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LRLSHMDA: Laplacian Regularized 
Least Squares for Human Microbe–
Disease Association prediction
Fan Wang1,2, Zhi-An Huang3, Xing Chen4, Zexuan Zhu3, Zhenkun Wen3, Jiyun Zhao1 &  
Gui-Ying Yan5

An increasing number of evidences indicate microbes are implicated in human physiological 
mechanisms, including complicated disease pathology. Some microbes have been demonstrated to be 
associated with diverse important human diseases or disorders. Through investigating these disease-
related microbes, we can obtain a better understanding of human disease mechanisms for advancing 
medical scientific progress in terms of disease diagnosis, treatment, prevention, prognosis and drug 
discovery. Based on the known microbe-disease association network, we developed a semi-supervised 
computational model of Laplacian Regularized Least Squares for Human Microbe–Disease Association 
(LRLSHMDA) by introducing Gaussian interaction profile kernel similarity calculation and Laplacian 
regularized least squares classifier. LRLSHMDA reached the reliable AUCs of 0.8909 and 0.7657 based 
on the global and local leave-one-out cross validations, respectively. In the framework of 5-fold cross 
validation, average AUC value of 0.8794 +/−0.0029 further demonstrated its promising prediction 
ability. In case studies, 9, 9 and 8 of top-10 predicted microbes have been manually certified to be 
associated with asthma, colorectal carcinoma and chronic obstructive pulmonary disease by published 
literature evidence. Our proposed model achieves better prediction performance relative to the 
previous model. We expect that LRLSHMDA could offer insights into identifying more promising human 
microbe-disease associations in the future.

A microbe or microorganism refers to a microscopic living organism which could be single-celled or multicellu-
lar. With the deepening of research, microbes were basically classified into several species: bacteria, fungi, viruses, 
archaea, protozoa and others1, 2. As we all know, microbes are ubiquitously living in every part of biosphere, such 
as soil, rock, hot springs, even “seven miles deep” in the ocean. Therefore, it is not surprising that multitudes of 
commensal microbes colonize in human body, such as skin3, lung4, gut5 and oral cavity6. It is generally believed 
that microbial cells in our body outnumber our own cells by a ratio of 10-to-17. In fact, most of these microbes not 
only do no harm to human health but also have a mutualistic symbiotic relationship with their human hosts, so 
called “forgotten organ”8. With the advent of high-throughput sequencing technology and analytic system, peo-
ple have realized the critical role of microbe and carried out related investigations. It has been found that human 
microbes participate in many biological processes including energy harvest and storage, immune structure and 
function, protection against invasion by alien microbes and some important metabolic functions like fermenting 
and absorbing undigested carbohydrates9, 10. Therefore, “sick” microbial communities tend to cause physiological 
disorders of the human body. In other words, there may exist a potential association relationship between the 
dysbiosis of microbial communities and the occurrence of complex human diseases.

Over millennia, since the mutualistic symbiotic relationship was naturally selected and developed by evo-
lutionarily ancient symbiosis of human and their commensal microbiota, they have been mutually affected by 
diverse interactions in many aspects. The commensal microbial community in human body could be greatly 
affected by the genetics and living environments (e.g. diets11–14, antibiotics15, season16 and smoking17) of their 
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human host. For example, food sources i.e. diets, are the most important determinant for shaping the compo-
sition of the human intestinal microbiota. Extreme short-term diets could rapidly lead to a remarkable altera-
tion in the composition of human intestinal microbiota, especially when lacking of carbohydrates. In addition, 
a dynamic balance of human microbiota is essential to maintain a good physical condition, which means that 
once such dynamic balance is broken, related human diseases and disorders may be induced. Based on the devel-
opment of sequencing technology and analytic system such as 16S ribosomal RNA (rRNA) gene sequence and 
taxonomic profiles18, 19, human microbes have been identified to be related to some important diseases such as 
central nervous system disorder20, kidney stones21, cardiovascular disease22, psoriasis23, cancer24 and metabolic 
syndrome (e.g. obesity25 and diabetes26, 27). For example, as we know, oral cavity is a perfect habitat for a wide 
variety of oral microbiome including pathogenic bacteria, whose proliferation may give rise to an inflammatory 
disease, i.e. periodontitis28. Researchers compared gene expression difference of both periodontitis-related dis-
eased samples and healthy samples. The results demonstrated that periodontitis-related microbial communities 
have highly conserved changes in metabolic and virulence gene expression profiles, whereas healthy samples do 
not. It means that community composition changes in oral microbiome could be implicated in the pathogenesis 
of periodontitis29. Furthermore, the gut flora has been found to have association with the pathologic end stage 
of chronic liver disease, i.e. liver cirrhosis. Through real-time quantitative polymerase chain reaction (qPCR) 
and 454 pyrosequencing of 16S rRNA V3 region, experiments showed that the fecal microbial communities are 
distinct in the cirrhosis-related samples, relative to the healthy samples30. Some pathogenic bacteria, such as 
Proteobacteria and Fusobacteria, are highly enriched in the cirrhosis patients potentially affecting their prognosis. 
It was reported that the predominant acquisition of Helicobacter pylori in the childhood could reduce the risk of 
allergy. The colonization with Helicobacter pylori was demonstrated to have an inverse association with the symp-
tom of allergy, such as sensitization to pollens and molds31. Besides, metastasis is considered as the major reason 
of mortality from cancer. Because of Genome sequencing and computational analysis, it is feasible and helpful to 
conduct computational dissection of clones from tumors32, 33. Most importantly, a tumor’s metabolically compro-
mised microenvironment is served as a haven harboring plenty of anaerobic bacteria, which localize and cause 
lysis in transplanted tumors. Combination bacteriolytic therapy (called COBALT) is regarded as a new weapon 
against cancer when systematically administered with conventional drugs and chemotherapeutics34. Therefore, it 
is anticipated that using bacteria could help control the formation of fast-growing clones, although there are some 
potential problems with COBALT need to be fixed, such as: toxicity and drug resistance.

Considering the medical value of disease-related microbiota, some large-scale sequencing projects, such as 
the Human Microbiome Project (HMP)35 and the Earth Microbiome Project (EMP)36, attempted to investigate 
the relationship between microbiota and human diseases. Launched in 2008, HMP was aimed at identifying and 
characterizing those microorganisms which have a strong association with human health and disease. Reference 
genomic sequencing of 3000 individual bacterial isolates was identified for further metagenomic compari-
son analysis. Moreover, some related databases37–40 have been developed to collect and manage the biological 
information about disease-related microbes. A human microbe–disease association database called HMDAD41 
manually integrated 483 disease-microbe association entries at the genus level based on previously published lit-
eratures. These databases are regarded as the essential tools for capturing and analyzing the rapidly accumulating 
information for microorganisms, which provides a possibility for large-scale disease-related prediction. However, 
the identification of the known microbe-disease associations is only a tip of the iceberg which indicates that little 
effort has been done to fully understand the pathology of diverse human diseases from a microbial perspective. 
It may slow down the development of disease diagnosis, treatment, prevention, prognosis and drug discovery. 
Currently, culture-independent approaches and quantitative methods are widely used in the characterization of 
microbial community. However, only depending on these conventional methods is not only laborious but also 
time-consuming. It is difficult to fully explore the potential microbe-disease associations in a short term. For pre-
dicting most probable associations, computational approach, served as an assistant tool, has achieved remarkable 
results in other biological domains, such as drug-target interaction prediction42, 43, synergistic drug combination 
inference44, non-coding RNA (ncRNA)-disease association prediction45–48, gene-disease association prediction49, 
protein-protein interaction prediction50, ncRNA-environmental factor interaction prediction51. Recently, increas-
ing attention has been paid to computational biology for microbe-disease association52–56. These computational 
methods have been developed to facilitate relevant research in different ways, such as: the package for imple-
menting community-level metabolic network reconstruction, the computational methodology for predicting 
the influence of microbial proteins in human biological events, the computational framework for identification 
of key functional differences in microbiome-related disease, the web application for annotation and analysis of 
specific genes in the human gut microbiome. In 2016, we have presented the first computational model called 
KATZHMDA57 in this domain based on KATZ method, which specializes in social network prediction58. Based 
on the heterogeneous graph constructed by known microbe-disease association network, microbe similarity net-
work and disease similarity network, we integrated the number of walks and their own lengths regarded as an 
effective measure index for calculating the potential association probability between microbes and diseases. Its 
reliable prediction performance makes us believe that computational approach could effectively contribute to 
inferring potential microbe-disease associations.

In this article, we aimed to utilize the computational prediction model for inferring the most poten-
tial microbe-disease associations by prioritizing their association probability values based on the known 
microbe-disease association network. These promising microbe-disease associations could be given priority for 
further experimental verification. It is anticipated that introducing computational prediction models could accel-
erate the identification of novel microbe-disease association. Therefore, we developed a novel computational 
model of Laplacian Regularized Least Squares for Human Microbe–Disease Association (LRLSHMDA) based 
on the known human microbe-disease association network derived from the HMDAD database (See Fig. 1). 
Because of the lack of negative samples i.e., those microbes are verified to have no association with a given disease, 
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a semi-supervised learning framework is adopted in the proposed model. By introducing Gaussian interaction 
profile kernel similarity and Laplacian regularized least squares (LapRLS) classification, topology structures in 
the known microbe-disease association network can be utilized to effectively exploit the implicative information 
of vertices and edges, which helps train the optimal classifier. As a global measure approach, our model enables 
to simultaneously prioritize all candidate microbe-disease pairs for all investigated diseases. As a result, we con-
ducted cross validations and case studies on the proposed model for evaluating the prediction performance. 
Promising validation results demonstrated that LRLSHMDA could be an effective tool to advance the identi-
fication of disease-related microbes and aid future research focus towards a mutualistic symbiotic relationship 
between microorganisms and their human host.

Results
Cross validation.  To comprehensively evaluate the prediction performance, leave-one-out cross validation 
(LOOCV) and 5-fold cross validation (5-fold CV) were conducted on the proposed model. LOOCV was imple-
mented on the known verified microbe-disease association pairs, each of which was left out in turns to be a test 
sample when others were used for training model. If the test sample is ranked higher than the specific threshold, 
it could be considered to make a correct prediction for this test microbe-disease association pair. Two types of 
LOOCV called global LOOCV and local LOOCV were conducted in this study based on the diverse ranking 
scopes. In terms of global LOOCV, the test sample was ranked among all unknown candidate microbe-disease 
association pairs involved in all investigated diseases. In terms of local LOOCV, the test sample was only ranked 
among other unknown disease-related microbes for a given disease. Namely, the major difference between two 
types of LOOCV is whether all investigated diseases are considered or not. In addition to LOOCV, 5-fold CV was 
also introduced to evaluate the performance of the proposed model. We randomly split up all known verified 
microbe-disease association pairs into five groups. Instead of selecting one microbe-disease association as a test 
sample, each of these five groups was selected in turns to be test samples while other four groups were served 
as the training samples. To reduce the bias caused by such random divisions, this process was conducted 100 
times in the framework of 5-fold CV. For visually evaluating the performance, receiver-operating characteristics 
(ROC) curve, which is a common means for evaluating the binary classification models, was therefore adopted 
in our study. Sensitivity and specificity are two key measure indexes used in ROC curve. In this study, sensitivity 
measures the proportion of a test to correctly identify those microbe-disease associations, whereas specificity 
measures the proportion of a test to correctly identify those microbes without the known associations with the 
investigated diseases. In this way, we plotted ROC curve by using true positive rate (sensitivity) versus false pos-
itive rate (1-specificity) at gradually changing thresholds. The area under ROC curve (AUC) was also commonly 
calculated for measuring performance. Generally, AUC = 0.5 shows a purely random performance while AUC = 1 
represents a completely perfect performance.

Figure 1.  Flowchart of LRLSHMDA. Based on the known microbe-disease association network, we utilized 
Gaussian interaction profile kernel similarity and LapRLS classification to infer the potential microbe-disease 
associations.
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As we have seen in Fig. 2, AUCs of 0.8909 and 0.7657 in the proposed model demonstrated its reliable predic-
tion performance based on global and local LOOCV, respectively. Compared with KATZHMDA’s result (AUCs 
of 0.8382 and 0.6812 in global and local LOOCV), our newly proposed model obtained a better improvement. In 
the framework of 5-fold CV, the average AUC of 0.8794 +/−0.0029 further shows the more reliable prediction 
performance, relative to KATZHMDA’s (the average AUC of 0.8301 +/−0.0033). This result reveals that, although 
these two approaches are both based on the bipartite graph, LRLSHMDA indeed performs better in terms of the 
prediction accuracy.

Case studies.  To measure the practical effect of LRLSHMDA, we selected three important human diseases 
in our case studies for revealing the pathological relationship between microbes and respiratory system as well 
as digestive system from a microbial perspective. As a result, 9, 9 and 8 of top-10 predicted microbes have been 
supported to be associated with the onset of asthma, colorectal carcinoma and chronic obstructive pulmonary 
disease (COPD) based on previously published literatures.

Asthma, a common chronic lung disease inducing the inflammation and narrowing the airways, resulted in 
489,000 global deaths in 201359. Asthma often starts during childhood with multiple symptoms such as short-
ness of breath, recurring periods of wheezing, chest tightness and coughing at night or early in the morning. In 
recent years, besides the well-known causes of genetic and environmental factors60, the involvement of microbe in 
pathology of asthma was demonstrated by increasingly emerging evidences61, 62. For example, the changing pop-
ulations of Sphingomonadaceae, Comamonadaceae, Oxalobacteraceae and other bacterial families are potentially 
associated with bronchial hyperresponsiveness in patients with suboptimally controlled asthma. To evaluate the 
prediction effect on asthma, we implemented a case study of asthma based on our approach. In the prediction list, 
9 of top-10 predicted microbes have been verified to have an impact on the asthmatic patients (see Table 1). For 
example, chronic airway infection with Pseudomonas aeruginosa (1st in the prediction list) has some prophylac-
tic effect on bronchial asthma63. The colonization of Clostridium difficile (2ed in the prediction list) in infants at 
age 1 month was found to have association with wheeze, eczema and asthma at age 6 to 7 years64. Lactobacillus 
(3rd in the prediction list) could inhibit airway inflammation in an ovalbumin (OVA)-induced murine model of 
asthma. This finding may offer an insight into the potential prevention action of asthma65. Actinobacteria (5th in 
the prediction list) and Firmicutes (6th in the prediction list) were found to have a lower proportion in asthmatic 
patients, relative to non-asthmatic people66.

Known as bowel cancer, colorectal carcinoma starts in the colon or rectum, which belongs to the parts of 
the large intestine. Patients with colorectal carcinoma may appear following symptoms, such as blood in the 
stool, loss of appetite and weight, worsening constipation, nausea and emesis67. Multiple risk factors could induce 
colorectal carcinoma such as smoking, diet, obesity, lack of physical activity and alcohol. Colorectal carcinoma 
reaches nearly 65 percentages of five-year survival rates and becomes the third most common type of cancer in 
United States. In 2012, it caused 1.4 million new cases and 694,000 deaths all over the world68. Some evidences 
revealed that microbes play an increasingly significant role in the onset of colorectal carcinoma. For example, 
lecithinase-negative Clostridium and Lactobacillus were identified to be more abundant in colorectal carcinoma 
patients69. Some Lactobacillus species and Eubacterium aerofaciens have an effect to reduce the disease risk70. To 

Figure 2.  Prediction performance comparison between LRLSHMDA and KATZHMDA in the frameworks of 
both global and local LOOCV.



www.nature.com/scientificreports/

5SCiEnTifiC ReportS | 7: 7601  | DOI:10.1038/s41598-017-08127-2

examine the adverse and beneficial microbes in digestive system, a case study of colorectal carcinoma was con-
ducted on our model. As a result, 9 of top-10 predicted microbes have been proven based on the experimentally 
verified evidences (see Table 2). For example, infection with Helicobacter pylori (2ed in the prediction list) could 
increase the risk of colorectal carcinoma71. The dramatic increase of Clostridium difficile (3th in the prediction 
list) and C. coccoides (4th in the prediction list) was a potential pathogenic factor for triggering colorectal carci-
noma72. Staphylococcus aureus (5th in the prediction list) as the immunoadsorbent can be applied to therapy for 
a patient with a metastatic colon carcinoma73. Bifidobacterium (6th in the prediction list) may protect against the 
development of colon carcinoma74.

COPD, a type of obstructive lung disease, progressively makes it hard to breathe75. Besides most COPD 
patients smoke or used to smoke, air pollution, cooking fires and genetics could also result in narrowing of the 
small airways and breakdown of lung tissue, which can bring on typical symptoms including cough with sputum 
production and shortness of breath. In 2013, COPD was the third leading cause of death all over the world, caus-
ing 2.9 million deaths. Especially, more than 90% of deaths occur in the developing countries. Most importantly, 
329 million people (about 5% of global population) were hindered by COPD in the world59, 76. However, there is 
still no known cure and pathogenesis for this disease. Recent discoveries77, 78 suggested that shifts or perturbations 
in the microbiota may play an important role in the development of COPD. For example, two types of bacterial 
microbiota Proteobacteria and Firmicutes were speculated to be related to COPD. Currently, little is known about 
the COPD-related microbes, which motivated us to conduct a case study of COPD on the proposed model. Eight 
of top-10 predicted microbes in the prediction list obtained evidence support (see Table 3). For example, some 
experiment results showed that Helicobacter pylori (1st in the prediction list), Clostridium difficile (2ed in the pre-
diction list) and Comamonadaceae (8th in the prediction list) may be implicated in COPD77, 79, 80. The significant 
expansion in Actinobacteria (4th in the prediction list), Staphylococcus (5th in the prediction list), Firmicutes (6th 
in the prediction list) and Sphingomonadaceae (10th in the prediction list) was proven to drive the development 
of COPD81–83. Furthermore, a decrease in Clostridia (7th in the prediction list) could result in the exacerbation 
of COPD.

We also compared the performance between LRLSHMDA and KATZHMDA for the case studies of these 
three diseases by manually verifying the top-10 disease-related microbes inferred by KATZHMDA based on the 
literature evidences as well (see Supplementary Table 4). Based on KATZHMDA model, 4, 5 and 5 of top-10 pre-
dicted microbes have been supported to be linked with the onset of these three diseases. The comparative result of 
the top-10 prediction list was shown in Table 4. According to this comparative result, we believe that LRLSHMDA 
indeed possesses a relatively higher accuracy rate for inferring potential disease-related microbes.

Above all, we conclude that human microbes participate in the regulation of multiple host physiological 
activities. Once the dynamic change of microbial communities is disturbed by other environmental factors 

Rank Microbe Evidence

1 Pseudomonas PMID:9294308

2 Clostridium difficile PMID:21872915

3 Lactobacillus PMID:20592920

4 Burkholderia unconfirmed

5 Actinobacteria PMID:23265859

6 Firmicutes PMID:23265859

7 Clostridium coccoides PMID:21477358

8 Clostridia PMID:21477358

9 Staphylococcus aureus PMID:17950502

10 Bifidobacterium PMID:24735374

Table 1.  In the case study of asthma, 9 out of top-10 predicted microbes have been supported by literature 
evidences.

Rank Microbe Evidence

1 Proteobacteria unconfirmed

2 Helicobacter pylori PMID:11774957

3 Clostridium difficile PMID:19807912

4 Clostridium coccoides PMID:19807912

5 Staphylococcus aureus PMID:7074582

6 Bifidobacterium PMID:9111222

7 Haemophilus PMID:22761885

8 Actinobacteria PMID:24316595

9 Lactobacillus PMID:15828052

10 Veillonella PMID:22761885

Table 2.  In the case study of colorectal carcinoma, 9 out of top-10 predicted microbes have been supported by 
literature evidences.

http://4
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and therefore becomes unbalanced, it could lead to human related diseases or disorders. Understanding how 
microbes affect their human hosts could shed a light on complicated diseases. Besides these three case studies, 
LRLSHMDA as a global measure model can simultaneously prioritize the potential microbes related to other 
investigated diseases, such as diabetes, liver cirrhosis, periodontal, obesity and eczema. These published predic-
tion results were ranked based on their association probabilities (see Supplementary Table 5). We hope that it can 
provide researchers an aid to guide the experimental verification for further accelerating the detection of potential 
disease-related microbes.

Discussions
Human body is a home that harbors thousands of microbe species constructing complicated microbial ecosys-
tems, which have been known to affect human health. With the development of high-throughput sequencing 
technology and analytic system, researchers could carry out the further study (e.g. large-scale sequencing pro-
jects, disease-related microbe databases) for investigating the pathological relationship between microbes and 
their human hosts. However, what we have learned is a drop in the bucket, and that it is insufficient for us to 
thoroughly understand their pathogenic mechanism. Only depending on the culture-independent approaches 
and quantitative methods or other conventional experimental validation methods, is not only time-consuming 
but also laborious. As an effective tool, computational model has a great effect on the progress of many other 
biological domains. In this article, we proposed a novel semi-supervised learning computational model based 
on the framework of LapRLS. Gaussian interaction profile kernel similarity was adopted to extract the microbe 
similarity network and disease similarity network from the experimentally verified microbe-disease association 
network. By constructing and optimizing the cost functions in microbe space and disease space, the optimal 
classifier functions can be integrated to calculate the probability matrix, representing candidate microbe-disease 
association pairs with their predicted correlation coefficients. As a result, the proposed model achieved a reli-
able prediction performance in the evaluation frameworks of global LOOCV (AUC of 0.8909), local LOOCV 
(AUC of 0.7657) and 5-fold CV (average AUC value of 0.8794 +/−0.0029). In our case studies, 9, 9 and 8 of top-
10 inferred microbes have been confirmed to have associations with asthma, colorectal carcinoma and COPD 
according to the literature evidence. As a global measure model, our model can simultaneously prioritize all can-
didate microbe-disease pairs. Given the promising prediction performance, we believe that LRLSHMDA could 
be regarded as an effective tool advancing the progress of biomedical identification of potential disease-related 
microbes. In the future, if the negative microbe-disease association data is available, the prediction performance 
could be further improved by adding negative values in microbe similarity and disease similarity for representing 
the adverse associations between themselves.

The reliable performance of our approach could well benefit from several major factors as follows. (1) We used 
Gaussian kernel interaction profiles to extract the potential similarity for microbes and diseases by making use of 
topology structures in known microbe-disease association network. (2) Smoothening the classifiers in microbe 
space and disease space, is a reasonable trade-off between bias and variance for obtaining the strong capability of 
fitting and generalization. (3) Based on the LapRLS framework, the proposed model is a semi-supervised learning 
method, i.e. the training data is regarded as labeled samples while other test data as unlabeled samples. By utiliz-
ing the known microbe-disease association pairs as labeled sample, it is feasible to adopt a semi-supervised learn-
ing algorithm, especially when negative microbe-disease association data is extremely scarce. (4) It is reasonable 

Rank Microbe Evidence

1 Helicobacter pylori PMID:15733502

2 Clostridium difficile PMID:15655746

3 Clostridium coccoides unconfirmed

4 Actinobacteria PMID:26852737

5 Staphylococcus PMID:15338798

6 Firmicutes PMID:24591822

7 Clostridia PMID:26852737

8 Comamonadaceae PMID:20141328

9 Oxalobacteraceae unconfirmed

10 Sphingomonadaceae PMID:26852737

Table 3.  In the case study of COPD, 8 out of top-10 predicted microbes have been supported by literature 
evidences.

Model Asthma
Colorectal 
carcinoma COPD

LRLSHMDA 9 9 8

KATZHMDA 4 5 5

Table 4.  Performance comparison between LRLSHMDA and KATZHMDA in the case studies of the 
confirmation of the top-10 prediction list for three human complex diseases.
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to integrate two separate optimal classifiers into a unified space by mean operation for improving the accuracy 
of the prediction.

Of course, there are some limitations inhibiting the performance of LRLSHMDA. (1) The experimentally ver-
ified microbe-disease association pairs used in our approach are relatively insufficient, so the sparse association 
network could affect the predictive capability. It is anticipated that this problem will be eased when collecting 
more microbe-disease associations in the future. (2) Although microbe similarity network and disease similarity 
network can be calculated by Gaussian interaction profile kernel similarity, it is difficult to avoid bias brought by 
such an inference. Given other substantial datasets such as: disease semantic similarity and microbe homologous 
sequence similarity, Gaussian interaction profile kernel similarity for microbes and diseases can be replaced to 
enhance the reliability of information resource. (3) The combination operation of those two optimal classifiers 
could be improved based on other more effective machine learning algorithms. (4) The proposed model cannot 
be applied to those microbes without any known related disease. (5) Only 39 diseases have been considered in the 
HMDAD database, which means that some microbes may have no relationship with all these 39 diseases but our 
model still make a prediction and prioritize these associations in the top rank. It may bring some misreadings that 
these microbes seem to be strongly associated with several of these 39 diseases but in fact they do not. This prob-
lem could be solved if more diseases are included. (6) Some microbes have been confirmed to play an important 
role in development, diagnosis, prevention, prognosis, and treatment for cancer84–87. Therefore, it is essential to 
investigate the effect of microbe on cancer. However, because there are few cancer-related entries in the HMDAD 
database, we cannot further explore the relationship between microbe and cancer at present.

Methods
Microbe-disease associations.  By manually collecting microbe-disease association data set from pre-
viously published literatures, Ma et al. constructed the Human Microbe-Disease Association Database called 
HMDAD (http://www.cuilab.cn/hmdad)41 publicly providing 483 microbe-disease entries, which involve 39 dis-
eases and 292 microbes (see Supplementary Table 1). 16S RNA sequencing was commonly used in human-asso-
ciated microbiome studies, whose articles generally described related information at the genus level, so therefore 
most microbe names in HMDAD were recorded in genus as well. Based on these known microbe-disease entries, 
we defined an adjacency matrix as variable Y for representing their association relationship, i.e. Y(i,j) = 1 means 
microbe i is associated with disease j, and vice versa. For better description, two variables nm and nd are respec-
tively defined as the numbers of microbes and diseases investigated in our study.

Gaussian interaction profile kernel similarity for microbes.  Considering any two microbes related 
with more common human diseases could tend to potentially share higher functional similarity, we used 
Gaussian kernel interaction profiles to calculate the inferred microbe similarity based on the topologic infor-
mation of known microbe-disease association network. The interaction profiles of microbe mi denoted as IP(mi) 
record the relationship between mi and the all investigated diseases, i.e. the ith row of matrix Y. For two arbitrary 
microbes mi and mj, their inferred similarity can be calculated based on their interaction profiles IP(mi) and 
IP(mj) as follows:

γ= − −‖ ‖m m IP m IP mKM( , ) exp( ( ) ( ) ) (1)i j m i j
2

where parameter γm is responsible for controlling the kernel bandwidth. This parameter γm needs to be updated 
with the normalization operation of a novel bandwidth parameter γ′m by the mean number of aggregate associa-
tions with diseases for each microbe:

∑γ = γ′

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Here, for simplified calculation, γ′m was assigned to 1 according to the previous study88. In this way, KM matrix 
could be calculated to represent the inferred microbe similarity, i.e. KM(i,j) denotes how microbe mi is potentially 
similar with microbe mj.

Gaussian interaction profile kernel similarity for diseases.  Similar to microbes, Gaussian interaction 
profile kernel similarity for diseases KD can be inferred as follows:

γ= − −‖ ‖d d IP d IP dKD( , ) exp( ( ) ( ) ) (3)i j d i j
2
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where γ′d was also set to 1.
In particular, when implementing cross validation for performance evaluation, Gaussian interaction profile 

kernel similarity for diseases and microbes needs to be recomputed for those left-out known microbe-disease 
association pairs.

LRLSHMDA.  LapRLS framework is commonly applied in machine learning for minimizing the predic-
tion error. We therefore developed a novel semi-supervised computational model of LRLSHMDA to prioritize 
the most potential microbe-disease associations. The proposed model followed the basic process, which was 

http://www.cuilab.cn/hmdad
http://1
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depicted in Fig. 1. Firstly, Gaussian interaction profile kernel similarity for microbes and diseases (i.e. SM and 
SD, see Supplementary Tables 2–3, one important fact should be pointed out here is that Gaussian interaction 
profile kernel similarity should be recalculated for each run in LOOCV) could be calculated based on the known 
microbe-disease association network originated from the HMDAD database. Secondly, SM and SD need to be 
normalized by the Laplacian operation. Thirdly, to make a better trade-off between bias and variance, we con-
structed the cost function, which was minimized to obtain the optimal classifiers in microbe space and disease 
space. Finally, these two optimal classifiers need to be transformed into an integrated classifier in unified space 
for calculating the probability matrix, which reflects the association potential of unknown microbe-disease pairs. 
Based on the inferred association probabilities, those microbe-disease pairs in the top rank could be considered 
as the most potential candidates. To obtain the strong capability of fitting and generalization, the classifier should 
be smooth in microbe space and disease space. Namely, between similar microbes/diseases and the same disease/
microbe, the scores for these potential associations should be similar.

After the calculation of Gaussian interaction profile kernel similarity for microbes and diseases SM and SD, 
Laplacian operation was firstly used to normalize SM and SD as follows:

= −− −DM DMLM ( ) (DM SM)( ) (5)1/2 1/2

= −− −DD DDLD ( ) (DD SD)( ) (6)1/2 1/2

where DM and DD are diagonal matrices, whose entities DM(i,i) and DD(j,j) are the aggregates of the ith row of 
DM and jth row of DD, respectively.

Later, we defined cost functions in microbe space and disease space, which were depicted by the following 
formulas (7) and (8).

η− + ⋅ ⋅A FM M FM LM FMmin [ ] (7)FM
T

F
T

F
2 2

η− + ⋅ ⋅A FD D FD LD FDmin [ ] (8)FD F
T

F
2 2

where ⋅ F denotes the Frobenius norm and that ηM and ηD are the trade-off parameters, which were assigned 
to 1 based on the previously published literature88. As we have seen, formulas (7) and (8) described a minimum 
optimization problem, which could be solved by turning into a following optimal classification functions:

η= + ⋅ ⋅ −⁎FM SM SM M LM SM A( ) (9)T1

η= + ⋅ ⋅ −⁎FD SD SD D LD SD A( ) (10)1

Finally, the optimal classifiers FM* and FD* were transformed into an integrated classifier in unified space 
with a simple weighted average operation as follows:

= ⋅ + − ⋅⁎ ⁎ ⁎F lw FM FD(1 lw) (11)T

Here, parameter lw indicated that different weights were applied to the classification functions in microbe space 
and disease space. F* was a probability matrix (nm*nd) representing the predicted microbe-disease association 
network.
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