15 10 2 23 88.2 69.7

Gupta M. K. et al. 2014 Nepal PC 0.35T 40 24 16 30 DB 21 2 2 15 91.3 88.2

Predrag Grubor et al. 2013 Bosnia and 
Herzegovina PC — 63 50 13 37 — 21 12 4 26 84 68.4

Julian Dutka et al. 2012 Poland RC — 113 — — 37 SB 57 6 14 36 80.3 85.7

Sylvain R. Duc et al. 2008 Switzerland PC 1.5T 60 15 14 41 SB 14 0 6 40 70 100

Peter De Maio et al. 2014 Canada PC 1.5T 50 28 22 41 DB 17 1 0 32 100 97

J. Challen et al. 2007 Australia RC 1.5T 44 25 19 41 SB 10 5 3 26 77 83.9

Francisco Abaeté Chagas-Neto et al. 2016 Brazil PC 1.5T 76 28 10 34 DB 52 4 4 16 92.9 80

Amreen Abdul Bari et al. 2014 India PC 1.5T 71 — — — DB 29 7 4 31 87.9 81.6

T. Ai et al. 2012 USA RC 1.5T 29 17 12 33 DB 10 2 3 14 76.9 87.5

Table 1. Basic characteristics of the studies included in the meta-analysis. PD: publication date; SD: study 
design; RC: retrospective cohort; PC: prospective cohort; MFI: magnetic field intensity; No.: number; M: male; 
F: female; SB: single blind; DB: double blind; TP: true positive; FP: false positive; FN: false negative; TN: true 
negative; SE: sensitivity; SP: specificity.

Figure 2. The methodological quality assessment of risk of bias within eligible studies according to 
QUADAS-2. QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies 2.
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Another important factor that affects the diagnostic accuracy is the MRI sequence. Oei et al. (2003) reported 
that improving the MRI sequence could improve diagnostic accuracy37. However, no study has yet compared the 
accuracy of diagnosis between different MRI sequences. Our meta-analysis provides evidence that there are no 

Figure 3. Forest plot of sensitivity, specificity, positive LR and negative LR of MRI for the diagnosis of ACL 
injury. (A) Sensitivity for MRI. (B) Specificity for MRI. (C) Positive LR for MRI. (D) Negative LR for MRI. 
Corresponding indices, 95% CI and the pooled indices are represented by red circles, horizontal lines and red 
diamonds, respectively. LR: likelihood ratio; CI: confidence interval.

Figure 4. The sROC plane for heterogeneity test of threshold effect of each independent study. The sROC (middle 
line) with 95% CI (the other two lines) of MRI in diagnosing of ACL injury. sROC: summary receiver operator 
characteristic; CI: confidence interval; AUC: area under the curve; Q*: Q index value; SE: standard error.
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significant differences in SE, SP, LR+, LR− or DOR between CSs and CSs + PDWI (p = 0.95, p = 0.34, p = 0.53, 
p = 0.90, p = 0.45, respectively). Moreover, the SE of the two groups were equal (SE = 0.87). However, we found 
that the SP, LR+, LR− and DOR values were better in CSs + PDWI than in CSs.

In previous reviews, the impact of the study’s year of publication was found to be variable. Oei et al. (2003) 
reported that recent studies had better diagnostic accuracy than older studies37, which is likely due to improve-
ments made in imaging technology such as the use of specific knee coils, improved sequences and radiologist 
familiarity with MRI over time. In contrast, Crawford et al. (2007) found that there is a negative trend in diag-
nostic accuracy with more recent studies38, which may be due to differences in the prevalence of ACL tears in 
the selected studies. They also reported that older studies had better methodological quality than recent stud-
ies. Therefore, they included all studies regardless of the year of publication. Our meta-analysis found that SP 
was significantly different between studies published during the periods 2006–2009 and 2012–2016 (SP = 0.93 
vs. SP = 0.89, respectively; p = 0.04). Through a detailed reading of the literature included in the meta-analysis, 
we found that this was due to SP values of three articles that reached 100%16, 19, 28, which may be related to 

Figure 5. Forest plot of DOR with 95% CI. The DOR, 95% CI and the pooled DOR are represented by red 
circles, horizontal lines and red diamonds, respectively. DOR: diagnostic odds ratio; CI: confidence interval.

Category
Studies 
(n)

Sample 
size (n)

Threshold 
effects p value

Pooled SE 
(95% CI)

Pooled SP 
(95% CI)

Pooled LR+ 
(95% CI)

Pooled LR− 
(95% CI)

Pooled DOR  
(95% CI) AUC (SE*)

overall 21 1722 0.40 0.87 (0.84, 0.90) 0.90 (0.88, 0.92) 6.78 (4.87, 9.44) 0.16 (0.13, 0.20) 44.70 (32.34, 61.79) 0.93 (0.01)

MFI

≥1.5T 12 675 0.89 0.87 (0.82, 0.91) 0.91 (0.88, 0.93) 7.85 (4.74, 12.99) 0.17 (0.12, 0.23) 50.97 (30.40, 85.46) 0.93 (0.01)

<1.5T 3 522 0.67 0.85 (0.78, 0.90) 0.92 (0.89, 0.95) 8.57 (5.76, 12.74) 0.17 (0.11, 0.26) 50.53 (26.51, 96.30) 0.93 (0.03)

t value*/Z value — — — 0.19* −0.31* −0.29 −0.32* −0.29 —

p value — — — 0.85 0.76 0.84 0.75 0.84 —

Year of publication

2006–2009 8 529 0.76 0.83 (0.76, 0.89) 0.93 (0.90, 0.95) 10.83 (4.62, 25.40) 0.20 (0.14, 0.28) 56.63 (30.02, 106.85) 0.92 (0.02)

2012–2016 13 1193 0.82 0.88 (0.85, 0.91) 0.89 (0.86, 0.91) 5.90 (4.08, 8.54) 0.14 (0.11, 0.18) 40.90 (28.02, 59.69) 0.93 (0.01)

t value*/Z value — — — −1.83* 2.07 −1.70 1.67* −0.36 —

p value — — — 0.08 0.04 0.09 0.11 0.75 —

MRI sequences

CSs 6 431 0.957 0.87 (0.81, 0.91) 0.88 (0.84, 0.92) 6.31 (3.55, 11.23) 0.17 (0.11, 0.25) 36.62 (19.69, 68.12) 0.92 (0.02)

CSs + PDWI 7 655 0.355 0.87 (0.82, 0.92) 0.92 (0.89, 0.94) 9.54 (6.76, 13.47) 0.15 (0.10, 0.22) 58.07 (33.39, 100.99) 0.94 (0.02)

t value*/Z value — — — −0.06* −0.10* −0.72 0.13* 0.86 —

p value — — — 0.95 0.34 0.53 0.90 0.45 —

Table 2. Differences between subgroups according to MFI, year of publication and type of MRI sequence. SE: 
sensitivity; SP: specificity; LR+: positive likelihood ratios; LR−: negative likelihood ratios; DOR: diagnostic 
odds ratio; AUC: area under the curve; CI: confidence interval; SE*: standard error; MFI: magnetic field 
intensity; T: Tesla; MRI: magnetic resonance imaging; CSs: conventional sequences; PDWI: proton density 
weighted imaging; t: two independent samples t-test; Z: mann-whitney test.
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the MRI sequence or the specific knee coil used in their original study, such as fat-suppressed PD-weighted 
TSE-sequence and 3-minute three-dimensional isovoxel true FISP MR sequence or MRI devices using an 
eight-channel phased-array knee coil with coronal short tau inversion recovery sequence. On the other hand, 
there are seven studies that did not mention the sequence that was used and six of them were published during the  
2012–2016 period. Meanwhile, our results indicated that there were no significant differences in SE (p = 0.08), 
LR+ (p = 0.09), LR− (p = 0.11) or DOR (p = 0.75) values between studies published during the 2006–2009 
period and those during the 2012–2016 period. The SE and LR− values were better in recent studies than in older 
studies, while the LR+ and DOR values were better in older studies. Therefore, we could not draw any conclusion 
regarding which publication period produced better results. This aspect would need further investigation.

Our meta-analysis has not only updated, verified, supplemented and improved previous studies, but it has 
also provided an objective and systematic evaluation of the value of MRI diagnosis for ACL injury, including its 
diagnostic accuracy and methodology. Additionally, our research suggested new direction for future diagnosis 
experiments. Firstly, future studies should attempt when possible to use the standards for reporting of diagnostic 
accuracy (STARD) in their diagnostic tests, and try to evaluate in detail the authenticity, reliability and clinical 
importance of their diagnostic tests, in order to make their results more accurate, complete and conclusive39. 
Secondly, the diagnostic and control tests should be performed as soon as possible during the study process, and 
acquisition conditions clearly defined. Ultimately, the assessment of the test results should be double-blinded. 
Finally, by comparing different MFIs and the different sequences used for ACL injury, we provided reference and 
guidance for clinicians who choose MRI for patients with ACL damage.

Even though this meta-analysis showed optimistic results for the diagnostic accuracy of ACL injury, the out-
comes should be viewed cautiously due to several limitations related to this meta-analysis. Firstly, the selected studies 
varied greatly in sample size, continuity of enrolled patients and patient race in addition to scanning conditions. 
Besides, the MFI parameter, the method used to blind participants and assessors or the familiarity of the radiologist 
were not mentioned in several studies that were included. Secondly, our method cannot identify an accurate cut-off 
point on the sROC curve, which is in agreement with other meta-analysis of diagnostic accuracy. The reason is that 
there is no precisely measured value for the MR image and a threshold is not used in clinical examination13.

In conclusion, current evidence of our meta-analysis indicates that MRI examination is able to provide appre-
ciable diagnostic performance for DOR and AUC in the detection of ACL injury with high SE and SP (greater 
than 85%). Yet, there is not enough evidence to show that a higher MFI results in better diagnostic accuracy when 
MFI greater than or equal to 1.5T was compared with MFI below 1.5T. In addition, CSs + PDWI sequences are 
only slightly better than CSs, but without any statistical difference.

Materials and Methods
Inclusion and exclusion criteria. The inclusion and exclusion criteria were formulated based on the PICOS 
principles (participants, intervention, comparison, outcome and study design) of preferred reporting items for 
systematic reviews and meta-analyses (PRISMA)40. Studies relevant to the diagnosis of ACL injury by MRI and 
Arthroscopy were included. Inclusion criteria contained the following five conditions.

Participants and intervention measures. Patients suspected of having ACL injury/tear, examined by MRI and 
arthroscopy. Patients’ age, gender or race did not limit inclusion.

Comparison. MRI versus arthroscopy.

Outcomes. We obtained the pooled SE, SP, LR+, LR−, DOR and the sROC curve by extracting (directly or 
indirectly) the raw data (TP, FP, TN and FN results).

Figure 6. The Deeks’ funnel plot asymmetry test for publication bias in the literature evaluation. Each study is 
shown as a circle, and the regression line is shown.
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Study design. Prospective or retrospective study.

Languages and publication time. Studies in English published from January 1, 2006 to May 31, 2016 were 
included.

Exclusion criteria. Studies were excluded if they met one of the following conditions: (1) the type of article was a 
review, an abstract or a conference paper; (2) the study was performed on animals or cadavers; (3) the sample size 
of the study was less than 25 cases; (4) the raw data was not complete, thus preventing the calculation of TP, FP, 
FN or TN; (5) the patients were not examined using MRI and arthroscopy simultaneously; (6) clinical data were 
insufficient; (7) repeated reports came from the same team or the same set of data.

Search strategy. Computer retrieval of English studies from PubMed, EMBASE, and Ovid databases, in 
addition to BIOSIS Previews and the Cochrane library was performed from January 1, 2006 to May 31, 2016. 
In addition, a manual retrieval was achieved based on references, magazines, ResearchGate, the national library 
reference service platform or by sending emails to authors. We used the following MeSH heading and keywords: 
magnetic resonance imaging AND anterior cruciate ligament AND arthroscopy.

Screening and literature selection. The screening of the original literature should be strictly followed 
by the inclusion and exclusion criteria. There were four steps in the selection process. Firstly, the two researchers 
eliminated duplicated reports coming from the same team or the same set of data. Secondly, the two researchers 
selected the papers by reading titles and abstracts according to the inclusion and exclusion criteria. Thirdly, by 
evaluating the full text, the two researchers screened the potentially available studies conforming to the inclusion 
and exclusion criteria. Fourthly, to re-assess the full text, the two researchers chose the studies for which TP, 
FP, TN and FN could be extracted and calculated. The two researchers completed the screening process inde-
pendently. When their opinions differed, they discussed the results until they reached the same conclusions.

Data extraction. The two researchers designed a standardized abstract form, extracted data respectively 
and mutually checked their data. Disagreements relating to values or assessment were resolved by discussion. 
Extracted variables included: the author, the year of publication, the country where the study had been per-
formed, the study designation, MFI, the number of samples, the demographic characteristics, the blinding pro-
cess and TP, FP, TN, FN, SE and SP values.

Quality evaluation. The methodological assessments of the quality of eligible studies were graded by two 
researchers independently, according to the QUADAS-2 tool (Agency for Healthcare Research and Quality, 
Cochrane Collaboration, and the U.K. National Institute for Health and Care Excellence)41, which is recom-
mended for use in systematic reviews of diagnostic accuracy based on sources of bias and variation. The following 
four aspects are required to use the QUADAS-2 tool: (1) summarize the evaluation question; (2) develop the tool 
and produce evaluation with guidance; (3) construct a flow diagram for the original study; and (4) judge bias 
and applicability. The QUADAS-2 tool can provide obvious grades of bias and applicability of primary diagnostic 
accuracy studies. It comprises four significant domains including: (1) patient selection; (2) index test; (3) refer-
ence standard; and (4) the flow and timing. Each domain contains several signal questions used to help judge 
the risk of bias (low, high or unclear)41. The two researchers completed the screening process independently. 
Disagreement in the process of answering questions was discussed until consensus was reached. A final decision 
of “yes (satisfactorily elaborated)”, “no (unsatisfactorily elaborated)” or “unclear (data are insufficient making a 
judgment difficult)” was made by the researchers after systematic discussion. If the answers to all the signal prob-
lems were “yes”, a low risk of bias was attributed to the study; if the answers to all the signal problems had one or 
more “no” or “unclear” values, an unclear risk of bias was used; if the answers to all the signal problems contained 
at least one “no” but no “yes” answers, a high risk of bias was attributed. QUADAS-2 tabular and graphical display 
can be retrieved from the Web page, http://www.bris.ac.uk/quadas/quadas-2.

Statistical analysis. Meta-Disc 1.4 for Windows (XI Cochrane Colloquium, Barcelona, Spain) statistical 
software was used for the heterogeneity test, outcomes combination and subgroup analysis42. Stata 14.0 (Stata 
Corp., College Station, TX, USA) was used for publication bias. A two-sided statistical test was considered suita-
ble and statistical significance was set at p < 0.05.

Heterogeneity is usually caused by threshold and non-threshold effects. If the threshold effect exists, the pairs 
of accuracy estimates (SE and SP, or LR+ and LR−) are negatively correlated (or SE is positively correlated with 
1 - SP), or vice versa; the accuracy estimates distribution of each independent study shows a typical “shoulder 
arm” shape in the sROC curve; or the Spearman correlation coefficient reflects a significant relationship between 
the logit of sensitivity and the logit of 1-specificity according to p and r values. Besides the threshold effect, 
non-threshold effects also cause heterogeneity, including population (such as disease severity and complications), 
test conditions (such as different technologies, laboratory tests and operators), standard tests and so on. This can 
be detected through Chi-square and Cochran-Q statistical tests. If non-threshold effects exist, then p < 0.0543.

A fixed effects model was used with no heterogeneity among individual studies when p > 0.05 and I2 < 50%. 
This calculation model of the combined effect indicated that all the variation in the eligible studies was caused by 
chance. In other words, the model assumed that the measurements over all effects were from the same population. 
Otherwise, a meta-regression analysis can be used to explore the potential factors of heterogeneity (such as the 
participants, the test, the standard test, the methodological characteristics, etc.). When persistent heterogeneity 
among eligible studies exists, a random effects model can be used to analyze the sampling error (variance) and 
the variance of the research with p < 0.05 and I2 ≥ 50%44, and estimate the uncertainty of the results by 95% CI, 
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because of the clinical importance of some indices. This calculation model could give a wider CI than the fixed 
effects model when the heterogeneity is caused by other potential factors.

A fixed effects model with the Mantel-Haenszel method or a random effects model with the 
DerSimonian-Laird method was applied to calculate the pooled SE, SP, LR+, LR− and DOR with 95% CI based 
on the level of heterogeneity of the eligible study presenting in forest plots. The sROC curve with 95% CI was 
established by combining data, which could evaluate the potential association between SE and SP in a metamor-
phic approach. A value of ½ was added to all cells of studies when data with a zero value appeared.

A subgroup analysis was subsequently assessed in a more homogeneous group according to MFI (≥1.5T ver-
sus <1.5T), year of publication (2006 to 2009 versus 2012 to 2016) and MRI sequences (CSs versus CSs + PDWI), 
which was comprised more than 3 studies. Differences between subgroups were calculated through t test or rank 
sum test45.

A Deeks’ funnel plot asymmetry test was used with a significance level set at p < 0.05 to predict the existence 
of publication bias46, which is of great concern for meta-analysis of diagnostic studies.

Data Availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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